Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2019

WILEY-VCH

Electronic Supplementary Material (ESI) for Materials Chemistry Fornitiers. This journal is © The Royal Society of Chemistry 2018

Supporting Information

Electric Field Effect in Co₃O₄/TiO₂ p-n Junction for Superior Lithium-Ion Storage

Huabin Kong, Chunshuang Yan, Chade Lv, Jian Pei*, and Gang Chen*

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001, P. R. China E-mail: gchen@hit.edu.cn

Theoretical capacity calculation of P-Co₃O₄/TiO₂ NSs

The ICP results show the mass percent of Co and Ti are \sim 70.35% and 2.50% in P-Co₃O₄/TiO₂ NSs. The delithiation process can be described as:

$$Co_3O_4 + 8Li^+ + 6e \xrightarrow{discharge} 4Li_2O + 3Co$$

 $TiO_2 + xLi^+ + xe \xrightarrow{discharge} Li_xTiO_2$

The theoretical capacity of P-Co₃O₄/TiO₂ NSs can be calculated by the following equations:

$$\begin{split} C &= (F*n*1000) / (t*M_{\rm w}) \\ C_{\rm (Co^{3\pm}+Co^0)} &= (96500*3*1000)*70.35\%*(2/3)*/(3600*59) \\ &= 639.2 \text{ mAh g}^{-1} \\ C_{\rm (Co^{2\pm}+Co^0)} &= (96500*2*1000)*70.35\%*(1/3)*/(3600*59) \\ &= 213.1 \text{ mAh g}^{-1} \\ C_{\rm (TiO_2 \rightarrow Li_xTiO_2)} &= (96500*1*1000)*2.50\%/(3600*48) = 14.0 \text{ mAh g}^{-1} \\ C_{\rm total} &= 639.2 + 213.1 + 14.0 = 866.3 \text{ mAh g}^{-1} \end{split}$$

Where *F* is the Faraday's constant, *n* is the valence charge, *T* is the time (in seconds), and M_w is the atomic mass. The calculated theoretical capacity of P-Co₃O₄/TiO₂ NSs is 866.3 mAh g⁻¹.

Fig. S1 (a, b) The SEM images of precursor.

Fig. S2 The XRD pattern of precursor.

Fig. S3 The SEM images of the samples prepared under different urea content: (a, b) 0 g; (c, d) 0.25 g; (e, f) 0.5 g; (g, h) 0.75 g.

Fig. S4 (a, b) The SEM images of P-Co₃O₄ NSs.

Fig. S5 (a, b) The SEM images of Co₃O₄ NSs.

Fig. S6 (a, b) The TEM images of P-Co₃O₄/TiO₂ NSs, (c) the distribution of the pores size obtained by statistical analysis of the TEM images.

Fig. S7 Nitrogen adsorption/desorption isotherms and corresponding BJH pore size distributions (inset) of (a) P-Co₃O₄/TiO₂ NSs, (b) P-Co₃O₄ and (c) Co₃O₄.

Fig. S8 (a, b) TEM images of P-Co₃O₄ NSs, (c) HRTEM image of P-Co₃O₄ NSs.

Fig. S9 (a, b) The CV curves of P-Co₃O₄ NSs and Co₃O₄ NSs in the first three cycles at a scan rate of 0.5 mV s⁻¹.

Fig. S10 (a, b, c) The charge/discharge profiles of $P-Co_3O_4/TiO_2$ NSs, $P-Co_3O_4$ NSs and Co_3O_4 NSs at a current density of 0.2 A g⁻¹.

Fig. S11 The SEM images of the three electrodes after 200 cycles: (a, b) P-Co₃O₄/TiO₂ NSs, (c, d) P-Co₃O₄ NSs, (e, f) Co₃O₄ NSs.

LIB anode material	Current density	Cycle number	Capacity
	(mA g ⁻¹)		(mAh g ⁻¹)
Porous Co ₃ O ₄ nanoplates ¹	200	50	755
Co ₃ O ₄ ultrathin porous nanosheets ²	200	50	1053
Mesoporous Co ₃ O ₄ nanosheet arrays ³	1000	500	840
Co ₃ O ₄ -graphene sheet-on-sheet nanocomposite ⁴	100	30	1065
2D holey Co ₃ O ₄ nanosheets ⁵	1000	200	1000
Three-dimensionally scaffolded Co ₃ O ₄ nanosheet ⁶	500	50	726
Mesoporous Co ₃ O ₄ nanosheet/N-doped RGO ⁷	80	50	1101
Porous Co ₃ O ₄ nanoplates ⁸	200	80	1001
Co ₃ O ₄ nanobelts ⁹	1000	60	614
Self-stacked Co ₃ O ₄ nanosheets ¹⁰	178	50	1070
Mesoporous hexagonal Co ₃ O ₄ ¹¹	1000	100	689
Ultrathin hexagonal Co ₃ O ₄ nanosheets ¹²	100	100	1007
This work	200	200	1167
This work	2000	1600	801

