Supplementary Information

Divergent Synthesis of 3-Substituted Thieno[3,4-b]thiophene

Derivatives via Hydroxy-based Transformations

Yue Zhou, Jie Hao and Dongbing Zhao*

State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin 300071 (China). E-mail: dongbing.chem@nankai.edu.cn

Table of content

1.Materials and instrumentation methods	S2
2. Detailed experimental procedures	S2
3. Optoelectronic properties	S15
4. References	S16
5. GPC and NMR spectra	S17

1. Materials and instrumentation methods

All reactions were carried out in a dry reaction vessel under a positive pressure of nitrogen, unless otherwise stated. Dry solvents (<50 ppm H₂O) were purchased from Acros Organics, Sigma-Aldrich or Carl Roth and stored over molecular sieves under argon atmosphere and were transferred under argon. Starting materials were obtained from Acros Organics, Aldrich Chemical Co., J&K and Energy Chemical and were used without further purification. Anhydrous THF and toluene were distilled over Na/benzophenone prior to use. Anhydrous DMF was distilled over CaH₂ prior to use. These dry solvents stored over molecular sieves under argon atmosphere and were transferred under argon atmosphere and were

UV-vis was recorded with SPECORD® 210 PLUS spectrometers. Fluorescence spectrometry was recorded with Spectrofluorometer FS5. Cyclicvoltammetry (CV) was performed with a CHI660E potentiostat. All measurements were carried out in a one-compartment cell under a nitrogen atmosphere, equipped with a glassy-carbon electrode, a platinumcounter-electrode, and an Ag/Ag+ reference electrode with a scan rate of 100 mV s-1. The supporting electrolyte was a 0.1 mol/L acetonitrile solution of tetrabutylammoniumhexafluorophosphate. All potentials were corrected against Fc/Fc⁺.

¹H and ¹³C NMR spectra were recorded on a Bruker AV 300, Bruker AV 400, Varian 500 MHz INOVA or Varian Unity plus 600 in solvents as indicated. Chemical shifts (δ) for ¹H and ¹³C NMR spectra are given in ppm relative to TMS. The residual solvent signals were used as references for ¹H and ¹³C NMR spectra and the chemical shifts converted to the TMS scale (CDCl₃: $\delta_{\rm H} = 7.26$ ppm, $\delta_{\rm C} = 77.16$ ppm; (CD₃)₂SO: $\delta_{\rm H} = 2.50$ ppm, $\delta_{\rm C} = 39.52$ ppm). Elemental analyses were performed with vario EL CUBE from elementar.. HRMS spectra were recorded on Varian 7.0T FTMS. GPC spectra were performed with Waters 1525.

2. Detailed experimental procedures

Compound 1a was synthesized according to the procedure in the literature.¹

¹H NMR (400 MHz, CDCl₃) δ 8.11 (d, J = 3.6 Hz, 1H), 7.31 (d, J = 3.6 Hz, 1H), 4.30 (t, J = 6.6 Hz, 2H), 1.74 (dt, J = 14.6, 6.7 Hz, 2H), 1.47 (dt, J = 14.6, 7.4 Hz, 2H),

0.97 (t, J = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.37, 134.06, 131.48, 125.20, 110.76, 64.82, 30.62, 19.21, 13.66. HRMS (ESI): calcd.for C₉H₁₁BrO₂S [M+Na]⁺: 284.9561, found: 284.9558. Anal. Calca. for C₉H₁₁BrO₂S: C: 41.08; H: 4.21; Found: C: 41.09; H: 4.57.

Butyl 4-((2-ethoxy-2-oxoethyl)thio)thiophene-3-carboxylate (3a)

In a Schlenk flask equipped with a magnetic stirrer were placed butyl 4bromothiophene-3-carboxylate (**1a**, 1.31g, 5 mmol, 1.0 eq), Pd₂dba₃ (0.46 g, 10 mol%), XantPhos (0.58 g, 20 mol%), DIPEA (1.2 mL, 1.5 eq) and anhydrous toluene (28 mL), After stirring for a few minutes, ethyl 2-mercaptoacetate (1.1 mL, 2.0 eq) was added drop by drop, then the reaction mixture was refluxed at 120 °C and stirred for 24 h. Then, it was cooled at room temperature and the precipitate was collected by filtration, washed with saturated NaHCO₃, extracted with CH₂Cl₂. After drying over MgSO₄, the residue was purified by column chromatography (PE:EA= 10:1) as eluent to obtain **3a** (1.45 g, 96%) as yellow oily liquid. ¹H NMR (**400 MHz, CDCl₃**) δ 8.15 (d, *J* = 3.4 Hz, 1H), 7.04 (d, *J* = 3.4 Hz, 1H), 4.27 (t, *J* = 6.6 Hz, 2H), 4.18 (q, *J* = 7.1 Hz, 2H), 3.67 (s, 2H), 1.75 – 1.67 (m, 2H), 1.46 (dt, *J* = 14.9, 7.4 Hz, 2H), 1.24 (t, *J* = 7.1 Hz, 3H), 0.95 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (**101 MHz, CDCl₃**) δ 169.52 (s), 162.13 (s), 134.57 (s), 133.86 (s), 131.25 (s), 119.50 (s), 64.75 (s), 61.60 (s), 35.82 (s), 30.65 (s), 19.20 (s), 14.04 (s), 13.68 (s). HRMS (ESI): calcd.for C₁₃H₁₈O₄S₂ [M+Na]⁺: 325.0544, found: 325.0543.

