Electronic Supplementary Information

# A novel family of AIE-active *meso-2-*ketopyrrolylBODIPYs: Bright solid-state red fluorescence, morphological properties and application as viscosimeters in live cells

Changjiang Yu,<sup>†acd</sup> Zhenlong Huang,<sup>†b</sup> Wei Gu,<sup>a</sup> Qinghua Wu,<sup>a</sup> Erhong Hao,<sup>\*a</sup> Yi Xiao,<sup>\*b</sup>

Lijuan Jiao\*a and Wai-Yeung Wong\*c

<sup>a</sup> The Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China.

<sup>b</sup> State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.

<sup>c</sup> Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.

<sup>d</sup> State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093, China.

<sup>†</sup>equal contribution

\*To whom correspondence should be addressed. E-mail: <u>haoehong@ahnu.edu.cn</u>; <u>xiaoyi@dlut.edu.cn</u>; <u>jiao421@ahnu.edu.cn</u>; <u>wai-yeung.wong@polyu.edu.hk</u>

#### **Contents:**

| 1.  | Crystal packings and selected parameters              | S2  |
|-----|-------------------------------------------------------|-----|
| 2.  | Photophysical properties                              | S7  |
| 3.  | Aggregation-induced emission properties               | S14 |
| 4.  | SEM and TEM images                                    | S18 |
| 5.  | Dynamic light scattering                              | S19 |
| 6.  | Viscosity sensitivity studies                         | S21 |
| 7.  | Cell culture                                          | S24 |
| 8.  | MTT Assay                                             | S27 |
| 9.  | Viscosity determination in real-time during apoptosis | S28 |
| 10. | NMR for meso-2-ketopyrrolyl BODIPYs                   | S29 |
| 11. | . HRMS for meso-2-ketopyrrolyl BODIPYs                | S33 |
| 12. | DFT calculations                                      | S35 |

# 1. Crystal diagrams and selected data



**Figure S1.** Crystal-packing pattern of **1a** between the adjacent interlayered crystals from side view. Interlayer distance is 4.12 Å and tilt angle is 23.2° for coplanar inclined arrangements of its transition dipole. C, light gray; N, blue; B, dark yellow; F, green; O, red; H atoms are omitted for clarity.



**Figure S2.** Crystal-packing pattern of **1b** between the adjacent interlayered crystals from side view. Interlayer distance is 3.38 Å and tilt angle is 30.7° for coplanar inclined arrangements of its transition dipole. C, light gray; N, blue; B, dark yellow; F, green; O, red; H atoms are omitted for clarity.



**Figure S3.** Crystal-packing pattern of **1c** between the adjacent interlayered crystals from side view. Interlayer distance is 3.88 Å and tilt angle is 18.5° for coplanar inclined arrangements of its transition dipole. C, light gray; N, blue; B, dark yellow; F, green; O, red; H atoms are omitted for clarity.

**Table S1.** Selected bond lengths [Å] and dihedral angles [deg] of *meso-2*-ketopyrrolyl-BODIPYs **1a-c** obtained from X-ray crystallography.



|                                                                                                               | 1a                            | 1b                            | 1c                            |
|---------------------------------------------------------------------------------------------------------------|-------------------------------|-------------------------------|-------------------------------|
| the B-F bond distances (Å)                                                                                    | 1.390<br>1.392                | 1.377<br>1.383                | 1.381<br>1.389                |
| the B-N bond distances (Å)                                                                                    | 1.536<br>1.536                | 1.549<br>1.550                | 1.533<br>1.547                |
| dihedral angles of two coordinated<br>pyrrolic rings <b>A</b> and <b>C</b> (deg)                              | 5.0(2)                        | 8.78(2)                       | 1.51(1)                       |
| dihedral angles between<br>the six-membered ring <b>B</b> composed of<br>NBN and the BODIPY core (deg)        | 0.53(1)                       | 0.61(2)                       | 0.40(2)                       |
| dihedral angles between<br>the <i>meso</i> -uncoordinated pyrrolic ring<br><b>D</b> and the BODIPY core (deg) | 88.8(2)                       | 72.9(1)                       | 81.4(1)                       |
| intramolecular C-H…F hydrogen bond<br>distances (Å)                                                           | 2.602, 2.611,<br>2.680, 2.759 | 2.542, 2.728,<br>2.726, 2.878 | 2.571, 2.600,<br>2.707, 2.772 |
| intermolecular C-H…F hydrogen bond<br>distances (Å)                                                           |                               | 2.695, 2.695,<br>2.827, 2.827 | 2.578,<br>2.612               |
| intermolecular N-H…F hydrogen<br>bond distances (Å)                                                           | 2.075,<br>2.075               |                               |                               |

