Experimental

Materials

3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA, >99.5%, Changzhou Sun Chem Chemical Co., Ltd.), p-phenylenediamine (PPD, >99%, Wuxi Changan Fine Chemical Factory), N,Ndimethylformamide (DMF) (Xilong Chemical Co., Ltd), potassium permanganate (KMnO₄, Sigma-Aldrich), lithium sulfide (Li₂S, 99.9%, Sigma-Aldrich) and sulfur (S, 99.5%, Aladdin Co. Ltd.) were used as received.

Preparation of MnO₂/N-rich CNF

BPDA and PPD (with a molar ratio of 1.05:1) were added to DMF in sequence to get a 13 wt% electrospinning solution. The blended solution was stirred at 0 °C for 12 hours. Electrospinning parameters were set as follows: applied voltage of 20-25 kV, tip-to-collector distance of 25 cm and flow rate of 0.8 ml h⁻¹. As-spun fibers were heated in a horizontal tubular furnace. Temperature of the furnace was first increased from room temperature to 250 °C at the rate of 5 °C min⁻¹ and maintained for 0.5 hour in air flow. Then the temperature was increased to 370 °C at the rate of 1 °C min⁻¹ and maintained for 0.5 hour. Then the temperature was increased to 400 °C at the rate of 1 °C min⁻¹ and maintained for 0.5 hour for imidization. Then the temperature of the furnace was increased to 900 °C at the rate of 5 °C min⁻¹ and maintained for 0.5 hour for imidization. Then the temperature of the furnace was increased to 900 °C at the rate of 5 °C min⁻¹ and maintained for 0.5 hour for imidization. Then the temperature of the furnace was increased to 900 °C at the rate of 5 °C min⁻¹ and maintained for 0.5 hour for imidization.

The MnO_2/CNF composites were synthesized by a one-step facile redox method. In brief, 40 mg asprepared CNF after a plasma treatment was soaked in 400 ml deionized (DI) water. Then 10 mg KMnO₄ was added and stirred until completely dissolved. After heating in a thermostatic oven at 80°C for 24 h, the composites were washed with DI water and air-dried.

Characterizations

The morphology of MnO₂/CNF was observed by SU-8010 scanning electron microscope (SEM). Transmission electron microscopy (TEM) was performed on a JEM-2100F TEM/STEM operating at 200 keV. X-ray diffraction (XRD) analysis was performed using D/MAX-RM 2000 at a scanning rate of 5° min⁻¹ in a range of diffraction angle 20 from 10° to 80°. Raman spectra were performed by HORIBA LabRAM HR Evolution with an excitation laser beam with wavelength of 532 nm. X-ray photoelectron spectroscopy (XPS) measurement was investigated using a thermo ESCALAB 250 spectrometer. And XPS data was analyzed with Thermo Avantage software. The binding energy values were calibrated to the C 1s peak at 284.8 eV. The specific surface area and pore-size distribution of the composites were conducted by an automatic adsorption system (Bellsorp-mini) from adsorption isotherms of N_2 at 77 K with the Brunauer-Emmett-Teller method and density functional theory model. The content of MnO_2 in the interlayer was obtained by Thermogravimetric analysis (TGA, Mettler TGA Q5000) at the rate of 5 °C min⁻¹ from 25 °C to 800 °C under air flow.

Cell assembly and electrochemical measurements

Sulfur, super P and PVDF were dispersed homogeneously in NMP to form a slurry (S: super P: PVDF=6:3:1 in weight). The slurry was then cast onto Al foil to get a thin slice in a diameter of 12 mm. The sulfur loading of cathode was about 1.65 mg cm⁻². All cells were assembled in a glove box with Ar atmosphere. CR2032-type coin cells were applied to perform the electrochemical experiments with lithium metal as the anode. Celgard 2400 membrane was utilized as the separator. The as-prepared MnO₂/CNF was cut into wafers in a diameter of 16 mm as the interlayer between separator and cathode. DOL and DME by 1:1 in volume with 1M LiTFSI (lithium bistrifluoromethanesulfonylimide) and 0.1 M LiNO₃ were used as the electrolyte.

