Electronic Supplementary Information

One-pot synthesis of hetero-Co₉S₈-NiS sheets on graphene to boost lithium-sulfur battery performance

Liang Chen^{*a*, *b*}, Xuefang Xie^{*a*}, Zhian Zhang^{*c*}, Xiangzhong Kong,^a Shuquan Liang^a, Anqiang Pan **^{a*, *d*}

^a State Key Laboratory of Powder Metallurgy, School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, P. R. China

^b Hunan Collaborative Innovation Center of Environmental and Energy Photocatalysis, Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, P.R. China

^c School of Metallurgy and Environment, Central South University, Changsha Hunan 410083, China

^dSchool of Physics and Technology, Xinjiang University, Urumqi, 830046, Xinjiang, P.R. China

*Corresponding Author: *E-mail: <u>pananqiang@csu.edu.cn</u>*(A.Q. Pan);

Figure S1 Side view FE-SEM image of BMS-G (a) and S@BMS-G sheets (b).

Figure S2 TEM image of S@BMS-G (a), and the corresponding elemental mappings (b, c, d).

Figure S3 Thermal gravimetry (TG) analysis curves of S@BMS-G and S@BMS composites.

Figure S4 Digital photograph of Li_2S_6 solution absorption test result.

Figure S5 CV curves of (a) S@G and (b) S@BMS-G cathodes obtained at 0.05-0.9 mV/s between 1.7 and 2.8 V versus Li/Li⁺.

Figure S6 The cycling performance of the cathode based on BMS-G host material without sulfur loading, which was conducted over the voltage range of 1.7-2.8 V (vs. Li⁺/Li) at 1 C for 100 cycles

Table S1. The electrochemical impedance spectroscopic (EIS) parameters in detail.

Cathode	$R_{ m S}\left(\Omega ight)$	$R_{ m CT}\left(\Omega ight)$	$W_{\mathrm{O}}\left(\Omega ight)$
S@BMS-G	3.37	21.24	40.94
S@G	2.06	26.65	49.36

Table S2. Comparison of previous reports with carbon/metal sulfides as host materials in lithium sulfur cathode with our work.¹⁻⁷

Ref.	Electrode material	Sulfur content (%)	Initial specific capacity	Cycling stability	Fading rate (% per cycle)
1	Co ₉ S ₈ -CNT/S	68.8	1415 mAh g ⁻¹ at 0.2 C	560.6 mA h g ⁻¹ at 2 C after 1000 cycles	0.0448
2	Co ₉ S ₈ /C/S	80	1160 mAh g ⁻¹ at 0.2 C	560 mA h g ⁻¹ at 2 C after 1000 cycles	0.041
3	S@Co ₉ S ₈	80	1136 mAh g ⁻¹ at 0.2 C	756.6 mA h g ⁻¹ at 1 C after 600 cycles	0.026
4	cobalt nickel sulfide/N-rGO/S	72.8	1430 mAh g ⁻¹ at 0.1 C	685 mA h g ⁻¹ at 0.5 C after 300 cycles	0.075

5	Co ₉ S ₈ /MWCNTs/S	75	$\begin{array}{c} 549 \text{ mA h } \text{g}^{-1} \text{ at} \\ \text{g}^{-1} \text{ at } 0.1 \text{ C} \\ \end{array} \begin{array}{c} 549 \text{ mA h } \text{g}^{-1} \text{ at} \\ 0.5 \text{ C after } 400 \\ \text{cycles} \end{array}$	0.09
6	NiS ₂ /rGO/S	56.7	$\begin{array}{c} 400.6 \text{ mA h } \text{g}^{-1} \text{ at} \\ 913.3 \text{ mAh} \\ \text{g}^{-1} \text{ at } 0.2 \text{ C} \\ \text{cycles} \end{array}$	0.117
7	NiS ₂ /C-S	70	1358 mAh 744 mA h g^{-1} at 1 g^{-1} at 0.2 C C after 200 cycles	0.2
This work	S@hetero-Co ₉ S ₈ -NiS -G	70	664.7 mA h g ⁻¹ at 1142.9 mA h g ⁻¹ at 0.2 C cycles	0.031

Reference

- J. Zhou, X. Liu, J. Zhou, H. Zhao, N. Lin, L. Zhu, Y. Zhu, G. Wang and Y. Qian, Nanoscale Horizons, 2019, 4, 182-189.
- 2. T. Chen, L. Ma, B. Cheng, R. Chen, Y. Hu, G. Zhu, Y. Wang, J. Liang, Z. Tie, J. Liu and Z. Jin, *Nano Energy*, 2017, **38**, 239-248.
- 3. C. Dai, J.-M. Lim, M. Wang, L. Hu, Y. Chen, Z. Chen, H. Chen, S.-J. Bao, B. Shen, Y. Li, G. Henkelman and M. Xu, *Advanced Functional Materials*, 2018, **28**, 1704443.
- P. Wu, H.-Y. Hu, N. Xie, C. Wang, F. Wu, M. Pan, H.-F. Li, X.-D. Wang, Z. Zeng, S. Deng and G.-P. Dai, *RSC Advances*, 2019, 9, 32247-32257.
- S. Zhao, X. Tian, Y. Zhou, B. Ma and A. Natarajan, *Journal of Energy Chemistry*, 2020, 46, 22-29.
- 6. Y. Li, J. Chen, Y. Zhang, Z. Yu, T. Zhang, W. Ge and L. Zhang, *Journal of Alloys and Compounds*, 2018, **766**, 804-812.
- 7. Y. Tian, H. Huang, G. Liu, R. Bi and L. Zhang, *Chemical Communications*, 2019, **55**, 3243-3246.