Ethyl 3-hydroxythieno[3,4-b]thiophene-2-carboxylate (4)

In a Schlenk flask equipped with a magnetic stirrer, to a solution of 'BuOK (1.55 g, 2.1 eq), in THF (18 mL), after stirring for a few minutes, butyl 4-((2-ethoxy-2-oxoethyl)thio)thiophene-3-carboxylate (**3a**, 2 g, 6.6 mmol, 1.0 eq) of THF solution was added dropwise at 0 °C and stirred for 1 h. The reaction mixture was quenched with sat. NH₄Cl, and washed with H₂O, extracted with CH₂Cl₂. After drying over MgSO₄, the solvent was removed by rotary evaporation. The crude product was

purified by column chromatography (PE:acetone= 5:1) as eluent to obtain 4 (1.21 g, 80.1%) as green oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 10.29 (s, 1H), 7.73 (d, J = 2.6 Hz, 1H), 7.20 (d, J = 2.6 Hz, 1H), 4.39 (q, J = 7.1 Hz, 2H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.84 (s), 154.81 (s), 138.66 (s), 135.22 (s), 117.24 (s), 112.26 (s), 105.79 (s), 61.38 (s), 14.28 (s). HRMS (ESI): calcd.for C₁₀H₈Br₂O₃S₂ [M+Na]⁺: 250.9813, found: 250.9843.

Ethyl 3-methoxythieno[3,4-b]thiophene-2-carboxylate (5)

In a Schlenk flask equipped with a magnetic stirrer, were placed ethyl 3hydroxythieno[3,4-b]thiophene-2-carboxylate (4, 2.28 g, 10.0 mmol, 1.0 eq), DMF (50 mL), and DBU (1.64 mL, 1.1eq), after stirring for ten minutes, CH₃I (3.1 mL, 5eq) was added at r.t. and stirred for 12 h. The reaction mixture was quenched with H₂O, extracted with EA, dried over Na₂SO₄, filtered and the solvent was evaporated. The crude product was purified by column chromatography (PE:EA= 20:1) as eluent to obtain **5** (507 mg, 20.9%) as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, *J* = 2.7 Hz, 1H), 7.21 (d, *J* = 2.7 Hz, 1H), 4.33 (q, *J* = 7.1 Hz, 2H), 4.26 (s, 3H), 1.37 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.41 (s), 151.58 (s), 139.93 (s), 135.61 (s), 116.64 (s), 111.88 (s), 60.99 (s), 60.75 (s), 14.30 (s). HRMS (ESI): calcd.for C₁₀H₁₀O₃S₂ [M+Na]⁺: 264.9969, found: 264.9967. Anal. Calca. for C₁₀H₁₀O₃S₂: C: 49.57; H: 4.16; Found: C: 49.47; H: 4.59.

Ethyl 4,6-dibromo-3-methoxythieno[3,4-b]thiophene-2-carboxylate (6)

In a Schlenk flask equipped with a magnetic stirrer, were placed ethyl 3methoxythieno[3,4-b]thiophene-2-carboxylate (5, 48 mg, 0.2 mmol, 1.0 eq), and DMF (1 mL), then NBS (88 mg, 0.5 mmol, 2.5 eq) in DMF (1 mL) was added at r.t. and stirred for 24 h and the reaction was protected from light. The reaction mixture was quenched with H₂O, extracted with CH₂Cl₂, dried over Na₂SO₄, filtered and the solvent was evaporated. The crude product was purified by column chromatography (PE:EA=50:1) as eluent to obtain **6** (47.8 mg, 60.3%) as light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 4.36 (q, J = 7.1 Hz, 2H), 4.06 (s, 3H), 1.39 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 161.46 (s), 151.80 (s), 139.01 – 138.81 (m), 136.43 (s), 101.86 (s), 98.01 (s), 63.03 (s), 61.56 (s), 14.13 (s). HRMS (ESI): calcd.for C₁₀H₈Br₂O₃S₂ [M+Na]⁺: 420.8179, found: 420.8178.

Ethyl 3-(((trifluoromethyl)sulfonyl)oxy)thieno[3,4-b]thiophene-2-carboxylate (7) In a Schlenk flask equipped with a magnetic stirrer, were added ethyl 3hydroxythieno[3,4-b]thiophene-2-carboxylate (4, 1.6 g, 7.0 mmol, 1.0 eq), dry CH₂Cl₂ (35 mL) and pyridine (2.37 mL, 2.0 eq), then Tf₂O (1.1 mL, 2.0 eq) at 0 °C was added dropwise. The reaction mixture was stirred for 5 h at room temperature, quenched with saturated NaHCO₃, extracted with CH₂Cl₂, dried over MgSO₄, filtered and the solvent was evaporated. The crude product was purified by column chromatography (PE: CH₂Cl₂= 5:1) as eluent to obtain 7 (1.75 g, 70%) as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.64 (d, *J* = 2.5 Hz, 1H), 7.38 (d, *J* = 2.7 Hz, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 1.41 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 160.70 (s), 137.63 (s), 134.72 (s), 133.80 (s), 128.71 (s), 123.32 (s), 120.13 (s), 116.94 (s), 116.34 (s), 113.61 (s), 62.52 (s), 14.06 (s). HRMS (ESI): calcd.for C₁₀H₇F₃O₅S₃ [M+Na]⁺: 382.9305, found: 382.9305.

