[Supporting Information]

Facile and Accelerated Production of RuO₂ Monolayers via a Dual-Step Intercalation Process

Se Yun Kim,*^{†a} Weon Ho Shin,^{†b} Doh Won Jung,^a Dong-Su Ko,^c Jong Wook Roh,^d Sungwoo Hwang,^a Jongmin Lee,^a Kimoon Lee,^e Hee Jung Park,^f Chan Kwak,^a Sang-il Kim,^g Hyung Mo Jeong,^h Kyu Hyoung Lee,ⁱ and Hyun Sik Kim*^j

a. Inorganic Material Lab, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea. E-mail: seyuni.kim@samsung.com

b. Department of Electronic Materials Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.

c. Autonomous Material Development Lab, Samsung Advanced Institute of Technology, Suwon, 16678, Republic of Korea.

d. School of Nano & Materials Science and Engineering, Kyungpook National University, Sangju, 37224, Republic of Korea.

e. Department of Physics, Kunsan National University, Gunsan, 54150, Republic of Korea.

f. Department of Materials Science and Engineering, Dankook University, Cheonan, 31116, Republic of Korea.

g. Department of Materials Science and Engineering, University of Seoul, Seoul 02504, Republic of Korea.

h. School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

i. Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.

j. Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea. E-mail: hyunsik.kim@hongik.ac.kr

[†] These authors contributed equally to this work.

Serial	Contents	Figure	Page
Number		Number	Number
1	Thickness of exfoliated RuO ₂ monolayer nanosheets	S 1	2
2	Structure information of exfoliated RuO ₂ monolayer	S2	3
	nanosheets		
3	The yield and concentration of RuO ₂ monolayers	S3	4-5
	derived from the UV-vis spectroscopy		
4	Atomic structures of DFT (Density Functional Theory)	S4	6-7
	simulation		

Table of Contents

S1. Thickness of exfoliated RuO₂ monolayer nanosheets

Figure S1. Atomic force microscopy (AFM) image of exfoliated RuO_2 monolayer nanosheets. The average thickness of the RuO_2 monolayer nanosheets is 0.86 nm.

S2. Structure information of exfoliated RuO₂ monolayer nanosheets

Figure S2. (a) Selected area diffraction pattern (SADP) of an exfoliated RuO₂ monolayer nanosheet. (b) Atomic structures of the RuO₂ nanosheet with the definitions of the lattice parameters (a, b, θ , ϕ).

S3. The yield and concentration of RuO₂ monolayers derived from the UV-vis spectroscopy

The concentration of RuO_2 monolayers was proportional to the absorbance at 360 nm (ref: Journal of Solid State Chemistry 182, 2997 (2009)), and the absorbance was measured by UVvis spectroscopy. The equation of the RuO_2 concentration is as below.

$$C = \frac{AM_w}{\alpha l} \tag{eq 1}$$

C is concentration of the RuO₂ monolayers, A is absorbance at 360 nm, M_w is molar weight of RuO₂, l is the length of cuvette, and α is the molar extinction coefficient of the dispersed RuO₂ monolayers in aqueous solution, which is 7.4 x 10³ mol⁻¹dm³cm⁻¹ at 360 nm (ref: Journal of Solid State Chemistry 182, 2997 (2009)).

The yield of the RuO_2 monolayers was obtained by dividing the concentration of RuO_2 monolayers to initial RuO_2 concentration. The equation of the yield of the RuO_2 concentration is as below.

$$Y = \frac{AM_w L}{\alpha lm} \tag{eq 1}$$

Y is the yield of the RuO_2 monolayers, L is an initial volume of aqueous solution, and m is an initial weight of H_xRuO_2 layered materials.

Figure S1a shows UV-vis absorption spectra of the aqueous solution containing RuO_2 monolayers with TBA⁺ as an intercalant. Also, Figure S2a shows UV-vis absorption spectra of the RuO_2 monolayer solution using TBA⁺ and TMA⁺ as intercalants.

Figure S3. UV-vis absorption spectra of the aqueous solution containing RuO_2 monolayers using (a) TBA⁺ as an intercalant, and (b) TBA⁺ and TMA⁺ as intercalants.

S4. Atomic structures of DFT (Density Functional Theory) simulation

Figure S4. Atomic structures of DFT (Density Functional Theory) simulation. (a) RuO_2 layered structure, (b) TMA⁺ intercalated, and (c) TBA⁺ intercalated RuO_2 layered structures. (d) RuO_2 layered structure without strain. (e) 2 layers in the middle of the RuO_2 layered structure are widened from 0.51 to 0.92 nm for intercalation of TMA⁺. (f) The distance between the RuO_2 layers are pulled apart from 0.51 to 1.24 nm for intercalation of TBA⁺. (g) TMA⁺ intercalated RuO_2 layered structure without strain. (h) The RuO_2 layers in the middle of the structure are widened from 0.92 to 1.24 nm for intercalation of TBA⁺. Red, green, grey, blue and white balls represent oxygen, ruthenium, carbon, nitrogen, and hydrogen atoms, respectively.