Galvanostatical charge-discharge measurements of batteries were carried out in voltage range from 1.7 to 2.8 V (vs. Li/Li⁺) by the Neware battery tester. A Chenhua electrochemical workstation CHI608E was employed to characterize the cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and voltammetric curves. CV tests were performed at a scan rate of 0.3 mV s⁻¹ in a voltage range of 1.5-3.0 V. EIS measurements were carried out at open-circuit potential in the frequency range between 100 kHz and 10 mHz with a perturbation amplitude of 5 mV. Stainless steel sheets were directly applied on both sides of CNF or MnO₂/CNF membrane in cells to test voltammetric curves at a scan rate of 2 mV s⁻¹ in a voltage range of 0-2.0 V.

 Li_2S and S (in a 1:5 molar ratio) were added to a mixture of 1,2-dimethoxyethane (DME, 99.5%, Aladdin Co. Ltd., China) and 1,3-dioxolane (DOL, 99.8%, Aladdin Co. Ltd., China) (v/v, 1:1) with magnetic stirring in a glove box to synthesize a Li_2S_6 solution (0.3M) for testing the diffusion process of polysulfides.

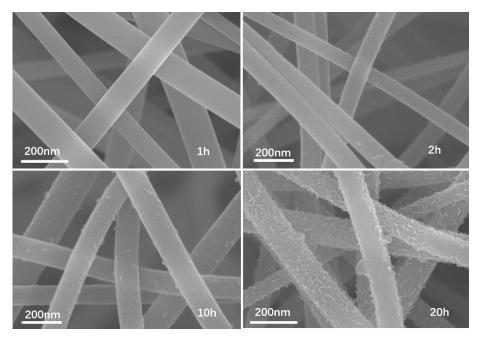


Fig. S1 The SEM images of the MnO_2/CNF after soaking in $KMnO_4$ for different reaction time

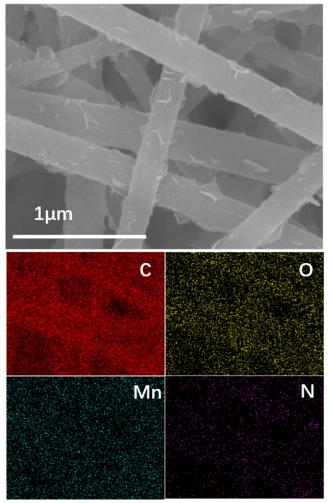


Fig. S2 Elements mapping of MnO₂/CNF

Fig. S3 Axial and radial resistance tests of CNF and MnO₂/CNF membrane

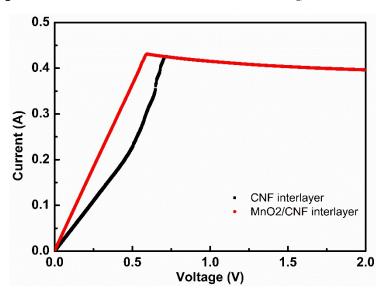


Fig. S4 Voltammetric curves of cells with CNF and MnO₂/CNF interlayer, without cathode and anode

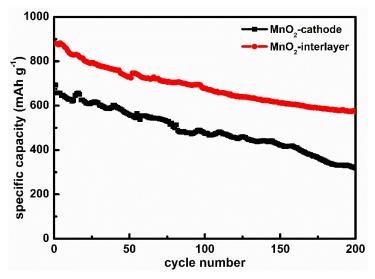


Fig. S5 Cycle performance of cells with MnO_2/CNF utilized as interlayer and cathode scaffold at 01C

Table S1. Potential gaps between corresponding reduction peaks and oxidation peaks in the CV curves in scan rate of 0.3 mV s^{-1} of different cells

	Without interlayer CNF interlayer		MnO ₂ /CNF	
			interlayer	
The 1 st platform	430 mV	380 mV	330 mV	
The 2 nd platform	600 mV	490 mV	480 mV	

Table S2. The area ratio of Mn of different peaks of the MnO_2/CNF interlayer with and without Li_2S_6 solution

	Mn(II)	Mn(Ⅲ)	$Mn(\mathbf{N})$	Mn(Ⅱ)*	Mn(Ⅲ)*	$Mn(\mathbf{N})^*$
Before soaking	18.3%	32.5%	29.8%	11.7%	4.4%	3.3%
After soaking	29.6%	31.4%	21.6%	10.6%	3.3%	3.5%

* means different multiples