Ethyl 3-(methylthio)thieno[3,4-b]thiophene-2-carboxylate (8)

In a Schlenk flask equipped with a magnetic stirrer, were added ethyl 3hydroxythieno[3,4-b]thiophene-2-carboxylate (7, 36 mg, 0.1 mmol, 1.0 eq), $Pd_2(dba)_3$ (0.5 mg, 0.006mmol, 6mol%), XantPhos (7 mg, 0.012mmol, 12mol%), toluene (2 mL), DIPEA (31 mg, 1.2 eq) and NaSMe (aq., 20%) (55 mg, 0.15 mmol, 1.5 eq). The reaction mixture was stirred for 24 h at 100 °C. Then quenched with saturated NaHCO₃, extracted with CH₂Cl₂, dried over MgSO₄, filtered and the solvent was evaporated. The crude product was purified by column chromatography (PE: EA= 20:1) as eluent to obtain **8** (23.5mg, 91%) as oily liquid. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, J = 2.7 Hz, 1H), 7.28 (d, J = 2.7 Hz, 1H), 4.38 (q, J = 7.1 Hz, 2H), 2.73 (s, 3H), 1.40 (t, J = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.51 (s), 147.42 (s), 137.04 (s), 132.25 (d, *J* = 19.9 Hz), 117.29 (s), 111.55 (s), 61.51 (s), 17.57 (s), 14.28 (s). HRMS (ESI): calcd.for C₁₀H₁₀O₂S₃ [M+Na]⁺: 280.9741, found: 280.9740.

Ethyl 3-aminothieno[3,4-b]thiophene-2-carboxylate (9)

In a Schlenk flask equipped with a magnetic stirrer, were added (7, 180 mg, 0.5 mmol, 1.0 eq), Pd₂(dba)₃ (46 mg, 0.05 mmol, 10 mol%), XantPhos (29 mg, 0.05 mmol, 10 mol%), K₃PO₄ (212.2 mg, 1.0 mmol, 2.0 eq), toluene (10 mL) and diphenylmethanimine (0.125 mL,0.76 mmol, 1.52 eq). The reaction mixture was stirred for 24 h at 90 °C. Then, it was cooled at room temperature, quenched with H₂O, extracted with EA, dried over Na₂SO₄, filtered and the solvent was evaporated. The crude product was dissolved in methanol stirring for 1 h and was added ice water, extracted with EA, dried over Na₂SO₄, filtered and the solvent was evaporated. The crude product was purified by column chromatography (PE: EA= 5:1) as eluent to obtain 10 (98 mg, 86%) as light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.49 (s, 1H), 7.16 (s, 1H), 5.83 (s, 2H), 4.32 (dd, *J* = 13.9, 6.9 Hz, 2H), 1.37 (t, *J* = 7.0 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 165.89 (s), 143.22 (s), 140.95 (s), 136.40 (s), 115.04 (s), 111.88 (s), 102.42 (s), 60.35 (s), 14.46 (s). HRMS (ESI): calcd.for C₉H₉NO₂S₂ [M+Na]⁺: 249.9972, found: 249.9972. Anal. Calca. for C₉H₉NO₂S₂: C: 47.56; H: 3.99; N: 6.16; Found: C: 47.89; H: 4.59; N: 6.17.

Ethyl 3-phenylthieno[3,4-b]thiophene-2-carboxylate (10)

In a Schlenk flask equipped with a magnetic stirrer, were added (7, 72 mg, 0.2 mmol,

1.0 eq), phenylboronic acid (32 mg, 0.26 mmol, 1.3 eq), Pd(PPh₃)₄ (7.0 mg, 0.006 mmol, 3 mol%), K₃PO₄ (68 mg, 0.32 mmol, 1.6 eq) and 1,4-dioxane (2 mL). The reaction mixture was stirred for 24 h at 110 °C. Then, it was cooled at room temperature, quenched with sat. NH₄Cl, and washed with H₂O, extracted with CH₂Cl₂, dried over MgSO₄, filtered and the solvent was evaporated. The crude product was purified by column chromatography (PE: CH₂Cl₂= 5:1) as eluent to obtain **10** (56 mg, 97%) as light yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 7.48 (dtd, *J* = 10.8, 3.8, 1.9 Hz, 5H), 7.39 (d, *J* = 2.7 Hz, 1H), 7.31 (d, *J* = 2.7 Hz, 1H), 4.23 (q, *J* = 7.1 Hz, 2H), 1.21 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 162.90 (s), 149.02 (s), 137.55 (s), 136.98 (s), 134.64 (s), 132.97 (s), 129.14 (s), 128.22 (s), 127.98 (s), 117.19 (s), 111.39 (s), 61.27 (s), 13.92 (s). HRMS (ESI): calcd.for C₁₅H₁₂O₂S₂ [M+Na]⁺: 311.0176, found: 311.0175.