 $\textbf{Table S1} Performance \ comparison \ between \ P-Co_3O_4/TiO_2 \ NSs \ and \ previously \ reported \ Co_3O_4 \ nanosheets$

(a)	@ (C			Spectrum 1
The I	0 Full Scale	2 4 6 562 cts Cursor: 0.000	8 10 12 14	16 18 20 ke∀
(b)	(d) -	Element	Weight %	Atomic %
Spectrum 3	-	O K	21.73	50.39
SALCT.		Co K	75.93	47.80
		Ti K	2.34	1.81
		Totals	100	100

Fig. S12 (a, b) The SEM images of $P-Co_3O_4/TiO_2$ NSs, (c, d) the EDS result of $P-Co_3O_4/TiO_2$ NSs.

The SEM images of P-Co₃O₄/TiO₂ NSs are presented in Fig. S12a, b, which show a porous structure. The element contents of sample are analyzed by EDS (Fig. S12c, d), which shows the mass percent of Ti element is approximate to 2.34% in the P-Co₃O₄/TiO₂ NSs. The result of ICP shows the mass percent of Co and Ti is \sim 70.35.00% and 2.50%.

Fig. S13 Cycling performance of P-Co₃O₄/TiO₂-0.25 NSs, P-Co₃O₄/TiO₂ NSs, P-Co₃O₄/TiO₂-0.75 NSs and P-Co₃O₄/TiO₂-1.0 NSs at a current density of 1 A g^{-1} .

(a)			c) *		Spectrum 2
-		0 Full Scale	2 4 6 8 e 469 cts Cursor: 0.000	10 12 14	16 18 20 keV
(b)	REAR	(d) ⁻	Element	Weight %	Atomic %
2	spectrum 2		O K	25.98	56.15
nk			Co K	71.00	41.66
27			Ti K	3.02	2.18
NY S	YES A	_	Totals	100	100
10µm	Electron Image 1				

Fig. S14 (a, b) The SEM images of P-Co₃O₄/TiO₂-0.75 NSs, (c, d) the EDS result of P-Co₃O₄/TiO₂-0.75 NSs.

The SEM images of P-Co₃O₄/TiO₂-0.75 NSs are presented in Fig. S14a, b. When 0.75 ml titanium isopropanol is added, the morphology of P-Co₃O₄/TiO₂-0.75 NSs is similar to that of P-Co₃O₄/TiO₂ NSs, In addition, the element contents of sample are analyzed by EDS (Fig. S14c, d). The result shows the mass percent of Ti element is approximate to 3.02% in the P-Co₃O₄/TiO₂-0.75 NSs.

a	(C)		Spectrum 4
0 Full	2 4 6 Scale 418 cts Cursor: 0.000	8 10 12 14	16 18 20 ke∀
(b) (d	l) <u>Element</u>	Weight %	Atomic %
Spectrum 4	ОК	32.11	63.17
	Co K	63.28	33.80
	Ti K	4.61	3.03
	Totals	100	100
10µm Electron Image 1			

Fig. S15 (a, b) The SEM images of P-Co₃O₄/TiO₂-1.00 NSs, (c, d) the EDS result of P-Co₃O₄/TiO₂-1.00 NSs.

The SEM images of P-Co₃O₄/TiO₂-1.00 NSs are presented in Fig. S15a, b. When 1.00 ml titanium isopropanol is added, the omorphology of P-Co₃O₄/TiO₂-1.00 NSs is similar to that of P-Co₃O₄/TiO₂ NSs, In addition, the element contents of sample are analyzed by EDS (Fig. S15c, d). The result shows the mass percent of Ti element is approximate to 4.61% in the P-Co₃O₄/TiO₂-1.00 NSs.

(a)	(c) ••• •	¢.		Spectrum 3
	0 2 Full Scale 6	4 6 522 cts Cursor: 0.000	8 10 12 14	16 18 20 keV
(b)	(d) [–]	Element	Weight %	Atomic %
Spectrum 1	-	O K	15.96	41.09
		Co K	82.86	57.90
		Ti K	1.18	1.01
	_	Totals	100	100

Fig. S16 (a, b) The SEM images of P-Co₃O₄/TiO₂-0.25 NSs, (c, d) the EDS result of P-Co₃O₄/TiO₂-0.25 NSs.