|                                                       | 1a                                                               | 1b             | 1c              |
|-------------------------------------------------------|------------------------------------------------------------------|----------------|-----------------|
| CCDC no.                                              | 1541729                                                          | 1541728        | 1901461         |
| formula                                               | C <sub>26</sub> H <sub>34</sub> BF <sub>2</sub> N <sub>3</sub> O | C20H22BF2N3O   | C24H30BF2N3O    |
| М                                                     | 453.37                                                           | 369.22         | 425.32          |
| T (K)                                                 | 293(2)                                                           | 293(2)         | 293(2)          |
| λ (Å)                                                 | 0.71073                                                          | 0.71073        | 0.71073         |
| crystal system                                        | Monoclinic                                                       | Monoclinic     | Monoclinic      |
| space group                                           | C2/c                                                             | C2/c           | C2/c            |
| a (Å)                                                 | 26.649(3)                                                        | 12.8894(18)    | 23.744(3)       |
| b (Å)                                                 | 9.8463(10)                                                       | 9.0135(12)     | 12.2488(12)     |
| c (Å)                                                 | 19.4482(19)                                                      | 31.806(4)      | 19.0154(18)     |
| α (deg)                                               | 90                                                               | 90             | 90              |
| β (deg)                                               | 101.3930(10)                                                     | 93.146(2)      | 101.276(2)      |
| γ (deg)                                               | 90                                                               | 90             | 90              |
| $V(Å^3)$                                              | 5002.5(9)                                                        | 3689.6(9)      | 5423.7(10)      |
| Z                                                     | 8                                                                | 8              | 8               |
| D <sub>calcd</sub> (mg m <sup>-3</sup> )              | 1.204                                                            | 1.329          | 1.042           |
| $\mu \text{ mm}^{-1}$                                 | 0.083                                                            | 0.096          | 0.073           |
| F(000)                                                | 1936                                                             | 1552           | 1808.0          |
| ө range (deg)                                         | 1.56 - 27.63                                                     | 2.76 - 27.62   | 1.249 to 24.996 |
| reflections<br>collected/<br>unique                   | 21129 / 5791                                                     | 15525 / 4277   | 18895 / 4776    |
| R (int)                                               | 0.0294                                                           | 0.0222         | 0.0339          |
| goodness-of-fit<br>on F <sup>2</sup>                  | 1.058                                                            | 1.047          | 1.094           |
| R1, wR2<br>[I>2σ(I)]                                  | 0.0637, 0.2012                                                   | 0.0458, 0.1300 | 0.0544, 0.1846  |
| R1, wR2 (all data)                                    | 0.1044, 0.2386                                                   | 0.0618, 0.1441 | 0.0718, 0.1948  |
| Largest diff.<br>peak and hole, e.<br>Å <sup>-3</sup> | 0.306, -0.240                                                    | 0.277, -0.210  | 0.21, -0.17     |

**Table S2.** Crystal data collection parameters for *meso-2*-ketopyrrolyl BODIPYs 1a, 1b and 1cobtained from X-ray crystallography.