Ethyl 3-(phenylethynyl)thieno[3,4-b]thiophene-2-carboxylate (11)

In a Schlenk flask equipped with a magnetic stirrer, were added (7, 72 mg, 0.2 mmol, 1.0 eq), phenylacetylene (31 mg, 0.3 mmol, 1.5 eq), PdCl₂(PPh₃)₂ (4.2 mg, 0.006 mmol, 3 mol%), 0.12 mL Et₃N, 2 mL DMF, the reaction mixture was stirred for 24 h at 90 °C. Then, it was cooled at room temperature, quenched with H₂O, extracted with CH₂Cl₂, dried over MgSO₄, filtered and the solvent was evaporated. The crude product was purified by column chromatography (PE: CH₂Cl₂= 3:1) as eluent to obtain **11** (57 mg, 91%) as yellow solid. ¹H **NMR (400 MHz, CDCl₃)** δ 7.77 (d, *J* = 2.7 Hz, 1H), 7.63 (dd, *J* = 6.5, 2.9 Hz, 2H), 7.42 – 7.36 (m, 3H), 7.32 (d, *J* = 2.7 Hz, 1H), 4.43 (q, *J* = 7.1 Hz, 2H), 1.43 (t, *J* = 7.1 Hz, 3H). ¹³C **NMR (101 MHz, CDCl₃)** δ 162.42 (s), 147.33 (s), 139.70 (s), 136.48 (s), 131.92 (s), 129.00 (s), 128.45 (s), 122.75 (s), 117.08 (s), 116.88 (s), 112.22 (s), 98.11 (s), 82.92 (s), 61.70 (s), 14.34 (s). HRMS (ESI): calcd for C₁₇H₁₂O₂S₂ [M+Na]⁺: 335.0176, found: 335.0275.

Compounds of **12**, **13**, **15** and **16** were synthesized with corresponding starting materials by similar procedure for preparation of **4**, **5**, **6**, **7**, and **8**.

2-Ethylhexyl 3-hydroxythieno[3,4-b]thiophene-2-carboxylate (12)

¹H NMR (400 MHz, CDCl₃) δ 10.26 (s, 1H), 7.73 (d, J = 2.6 Hz, 1H), 7.19 (d, J = 2.6 Hz, 1H), 4.24 (d, J = 5.3 Hz, 2H), 1.69 (dd, J = 11.8, 5.9 Hz, 1H), 1.44 – 1.30 (m, 8H), 0.94 (dd, J = 13.2, 5.7 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 167.92 (s), 154.66 (s), 138.69 (s), 135.29 (s), 117.21 (s), 112.20 (s), 105.97 (s), 67.64 (s), 38.77 (s), 30.39 (s), 28.89 (s), 23.84 (s), 22.92 (s), 14.01 (s), 11.04 (s). HRMS (ESI): calcd.for C₁₅H₂₀O₃S₂ [M+Na]⁺: 335.0752, found: 335.0750.

2-Ethylhexyl 3-methoxythieno[3,4-b]thiophene-2-carboxylate (13)

¹**H NMR (400 MHz, CDCl₃)** δ 7.69 (d, J = 2.6 Hz, 1H), 7.22 (d, J = 2.6 Hz, 1H), 4.26 (s, 3H), 4.20 (dd, J = 5.5, 2.9 Hz, 2H), 1.73 – 1.61 (m, 1H), 1.43 – 1.28 (m, 8H), 0.93 (dd, J = 13.6, 6.1 Hz, 6H). ¹³**C NMR (101 MHz, CDCl₃)** δ 162.59 (s), 151.50 (s), 139.83 (s), 135.70 (s), 116.66 (s), 116.24 (s), 111.86 (s), 67.21 (s), 60.67 (s), 38.85 (s), 30.49 (s), 28.92 (s), 23.91 (s), 22.97 (s), 14.05 (s), 11.09 (s). HRMS (ESI): calcd for C₁₆H₂₂O₃S₂ [M+Na]⁺: 349.0908, found:349.0906.

2-Ethylhexyl 4,6-dibromo-3-methoxythieno[3,4-b]thiophene-2-carboxylate (14) ¹**H NMR (400 MHz, CDCl₃)** δ 4.22 (s, 2H), 4.07 (s, 3H), 1.73 – 1.64 (m, 1H), 1.47 – 1.31 (m, 8H), 0.97 – 0.88 (m, 6H). ¹³**C NMR (101 MHz, CDCl₃)** δ 161.57 (s), 151.75 (s), 138.94 (s), 136.50 (s), 122.62 (s), 101.80 (s), 98.00 (s), 67.77 (s), 63.11 (s), 38.85 (s), 30.42 (s), 28.93 (s), 23.85 (s), 22.94 (s), 14.02 (s), 11.03 (s). HRMS (ESI): calcd.for $C_{16}H_{20}Br_2O_3S_2$ [M+Na]⁺: 504.9118, found: 504.9118.

2-Ethylhexyl-3-(((trifluoromethyl)sulfonyl)oxy)thieno[3,4-b]thiophene-2carboxylate (15)

¹**H NMR** (400 MHz, CDCl₃) δ 7.65 (d, J = 2.6 Hz, 1H), 7.38 (d, J = 2.7 Hz, 1H), 4.28 (dd, J = 6.0, 1.1 Hz, 2H), 1.74 (dt, J = 12.3, 6.1 Hz, 1H), 1.45 – 1.30 (m, 8H), 0.92 (dt, J = 10.4, 7.2 Hz, 6H). ¹³**C NMR** (101 MHz, CDCl₃) δ 160.60 (s), 137.54 (s), 135.04 (s), 133.84 (s), 128.19 (s), 123.31 (s), 120.12 (s), 116.93 (s), 116.30 (s), 113.54 (s), 68.72 (s), 38.57 (s), 30.20 (s), 28.76 (s), 23.65 (s), 22.90 (s), 13.95 (s), 10.85 (s). HRMS (ESI): calcd.for C₁₆H₁₉F₃O₅S₃ [M+Na]⁺: 467.0244, found: 467.0242. Anal. Calca. for C₁₆H₁₉F₃O₅S₃: C: 43.23; H: 4.31; Found: C: 43.21; H: 4.23.