The SEM images of P-Co₃O₄/TiO₂-0.25 NSs are presented in Fig. S16a, b. When 0.25 ml titanium isopropanol is added, the morphology of P-Co₃O₄/TiO₂-0.25 NSs is similar to that of P-Co₃O₄/TiO₂ NSs, In addition, the element contents of sample are analyzed by EDS (Fig. S16c, d). The results shows the mass percent of Ti element is approximate to 1.18% in the P-Co₃O₄/TiO₂-0.25 NSs.

Fig. S17 Electrochemical measurement of electrodes made of the as-formed P-Co₃O₄/TiO₂ NSs, P-Co₃O₄ NSs and Co₃O₄ NSs, (a) Nyquist plots after 200 cycles, (b) The relationship between Z_{re} and $\omega^{-1/2}$ in the low frequency region.

The diffusion coefficient (D) of Li-ion can be calculated according to the following equation.^[13]

$$Z_{\rm re} = R_{\rm D} + R_{\rm L} + \sigma \omega^{-1/2}$$
(1)
$$D = 0.5(RT/An^2F^2C\sigma)^2$$
(2)

Herein, *R* is the gas constant, *A* is the surface area, *T* is the absolute temperature, *n* is the number of electron per molecule oxidized, *C* is the concentration of Li-ion, *F* is the Faraday constant, σ is the Warburg impedance coefficient which is related to Z_{re} , ω is the angular frequency in the low frequency region, R_D and R_L are the diffusion resistance and liquid resistance, respectively. The slopes of the fitting curve in Figure S17b are Warburg impedance coefficient σ . It is shown that the Warburg impedance coefficient of P-Co₃O₄/TiO₂ NSs, P-Co₃O₄ NSs and Co₃O₄ NSs are 5.19, 15.81 and 22.41 Ω cm² s^{-1/2}, respectively. According to equation 2, the *D* value of P-Co₃O₄/TiO₂ NSs is higher than P-Co₃O₄ NSs and Co₃O₄ NSs, indicating that p-n junction is benefit to accelerate the Li-ion diffusion.

Fig. S18 The charge/discharge profiles of full cell (anode: $P-Co_3O_4/TiO_2$ NSs//cathode: commercial LiNiCoMnO₂) at a current density of 0.1 A g⁻¹.

References

- 1 Q. Su, J. Zhang, Y. Wu, G. Du, *Nano Energy*, 2014, 9, 264–272.
- 2 J. Mujtaba, H. Sun, G. Huang, Y. K. Mølhave, Y. Liu, Y. Zhao, X. Wang, S. Xu, J. Zhu, Sci. Rep., 2016, 6, 20592.
- 3 X. Fan, Y. Shi, L. Gou, D. Li, *Electrochim. Acta.*, 2014, **142**, 268–275.
- 4 S. Chen, Y. Wang, J. Mater. Chem., 2010, 20, 9735–9739.
- 5 D. Chen, L. Peng, Y. Yuan, Y. Zhu, Z. Fang, C. Yan, G. Chen, JR. S. Yassar, L. Lu, K. Amine, G. Yu, *Nano Lett.*, 2017, 17, 3907–3913.
- 6 J. Liu, S. J. Kelly, E. S. Epstein, Z. Pan, X. Huang, J. Liu, P. V. Braun, J. Power Sources., 2015, 299, 40–48.
- 7 P. Sennu, H. S. Kim, J. Y. An, V. Aravindan, Y. S. Lee, *Chem. Asian J.*, 2015, **10**, 1776–1783.
- 8 C. Liang, D. Cheng, S. Ding, P. Zhao, M. Zhao, X. Song, F. Wang, J. Power Sources., 2014, 251, 351–356.
- 9 H. Huang, W. Zhu, X. Tao, Y. Xia, Z. Yu, J. Fang, Y. Gan, W. Zhang, ACS Appl. Mater. Interfaces, 2012, 4, 5974–5980
- 10 X. Wang, H. Guan, S. Chen, H. Li, T. Zhai, D. Tang, Y. Bando, D. Golberg, Chem. Commun., 2011, 47, 12280–12282.
- 11 D. Su, X. Xie, P. Munroe, S. Dou, G. Wang, *Sci. Rep.*, 2014, 4, 6519.
- 12 B. Wang, X. Lu, Y. Tang, W. Ben, *ChemElectroChem.*, 2016, 3, 55–65.
- 13 Y. Cui, X. Zhao, R. Guo, *Electrochim. Acta*, 2010, 55, 922–926.
- 14 Q. Wang, Y. Huang, J. Miao, *Electrochim. Acta*, 2013, 93, 120–130.