Electrode engineering begins from live biomass: a "smart" way to construct smart

pregnant hybrids for sustainable charge storage devices

Jian Jiang^{||},^a* Siyuan Liu^{||},^a Yani Liu,^a Ting Meng,^a Lai Ma,^a Han Zhang,^a Maowen Xu,^a Jianhui Zhu,^b* and Chang

Ming Li^{a*}

^aSchool of Materials and Energy, and Chongqing Key Lab for Advanced Materials and Clean Energies of Technologies, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, P.R. China. ^bSchool of Physical Science and Technology, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, P.R. China.

To whom correspondence should be addressed: Tel: +86-23-68254842.

*E-mail: jhzhu@swu.edu.cn (J. Zhu); jjiang@swu.edu.cn (J. Jiang); ecmli@swu.edu.cn (C.M.Li).

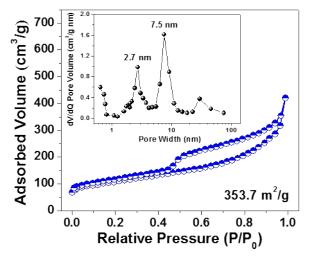
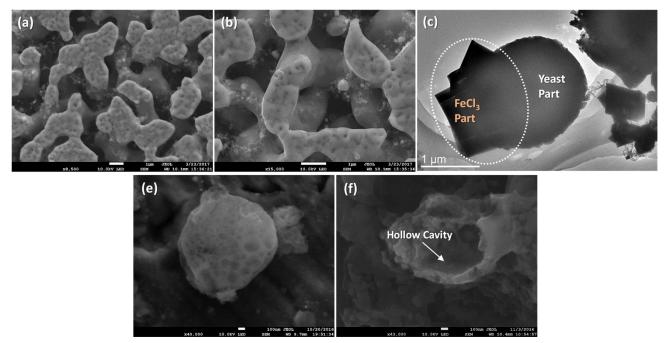



Fig. S1. N_2 adsorption/desorption isotherm and pore-size distribution plot of Fe₃O₄@YE-C.

Fig. S2. (a-b) SEM and (c) TEM images of unclean samples after the ion-diffusion procedure. (e-f) SEM observations of remained products after an acid washing treatment toward $Fe_3O_4@YE-C$.

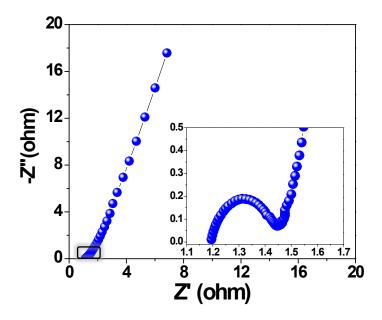


Fig. S3. EIS spectrum of single $Fe_3O_4@YE-C$ electrode.

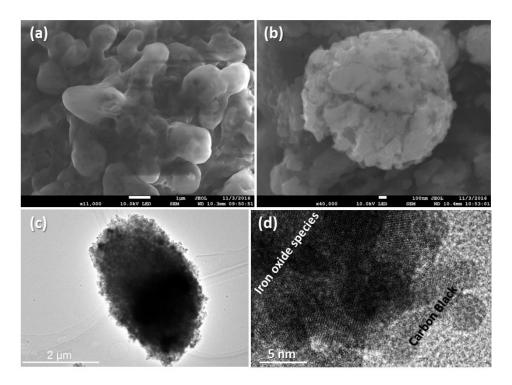
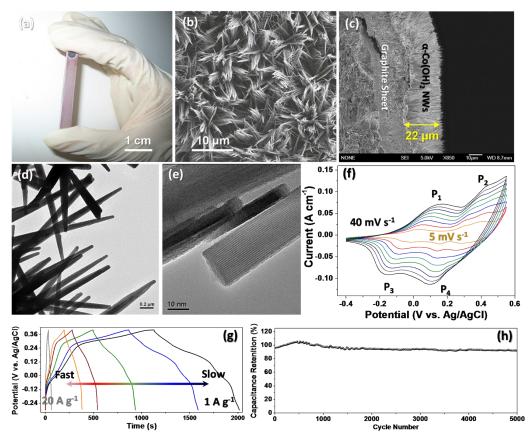



Fig. S4. (a-b) SEM and (c-d) TEM images of cycled $Fe_3O_4@YE-C$ electrodes.

Fig. S5. (a) Optical, (b-c) SEM and (d-e) TEM images of $Co(OH)_2$ NWs grown on the graphite sheet. (f) CV plots, (g) constant charge/discharge profiles and (h) long-term cyclic performance of $Co(OH)_2$ NWs cathode.