2-Ethylhexyl 3-(methylthio)thieno[3,4-b]thiophene-2-carboxylate (16) ¹**H NMR (400 MHz, CDCl₃)** δ 7.75 (s, 1H), 7.28 (s, 1H), 4.27 – 4.21 (m, 2H), 2.73 (s, 3H), 1.74 – 1.67 (m, 1H), 1.45 – 1.28 (m, 8H), 0.93 (dd, *J* = 14.5, 6.8 Hz, 6H). ¹³**C NMR (101 MHz, CDCl₃)** δ 162.64 (s), 147.40 (s), 137.09 (s), 132.26 (d, *J* = 13.8 Hz), 117.26 (s), 111.50 (s), 67.73 (s), 38.82 (s), 30.47 (s), 28.90 (s), 23.91 (s), 22.95 (s), 17.53 (s), 14.03 (s), 11.08 (s). HRMS (ESI): calcd.for C₁₆H₂₂O₂S₃ [M+Na]⁺: 365.0680, found: 365.0678.

2-Ethylhexyl 4,6-dibromo-3-(methylthio)thieno[3,4-b]thiophene-2-carboxylate (17)

In a Schlenk flask equipped with a magnetic stirrer, were added (**16**, 1.24 g, 3.6 mmol, 1.0 eq), DMF (15 mL), then a solution of NBS (1.92 g, 10.8 mmol, 3.0 eq) in DMF (10 mL) was added at r.t. and stirred for 24 h and the reaction was protected from light. The reaction mixture was quenched with H₂O, extracted with saturated salt water and CH₂Cl₂, dried over Na₂SO₄, filtered and the solvent was evaporated. The crude product was purified by column chromatography (PE: CH₂Cl₂= 5:1) as eluent to obtain **17** (894 mg, 49%) as light yellow solid. ¹**H NMR (400 MHz, CDCl₃)** δ 4.27 (d, J = 4.2 Hz, 2H), 2.52 (s, 3H), 1.75 – 1.65 (m, 1H), 1.40 (dd, J = 26.2, 14.5 Hz, 8H), 0.94 (dd, J = 14.6, 6.9 Hz, 6H). ¹³**C NMR (101 MHz, CDCl₃)** δ 161.49 (s), 143.10 (s), 139.42 (s), 138.43 (s), 131.64 (s), 103.13 (s), 97.42 (s), 72.07 – 71.87 (m), 68.16 (s), 38.82 (s), 30.44 (s), 29.63 – 29.43 (m), 28.92 (s), 23.88 (s), 22.94 (s), 21.60 – 21.40 (m), 20.39 (s), 14.40 – 14.20 (m), 14.03 (s), 11.06 (s). HRMS (ESI): calcd.for C₁₆H₂₀Br₂O₂S₃ [M+Na]⁺: 520.8890, found: 520.8888.

2-Ethylhexyl-4-bromo-6-formyl-3-(methylthio)thieno[3,4-b]thiophene-2carboxylate(18)

A solution of **16** in 1,2-dichloroethane (DCE, 100 mL) was degassed with argon for 15 min and then the Vilsmerier reagent (was prepared according to the literature)² was added into the reaction slowly and stirred at room temperature for 1 h. The reaction solution was stirred at 100 °C for another 24 h. Then saturated sodiumacetate solution was added slowly to quench the reaction. The reaction solution was washed with water for three times and extracted with CH_2Cl_2 , dried over anhydrous Na_2SO_4 ,

filtered and the solvent was evaporated. The crude product was purified by column chromatography (PE: EA=10:1) as eluent to obtain 2-ethylhexyl 6-formyl-3-(methylthio)thieno[3,4-b]thiophene-2-carboxylate (5.3 g, 91%) as yellow solid. ¹H NMR (400 MHz, CDCl₃) δ 9.89 (s, 1H), 8.19 (s, 1H), 4.23 (dd, J = 10.4, 5.0 Hz, 2H), 2.71 (s, 3H), 1.68 (dt, J = 12.1, 6.0 Hz, 1H), 1.44 – 1.28 (m, 8H), 0.94 – 0.88 (m, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 179.63 (s), 162.07 (s), 148.11 (s), 143.12 (s), 133.55 (s), 132.25 (s), 127.58 (s), 127.02 (s), 68.05 (s), 53.41 (s), 38.81 (s), 30.41 (s), 28.93 (s), 23.85 (s), 22.94 (s), 17.96 (s), 14.05 (s), 11.05 (s). HRMS (ESI): calcd.for C₁₇H₂₂O₃S₃ [M+Na]⁺: 393.0629, found: 393.0624.

