## **Electronic Supplementary Information (ESI) for**

## Exploring correlation of pseudocapacitance with electronic structures

## in monolayer 1T-MoS<sub>2</sub> electrodes for supercapacitors

Zhenzhou Zhang,<sup>a</sup> Maokun Wu,<sup>a</sup> Lijing Wang,<sup>a</sup> Jin Wang,<sup>a</sup> Yahui Cheng,<sup>a</sup> Luyan Li,<sup>b</sup> Hong Dong,<sup>a</sup> Hui Liu,<sup>a</sup> Zhanglian Hong,<sup>c</sup> Kyeongjae Cho,<sup>a,d</sup> Feng Lu,<sup>a</sup> Weichao Wang,<sup>\*,a</sup> Wei-Hua Wang<sup>\*,a</sup>

<sup>a</sup> Department of Electronic Science and Engineering, and Tianjin Key Laboratory of Photo-Electronic Thin Film Device and Technology, Nankai University, Tianjin, 300071, P. R. China

<sup>b</sup> School of Science, Shandong Jianzhu University, Jinan 250101, P. R. China

<sup>c</sup> State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China

<sup>d</sup> Department of Material Science and Engineering, the University of Texas at Dallas, Richardson, 75080, USA

\*Emails: whwangnk@nankai.edu.cn; weichaowang@nankai.edu.cn

| Number of                          |          |                                          | Г                 | Number of                                                                                  |          |                                                        |
|------------------------------------|----------|------------------------------------------|-------------------|--------------------------------------------------------------------------------------------|----------|--------------------------------------------------------|
| $\boldsymbol{H}^{\!\!\!+}$ ions on | Coverage | Sites                                    | $E_{\rm ad}$ (eV) | $\operatorname{H}^{\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$ | Coverage | $\boldsymbol{E}_{\mathrm{ad}}\left(\mathrm{eV}\right)$ |
| one side                           |          |                                          |                   | both sides                                                                                 |          |                                                        |
| 1                                  | 11.1%    | 1                                        | -4.13             | 1                                                                                          | 11.1%    | -2.89                                                  |
| 2                                  | 22.20/   | 1, 5                                     | -2.74             | r                                                                                          | 22.20/   | -2.14                                                  |
|                                    | 22.270   | 1, 2                                     | -2.89             | - 2                                                                                        | 22.270   |                                                        |
|                                    | 33.3%    | 2, 4, 8                                  | -2.25             |                                                                                            | 33.3%    |                                                        |
| 3                                  |          | 2, 4, 9                                  | -2.32             | 3                                                                                          |          | -1.83                                                  |
|                                    |          | 1, 2, 3                                  | -2.44             | _                                                                                          |          |                                                        |
|                                    |          | 2, 4, 8, 9                               | -1.93             |                                                                                            |          |                                                        |
| 4                                  | 44.4%    | 2, 4, 7, 9                               | -2.01             | -                                                                                          | 4.4.40/  | 1 72                                                   |
| 4                                  |          | 1, 2, 4, 9                               | -2.05             | - 4                                                                                        | 44.470   | -1./2                                                  |
|                                    |          | 1, 2, 3, 4                               | -2.08             | -                                                                                          |          |                                                        |
|                                    | 55.6%    | 1, 3, 5, 6, 7                            | -1.82             |                                                                                            | 55.6%    | 1.64                                                   |
| 5                                  |          | 1, 3, 5, 6, 8                            | -1.79             | 5                                                                                          |          |                                                        |
| 3                                  |          | 3, 5, 6, 7, 8                            | -1.88             | - 3                                                                                        |          | -1.04                                                  |
|                                    |          | 5, 6, 7, 8, 9                            | -1.83             | -                                                                                          |          |                                                        |
| 6                                  | 66.7%    | 4, 5, 6, 7, 8, 9                         | -1.66             |                                                                                            | 66.7%    | -1.55                                                  |
|                                    |          | 1, 3, 5, 6, 7, 8                         | -1.76             | 6                                                                                          |          |                                                        |
|                                    |          | 1, 3, 5, 6, 7, 9                         | -1.70             | -                                                                                          |          |                                                        |
| 7                                  | 77.8%    | 1,2, 3, 5, 6, 7, 8                       | -1.49             | - 7                                                                                        | 77.00/   | 1 40                                                   |
|                                    |          | 1, 3, 5, 6, 7, 8, 9                      | -1.63             |                                                                                            | //.870   | -1.40                                                  |
| 8                                  | 88.9%    | 1, 2, 3, 4, 5, 6, 7, 8                   | -1.53             | 8                                                                                          | 88.9%    | -1.37                                                  |
| 9                                  | 100%     | 1, <del>2</del> , 3, 4, 5, 6, 7,<br>8, 9 | -1.19             | 9                                                                                          | 100%     | -1.25                                                  |

Table S1 Possible adsorption configurations and adsorption energies of  $H^{\!+}$  ions on one side and two sides of monolayer  $1T\text{-}MoS_2$ 



Fig. S1 Band structures of 1T-MoS<sub>2</sub> under different adsorption coverage of H<sup>+</sup> ions on one side of 1T-MoS<sub>2</sub>. The coverage is 11.1% in (a), 22.2% in (b), 33.3% in (c), 44.4% in (d) 55.6% in (e) 66.7% in (f) 77.8% in (g), 88.9% in (h), 100% in (i). The Fermi level is set to be 0.0 eV.



