Semi-sacrificial template-assisted synthesis of Ni single atoms on nitrogen-doped hollow carbon spheres as efficient and stable catalysts for CO<sub>2</sub> electroreduction

Cheng-Zong Yuan,<sup>a</sup> Li-Yuan Zhan,<sup>d</sup> Shou-Jie Liu,<sup>bc\*</sup> Xi-Lin Wu,<sup>a\*</sup> and Jianrong Chen<sup>a\*</sup>

<sup>a</sup> College of Geography and Environmental Science, Zhejiang Normal University, Jinhua, 321004, P. R. China

<sup>b</sup> College of Chemistry and Materials Science, Anhui Normal University,
Wuhu, 241000, P. R. China

<sup>c</sup> Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou, 515063, P. R. China

<sup>d</sup> The department of cardiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, P. R. China

\*To whom correspondence should be addressed.

Email: jiesliu@ahnu.edu.cn (S-J. Liu);

dbwxl@zjnu.cn (X-L. Wu);

cjr@zjnu.cn (J-R. Chen).



Fig. S1 SEM image of prepared SiO<sub>2</sub>/polydopamine spheres templates.



Fig. S2 TEM image of prepared SA-Ni/N-CS single atoms catalysts.



**Fig. S3** The high-resolution Ni 2p XPS spectrum of the obtained SA-Ni/N-CS catalysts.



**Fig. S4** Ni K-edge EXAFS spectrum and fitting result in k-space for the SA-Ni/N-CS sample.



**Fig. S5** Ni K-edge EXAFS spectrum and fitting result in q-space for the SA-Ni/N-CS sample.



Fig. S6 Corresponding EXAFS fitting curves for NiO sample.



**Fig. S7** Ni K-edge EXAFS spectrum and fitting result in k-space for the NiO sample.



Fig. S8 Corresponding EXAFS fitting curves for Ni foil sample.



**Fig. S9** Ni K-edge EXAFS spectrum and fitting result in k-space for the Ni foil sample.

**Table S1** Structural parameters of catalysts extracted from the EXAFS fitting. ( $S_0^2=0.85$ )

|         | Scattering |          |           |                                     |                  | R factor |
|---------|------------|----------|-----------|-------------------------------------|------------------|----------|
| Sample  | pair       | CN       | R(Å)      | $\sigma^{2}(10^{-3}\text{\AA}^{2})$ | $\Delta E_0(eV)$ |          |
| Ni foil | Ni-Ni      | 12.0±0.1 | 2.49±0.01 | 5.8±0.3                             | 4.5±0.5          | 0.01     |
| NiO -   | Ni-O       | 6.0±0.1  | 2.09±0.01 | 4.1±0.5                             | 5.8±0.4          | 0.01     |
|         | Ni-Ni      | 12.0±0.2 | 2.95±0.01 | 6.0±0.3                             | 8.0±0.05         |          |
| Ni      | Ni–N       | 3.7±0.6  | 1.89±0.02 | 6.7±1.4                             | -4.9±0.6         | 0.02     |
|         |            |          |           |                                     |                  |          |

 $S_0^2$  is the amplitude reduction factor; CN is the coordination number; R is interatomic distance (the bond length between central atoms and surrounding coordination atoms);  $\sigma^2$  is Debye-Waller factor (a measure of thermal and static disorder in absorber-scatterer distances);  $\Delta E_0$  is edge-energy shift (the difference between the zero kinetic energy value of the sample and that of the theoretical model). R factor is used to value the goodness of the fitting. p is the fraction of Ni atoms.

 Table S2 The zero point energy corrections and entropic contributions

 used in the related free energies calculations.

| Species              | States | ZPE/eV | TS/eV                 |
|----------------------|--------|--------|-----------------------|
| CO <sub>2</sub>      |        | 0.267  | 0.661                 |
| COOH *               | N-C    | 0.573  | 8.839×10-3            |
|                      | Ni/N-C | 0.528  | 0.013                 |
| <b>CO</b> *          | N-C    | 0.129  | 1.23×10-5             |
|                      | Ni/N-C | 0.123  | 1.93×10-5             |
| H <sub>2</sub> O (l) |        | 0.568  | 0.67                  |
| со                   |        | 0.132  | 0.611                 |
| 2003                 | N-C    | 0.307  | 2.12×10 <sup>-3</sup> |
| H*                   | Ni/N-C | 0.311  | 2.557×10-3            |
| H <sub>2</sub>       |        | 0.269  | 0.404                 |