In a Schlenk flask equipped with a magnetic stirrer, were added 2-ethylhexyl 6-formyl-3-(methylthio)thieno[3,4-b]thiophene-2-carboxylate (5.0 g, 14 mmol, 1.0 eq), DMF (50 mL), then NBS (3.7 g,21mmol, 1.5eq) was added one-pot at 0 °C and then stirred for 24 h and the reaction was protected from light. The reaction solution was washed with water for three times and extracted with CH_2Cl_2 , dried over anhydrous Na₂SO₄, filtered and the solvent was evaporated. The crude product was purified by column chromatography (PE: EA=10:1) as eluent to obtain **18** (2.89 g, 91%) as yellow-brown viscous liquid. ¹H NMR (400 MHz, CDCl₃) δ 9.81 (s, 1H), 4.28 (t, *J* = 4.5 Hz, 2H), 2.55 (s, 3H), 1.74 – 1.68 (m, 1H), 1.47 – 1.31 (m, 8H), 0.94 (dd, *J* = 15.1, 7.5 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 178.31 (s), 161.30 (s), 144.44 (s), 143.04 (s), 139.71 (s), 131.04 (s), 126.72 (s), 117.14 (s), 68.34 (s), 38.85 (s), 30.43 (s), 28.93 (s), 23.87 (s), 22.93 (s), 20.42 (s), 14.02 (s), 11.04 (s). HRMS (ESI): calcd.for $C_{17}H_{21}BrO_3S_3$ [M+Na]⁺: 470.9734, found: 470.9730.

In a 100 mL Schlenk flask, 2-ethylhexyl 4,6-dibromo-3-methoxythieno[3,4-b]thiophene-2-carboxylate **14** (202 mg, 0.417 mmol) and (4,8-bis((2-ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (322 mg, 0.417 mmol) were dissolved in anhydrous toluene (10 mL) and DMF (2.5 mL).

After being purged with nitrogen for 20 min, 21 mg (4.0 mol%) of Pd(PPh₃)₄ was added into the flask as the catalyst, and then the reaction mixture was purged with nitrogen for another 30 min. The reaction mixture was stirred and heated to reflux (120 °C) for 48 h under an nitrogen atmosphere (according to the procedure in the literature)³. After the reaction mixture was cooled down to room temperature, 41 mg of tributyl(thiophen-2-yl)stannane was added under nitrogen atmosphere and the reaction was refluxed for another 10 h. The reaction mixture was cooled to room temperature and added dropwise to 100 mL methanol. The precipitate was collected and further purified by Soxhlet extraction with methanol, acetone, hexane, and chloroform in sequence. The polymer was recovered as solid from the chloroform fraction by precipitation from methanol. The solid was dried under vacuum to get polymer **P1** (276 mg, yield 87%). GPC: Mw = 30.1 KD, PDI= 2.1.

The procedure for preparation and purification of Polymer P2

In a 25 mL pressure tube, 2-ethylhexyl 4,6-dibromo-3-methoxythieno[3,4b]thiophene-2-carboxylate **14** (97 mg, 0.2 mmol) and (4,8-bis(5-(2ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-

diyl)bis(trimethylstannane) (181 mg, 0.2 mmol) were dissolved in anhydrous toluene (4 mL) and DMF (1.0 mL). After being purged with nitrogen for 20 min, 10 mg (4.0 mol%) of Pd(PPh₃)₄ was added into the flask as the catalyst, and then the reaction mixture was purged with nitrogen for another 30 min. The reaction mixture was stirred and heated to reflux (120 °C) for 48 h under an nitrogen atmosphere. After the reaction mixture was cooled down to room temperature, 20 mg of tributyl(thiophen-2-yl)stannane was added under nitrogen atmosphere and the reaction was refluxed for another 10 h. The reaction mixture was cooled to room temperature and added dropwise to 100 mL methanol. The precipitate was collected and further purified by

Soxhlet extraction with methanol, acetone, hexane, and chloroform in sequence. The polymer was recovered as solid from the chloroform fraction by precipitation from methanol. The solid was dried under vacuum to get polymer **P2** (148 mg, yield 84%). GPC: Mw = 20.4 KD, PDI= 1.9.

In a 100 mL Schlenk flask, 2-ethylhexyl 4,6-dibromo-3-(methylthio)thieno[3,4b]thiophene-2-carboxylate 17 (200)mg, 0.4 mmol) and (4,8-bis((2ethylhexyl)oxy)benzo[1,2-b:4,5-b']dithiophene-2,6-diyl)bis(trimethylstannane) (309 mg, 0.4 mmol) were dissolved in anhydrous toluene (8 mL) and DMF (2 mL). After being purged with nitrogen for 20 min, 18.5 mg (4.0 mol%) of Pd(PPh₃)₄ was added into the flask as the catalyst, and then the reaction mixture was purged with nitrogen for another 30 min. The reaction mixture was stirred and heated to reflux (120 °C) for 48 h under an nitrogen atmosphere. After the reaction mixture was cooled down to room temperature, 40 mg of tributyl(thiophen-2-yl)stannane was added under nitrogen atmosphere and the reaction was refluxed for another 10 h. The reaction mixture was cooled to room temperature and added dropwise to 100 mL methanol. The precipitate was collected and further purified by Soxhlet extraction with methanol, acetone, hexane, and chloroform in sequence. The polymer was recovered as solid from the chloroform fraction by precipitation from methanol. The solid was dried under vacuum to get polymer P3 (152 mg, yield 48%). GPC: Mw = 39.8 KD, PDI= 1.9.