Fig. S2 Total DOS, PDOS and geometric structures of monolayer 1T-MoS<sub>2</sub> under different adsorption coverage of H<sup>+</sup> ions on both sides of 1T-MoS<sub>2</sub>. Pristine 1T-MoS<sub>2</sub> in (a), and the coverage is 11.1% in (b), 22.2% in (c), 33.3% in (d), 44.4% in (e) 55.6 % in (f) 66.7 % in (g) 77.8% in (h), 88.9% in (i), 100 % in (j). The Fermi level is set to be 0.0 eV.



Fig. S3 Band structures of 1T-MoS<sub>2</sub> under different adsorption coverage of H<sup>+</sup> ions on both sides of 1T-MoS<sub>2</sub>. The coverage is 11.1% in (a), 22.2% in (b), 33.3% in (c), 44.4% in (d) 55.6 % in (e) 66.7 % in (f) 77.8% in (g), 88.9% in (h), 100 % in (i). The Fermi level is set to be 0.0 eV.



Fig. S4 Charge density difference distribution of monolayer 1T-MoS<sub>2</sub> in charging state with the additional electrons of 0.92 e in (a), 1.88 e in (b), 2.91 e in (c), 3.93 e in (d), 4.96 e in (e), 5.91 e in (f), 7.08 e in (g), 7.92 e in (h), 9.45 e in (i). The yellow and cyan isosurface with an isovalue of 0.005 e/Å<sup>3</sup> correspond to charge accumulation and depletion respectively.



Fig. S5 Total DOS of monolayer 1*T*-MoS<sub>2</sub> in charging states.  $\Delta E_F$  is Fermi level shift. Pristine monolayer 1*T*-MoS<sub>2</sub> without additional electrons in (a), and with 0.92 e in (b), 1.88 e in (c), 2.91 e in (d), 3.93 e in (e), 4.96 e in (f), 5.91 e in (g), 7.08 e in (h), 7.92 e in (i), 9.45 e in (j). The Fermi level is set to be 0.0 eV.

Table S2 Number of H<sup>+</sup> ions on one side ( $N_{H^+}$ ), Fermi level shift ( $\Delta E_F$ ), work function of monolayer 1*T*-MoS<sub>2</sub> adsorbed H<sup>+</sup> ions at neutral state ( $WF_{MoS_2-nH}$ ) and monolayer 1*T*-MoS<sub>2</sub> ( $WF_{MoS_2^{-}AQ^{-}}$ ) at negatively charged state, voltage change ( $|\Delta V|$ ), charge transfer ( $\Delta Q$ ) and pseudocapacitance ( $C_{redox}$ )

| $N_{H}$ + | $\Delta E_{\rm F}$ (eV) | $WF_{MoS_2} \Delta Q -$ (eV) | $WF_{MoS_2-nH}$ (eV) | $ \Delta V $ (V) | Δ <i>Q</i><br>(e) | $C_{ m redox}$<br>( $\mu$ F/cm <sup>2</sup> ) | C <sub>redox</sub><br>(F/g) |
|-----------|-------------------------|------------------------------|----------------------|------------------|-------------------|-----------------------------------------------|-----------------------------|
| 1         | 0.063                   | 5.037                        | 4.58                 | 0.457            | 0.92              | 40.87                                         | 134.74                      |
| 2         | 0.117                   | 4.983                        | 4.06                 | 0.923            | 1.88              | 41.34                                         | 136.33                      |
| 3         | 0.168                   | 4.932                        | 3.62                 | 1.312            | 2.91              | 45.03                                         | 148.45                      |
| 4         | 0.212                   | 4.888                        | 3.29                 | 1.598            | 3.93              | 49.92                                         | 164.60                      |
| 5         | 0.256                   | 4.844                        | 3.12                 | 1.724            | 4.96              | 58.40                                         | 192.56                      |
| 6         | 0.295                   | 4.805                        | 2.86                 | 1.945            | 5.91              | 61.68                                         | 203.37                      |
| 7         | 0.341                   | 4.759                        | 2.64                 | 2.119            | 7.08              | 67.83                                         | 223.63                      |
| 8         | 0.375                   | 4.725                        | 2.39                 | 2.335            | 7.92              | 68.85                                         | 227.02                      |
| 9         | 0.438                   | 4.662                        | 2.16                 | 2.502            | 9.45              | 76.67                                         | 252.81                      |

Table S3 Number of H<sup>+</sup> ions on both sides  $(N_{H^+})$ , Fermi level shift ( $\Delta E_F$ ), work function of monolayer 1*T*-MoS<sub>2</sub> adsorbed H<sup>+</sup> ions at neutral state ( $WF_{MoS_2-nH}$ ) and monolayer 1*T*-MoS<sub>2</sub> ( $WF_{MoS_2^{\Delta Q}-}$ ) at negatively charged state, voltage change ( $|\Delta V|$ ), charge transfer ( $\Delta Q$ ) and pseudocapacitance ( $C_{redox}$ )

| N <sub>H</sub> + | $\Delta E_{\rm F}$ (eV) | $WF_{MoS_2} \Delta Q -$ (eV) | $WF_{MoS_2-nH}$ (eV) | $ \Delta V $ (V) | Δ <i>Q</i><br>(e) | $C_{redox}$<br>( $\mu$ F/cm <sup>2</sup> ) | C <sub>redox</sub><br>(F/g) |
|------------------|-------------------------|------------------------------|----------------------|------------------|-------------------|--------------------------------------------|-----------------------------|
| 2                | 0.118                   | 4.982                        | 4.535                | 0.447            | 1.90              | 86.29                                      | 284.51                      |
| 4                | 0.209                   | 4.891                        | 4.195                | 0.696            | 3.82              | 111.42                                     | 367.37                      |
| 6                | 0.285                   | 4.851                        | 4.070                | 0.781            | 5.68              | 147.64                                     | 486.79                      |
| 8                | 0.370                   | 4.730                        | 3.755                | 0.975            | 7.81              | 162.61                                     | 536.16                      |
| 10               | 0.452                   | 4.648                        | 3.485                | 1.163            | 9.79              | 170.88                                     | 563.44                      |
| 12               | 0.543                   | 4.557                        | 3.210                | 1.347            | 11.90             | 179.34                                     | 591.32                      |
| 14               | 0.639                   | 4.461                        | 2.915                | 1.546            | 13.92             | 182.53                                     | 602.67                      |
| 16               | 0.741                   | 4.359                        | 2.665                | 1.694            | 16.15             | 193.53                                     | 638.13                      |
| 18               | 0.896                   | 4.204                        | 2.435                | 1.769            | 18.62             | 213.67                                     | 704.53                      |



Fig. S6 Total DOS and PDOS of 1T-MoS<sub>2</sub> with one side adsorption of H<sup>+</sup> ions in (a)-(d) and two sides adsorption of H<sup>+</sup> ions in (e)-(h). Pristine 1T-MoS<sub>2</sub>-9H and 1T-MoS<sub>2</sub>-18H in (a) and (e), V<sub>S1</sub> in (b) and (f), V<sub>Mo</sub> in (c) and (g), V<sub>S1+S2</sub> in (d) and (h). The Fermi level is set to be 0.0 eV.

Table S4. Configurations of fully coverage with H<sup>+</sup> ions under different intrinsic defects  $(NH^+ - \text{defect})$ , Fermi level shift  $(\Delta E_F)$ , work function of defect monolayer 1T-MoS<sub>2</sub> adsorbed H<sup>+</sup> ions at neutral state  $(WF_{MoS_2-nH})$ , work function of defect monolayer 1T-MoS<sub>2</sub> at negatively charged state  $(WF_{MoS_2}\Delta Q^-)$ , voltage change  $(|\Delta V|)$ , charge transfer  $(\Delta Q)$  and pseudocapacitance  $(C_{redox})$ .

| N <i>H</i> +<br>— defect                 | $\Delta E_{\rm F}$ (eV) | $WF_{MoS_2} \Delta Q$ (eV) | $\frac{WF_{MoS_2-nH}}{(eV)}$ | $ \Delta V $ (V) | Δ <i>Q</i><br>(e) | $C_{redox}$<br>( $\mu$ F/cm <sup>2</sup> ) | C <sub>redox</sub><br>(F/g) |
|------------------------------------------|-------------------------|----------------------------|------------------------------|------------------|-------------------|--------------------------------------------|-----------------------------|
| 9H <sup>+</sup> -<br>V <sub>Mo</sub>     | 0.72                    | 4.83                       | 2.12                         | 2.71             | 9.27              | 69.44                                      | 228.96                      |
| 9H <sup>+</sup> -<br>V <sub>S1</sub>     | 0.91                    | 4.35                       | 2.47                         | 1.88             | 9.46              | 101.93                                     | 336.09                      |
| 9H <sup>+</sup><br>V <sub>S1+S2</sub>    | 0.78                    | 4.30                       | 2.64                         | 1.66             | 9.42              | 115.20                                     | 379.83                      |
| 18H <sup>+</sup> -<br>V <sub>Mo</sub>    | 1.25                    | 4.3                        | 2.17                         | 2.13             | 18.40             | 83.34                                      | 252.81                      |
| 18H <sup>+</sup> -<br>V <sub>S1</sub>    | 1.36                    | 3.90                       | 2.86/3.12                    | 1.04/0.<br>78    | 9.54/<br>9.16     | 241.49/<br>186.21                          | 1410.24                     |
| 18H <sup>+</sup> -<br>V <sub>S1+S2</sub> | 1.36                    | 3.72                       | 2.84                         | 0.88             | 18.92             | 436.45                                     | 1439.08                     |