In a 25 mL pressure tube, 2-ethylhexyl 4,6-dibromo-3-(methylthio)thieno[3,4-b]thiophene-2-carboxylate **17** (150 mg, 0.3 mmol) and (4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene-2,6-

diyl)bis(trimethylstannane) (272 mg, 0.3 mmol) were dissolved in anhydrous toluene (6 mL) and DMF (1.5 mL). After being purged with nitrogen for 20 min, 15 mg (4.0 mol%) of Pd(PPh₃)₄ was added into the flask as the catalyst, and then the reaction mixture was purged with nitrogen for another 30 min. The reaction mixture was stirred and heated to reflux (120 °C) for 48 h under an nitrogen atmosphere. After the reaction mixture was cooled down to room temperature, 31 mg of tributyl(thiophen-2-yl)stannane was added under nitrogen atmosphere and the reaction was refluxed for another 10 h. The reaction mixture was cooled to room temperature and added dropwise to 100 mL methanol. The precipitate was collected and further purified by Soxhlet extraction with methanol, acetone, hexane, and chloroform in sequence. The polymer was recovered as solid from the chloroform fraction by precipitation from methanol. The solid was dried under vacuum to get polymer **P4** (242 mg, yield 89%). GPC: Mw = 25.8 KD, PDI= 2.1.

3. Optoelectronic properties

Figure S1. Normalized UV/Vis absorption spectra of 5, 8, 9, 10, 11 and TT as a film

Figure S2. Reductive CV curves of **P1**, **P2**, **P3** and **P4** film in diluted CH₃CN solution with a scan rate of 100 mV s⁻¹.

Figure S3. Oxidative CV curves of P1, P2, P3 and P4 in film in diluted CH_3CN solution with a scan rate of 100 mV s⁻¹.

4. References

1. WO 2008011337A1, Jan 24, 2008.

2. H. Gao, Y. Sun, X. Wan, B. Kan, X. Ke, H. Zhang, C. Li, and Y. Chen. *Sci. China Mater.* 2017, **60**, 819.

3. Q. V. Hoang, C. E. Song, S. J. Moon, S. K. Lee, J.C. Lee, B. J. Kim, and W. S. Shin. *Macromolecules*. 2015, **48**, 3918.

5.GPC and NMR spectra

Cirrus GPC Sample Injection Report

Generated by: Administrator Workbook: F:\Cirrus Workbooks\20140701\20140701.plw

Sample Details

LWLP1 Acquired: 11/2/2017 6:33:27 PM Batch Name: 20171102 Filename: F:\Cirrus Workbooks\20140701\20171102-0004.cgrm

Workbook Details

Eluent TCB stabilised with 0.0125% BHT Column Set: 3 x PLgel MIXED-B LS 300 x 7.5 mm Detector: RI

Temperature: 150 Injection Volume: 200.0 ul

Flow Rate: 1.00 ml/min

Low Limit MW RT: 25.32 mins

Low Limit MW: 529

Alpha: 0.6700

Friday, November 03, 2017 9:48 AM

Analysis Using Method: 20171022 Comments:

Calibration Used: 10/26/2017 2:28:28 PM

High Limit MW RT: 16.35 mins High Limit MW: 5198272 K: 17.5000

Peak No	Mp	Mn	Mw	Μz	Mz+1	M∨	PD		
1	29839	14430	30109	46670	62875	27568	2.08656		
rocessed	Peaks								
Peak No	Name	Start RT (mins)	Max R1 (mins)	End F (mins	RT Pk s) (Height mV)	% Height	Area (mV.secs)	% Area
		40.70	21.40	1 24	13 31	0102	100	3608 57	100

Cirrus GPC Version 3.4

Page 1

11/3/2017 9:48 AM

PDF created with pdfFactory Pro trial version www.pdffactory.com

Sample Injection Report

Peak Detection

 Peak No
 Type
 St Detect Code
 End Detect Code
 Is St Mod
 Is Am Mod
 Is End Mod

 1
 0
 1
 1
 No
 No
 No

Baseline Detection

 No
 Start RT (mins)
 End RT (mins)
 Start Height (mins)
 End Height End Height
 Is St Mod
 Is End Mod

 1
 19.62
 24.80
 17.89
 18.42
 No
 No

Cirrus GPC Version 3.4

Page 2

11/3/2017 9:48 AM

PDF created with pdfFactory Pro trial version www.pdffactory.com

Cirrus GPC Sample Injection Report

Generated by: Administrator Workbook: F:\Cirrus Workbooks\20140701\20140701.plw

Sample Details

LWLP2 Acquired: 11/2/2017 7:24:11 PM Batch Name: 20171102 Filename: F:\Cirrus Workbooks\20140701\20171102-0005.cgrm

Workbook Details

Eluent TCB stabilised with 0.0125% BHT Column Set: 3 x PLgel MIXED-B LS 300 x 7.5 mm Detector: RI Flow Rate: 1.00 ml/min Temperature: 150 Injection Volume: 200.0 ul

Analysis Using Method: 20171022 Comments:

Calibration Used: 10/26/2017 2:28:28 PM

High Limit MW RT: 16.35 mins High Limit MW: 5198272

K: 17.5000

MW Averages

Cirrus GPC Version 3.4

Low Limit MW RT: 25.32 mins Low Limit MW: 529 Alpha: 0.6700

11/3/2017 9:46 AM

Peak No	Mp	Mn	Mw	Mz	Mz+1	Mv	PD		
í	17872	10824	20474	33440	47648	18676	1.89154		
Processe	d Peaks								
Peak No	o Name	Start RT (mins)	Max RT (mins)	End R (mins)	T Pk) (Height mV)	% Height	Area (mV.secs)	% Area

Page 1

PDF created with pdfFactory Pro trial version www.pdffactory.com

Friday, November 03, 2017 9:46 AM

Sample Injection Report

Peak Detection

 Peak No
 Type
 St Detect Code
 End Detect Code
 Is St Mod
 Is Max Mod
 Is End Mod

 1
 0
 1
 1
 No
 No
 No

Baseline Detection

 No
 Start RT (mins)
 End RT (mins)
 Start Height (mins)
 End Height End Height
 Is St Mod
 Is End Mod

 1
 19.48
 25.97
 18.34
 18.68
 No
 No

Cirrus GPC Version 3.4

Page 2

11/3/2017 9:46 AM

PDF created with pdfFactory Pro trial version www.pdffactory.com

Cirrus GPC Sample Injection Report

Generated by: Administrator Workbook: F:\Cirrus Workbooks\20140701\20140701.plw

Sample Details

LWLP3 Acquired: 11/2/2017 8:14:55 PM Batch Name: 20171102 Filename: F:\Cirrus Workbooks\20140701\20171102-0006.cgrm

Workbook Details

Eluent TCB stabilised with 0.0125% BHT Column Set: 3 x PLgel MIXED-B LS 300 x 7.5 mm Detector: RI Flow Rate: 1.00 ml/min Temperature: 150 Injection Volume: 200.0 ul

Analysis Using Method: 20171022 Comments:

Calibration Used: 10/26/2017 2:28:28 PM

High Limit MW RT: 16.35 mins High Limit MW: 5198272 K: 17.5000

MW Averages

Cirrus GPC Version 3.4

Low Limit MW RT: 25.32 mins Low Limit MW: 529 Alpha: 0.6700

11/3/2017 10:06 AM

Peak N	10	Мр	Mn	Μw	Mz	Mz+1	Mv	PD		
	1	37261	21203	39819	62768	86502	36486	1.87799		
Process	sed	Peaks								
Peak N	10	Name	Start RT (mins)	Max RT (mins)	End F (mins	RT PK	Height (mV)	% Height	Area (mV.secs)	% Area
	1		19.32	21.17	23.9	92 1	5.9741	0	1839.83	100

Page 1

PDF created with pdfFactory Pro trial version www.pdffactory.com

Friday, November 03, 2017 10:06 AM

Sample Injection Report

Peak Detection

 Peak No
 Type
 St Detect Code
 End Detect Code
 Is St Mod
 Is Max Mod
 Is End Mod

 1
 0
 1
 1
 No
 No
 No

Baseline Detection

 No
 Start RT (mins)
 End RT (mins)
 Start Height
 End Height
 Is St Mod
 Is End Mod

 1
 19.32
 23.92
 19.03
 18.70
 No
 No

Cirrus GPC Version 3.4

Page 2

11/3/2017 10:06 AM

PDF created with pdfFactory Pro trial version www.pdffactory.com

Cirrus GPC Sample Injection Report

Generated by: Administrator Workbook: F:\Cirrus Workbooks\20140701\20140701.plw

Sample Details LWLP4

LVVLP4 Acquired: 11/2/2017 9:05:39 PM Batch Name: 20171102 Filename: F:\Cirrus Workbooks\20140701\20171102-0007.cgrm

Workbook Details

Eluent TCB stabilised with 0.0125% BHT Column Set: 3 x PLgel MIXED-B LS 300 x 7.5 mm Detector: RI Flow Rate: 1.00 ml/min Temperature: 150 Injection Volume: 200.0 ul

Analysis Using Method: 20171022 Comments:

Calibration Used: 10/26/2017 2:28:28 PM

High Limit MW RT: 16.35 mins High Limit MW: 5198272

K: 17.5000

MW Averages

Low Limit MW RT: 25.32 mins Low Limit MW: 529 Alpha: 0.6700

Peak No	Mp	Mn	Mw	Μz	Mz+1	M∨	PD			
1	22701	12322	25793	44821	65579	23198	2.09325			
Processed	Peaks									
Peak No	Name	Start RT (mins)	Max RT (mins)	End F (mins	RT Pk s) (Height mV)	% Height	Area (mV.secs)	% Area	
1		19.42	21.68	5 24.0	65 48	5.8947	0	5979.9	100	
Cirrus GPC	Version	3.4			Pag	le 1			11/3/2017 1	0:07 AM

PDF created with pdfFactory Pro trial version www.pdffactory.com

Friday, November 03, 2017 10:07 AM

Sample Injection Report

Peak Detection

 Peak No
 Type
 St Detect Code
 End Detect Code
 Is St Mod
 Is Max Mod
 Is End Mod

 1
 0
 1
 1
 No
 No
 No

Baseline Detection

 No
 Start RT
 End RT
 Start Height
 End Height
 Is St Mod
 Is End Mod

 (mins)
 (mins)
 18.64
 18.94
 No
 No

Cirrus GPC Version 3.4

Page 2

11/3/2017 10:07 AM

PDF created with pdfFactory Pro trial version www.pdffactory.com