# 2. Photophysical properties

| dyes       | solvents        | $\lambda_{abs}^{max}$ | $\lambda_{\rm em}^{\rm max}$ | $log \epsilon_{max}{}^{a}$ | $\boldsymbol{\varphi}^{\mathbf{b}}$ | Stokes shift (cm <sup>-1</sup> ) |
|------------|-----------------|-----------------------|------------------------------|----------------------------|-------------------------------------|----------------------------------|
|            | cvclohexane     | 532                   | 557                          | 4.89                       | 0.12                                | 844                              |
|            | toluene         | 534                   | 561                          | 4.84                       | 0.19                                | 901                              |
|            | dichloromethane | 534                   | 560                          | 4.81                       | 0.21                                | 869                              |
|            | tetrahydrofuran | 530                   | 554                          | 4.84                       | 0.18                                | 817                              |
| <b>1</b> a | acetonitrile    | 529                   | 555                          | 4.79                       | 0.10                                | 886                              |
|            | methanol        | 530                   | 549                          | 4.80                       | 0.13                                | 653                              |
|            | glycerol        | 534                   | 554                          | 4.82                       | 0.43                                | 676                              |
|            | solid state     | -                     | 661                          | -                          | 0.13                                | -                                |
|            | cyclohexane     | 508                   | 534                          | 4.91                       | 0.12                                | 958                              |
|            | toluene         | 510                   | 537                          | 4.91                       | 0.07                                | 986                              |
|            | dichloromethane | 509                   | 533                          | 4.90                       | 0.08                                | 885                              |
| 11         | tetrahydrofuran | 507                   | 530                          | 4.93                       | 0.05                                | 856                              |
| 10         | acetonitrile    | 504                   | 526                          | 4.88                       | 0.03                                | 830                              |
|            | methanol        | 506                   | 522                          | 4.86                       | 0.06                                | 606                              |
|            | glycerol        | 510                   | 526                          | 4.89                       | 0.15                                | 596                              |
|            | solid state     | -                     | 620                          | -                          | 0.21                                | -                                |
|            | cyclohexane     | 520                   | 548                          | 4.88                       | 0.03                                | 983                              |
|            | toluene         | 522                   | 549                          | 4.86                       | 0.08                                | 942                              |
| 1.0        | dichloromethane | 521                   | 548                          | 4.83                       | 0.10                                | 946                              |
| п          | tetrahydrofuran | 518                   | 544                          | 4.80                       | 0.03                                | 923                              |
|            | acetonitrile    | 517                   | 543                          | 4.78                       | 0.01                                | 926                              |
|            | solid state     | -                     | 653                          | -                          | 0.25                                | -                                |
|            | cyclohexane     | 519                   | 547                          | 4.87                       | 0.03                                | 986                              |
|            | toluene         | 522                   | 549                          | 4.84                       | 0.08                                | 942                              |
| 1d         | dichloromethane | 521                   | 548                          | 4.80                       | 0.10                                | 946                              |
| 14         | tetrahydrofuran | 518                   | 543                          | 4.81                       | 0.03                                | 889                              |
|            | acetonitrile    | 517                   | 541                          | 4.79                       | 0.01                                | 858                              |
|            | solid state     | -                     | 644                          | -                          | 0.22                                | -                                |

Table S3. Photophysical properties of *meso*-2-ketopyrrolyl BODIPYs 1a and 1b in several organic solvents and powder state.

<sup>a</sup>Molar absorption coefficients of **1a-d** are calculated at the maximum of the highest peak in their absorption spectra. <sup>b</sup>Fluorescence quantum yields ( $\phi$ ) of **1a-d** were evaluated by using integrating sphere in the above solvents (excited at 480 nm for **1b-d** in the above solvents, excited at 500 nm for **1a**) and powder state (excited at 550 nm for **1a** and 500 nm for **1b-d**). The standard errors are less than 5%.



Figure S4. Normalized UV-vis (top) and fluorescence spectra (bottom) of 1a (5  $\mu$ M) in different solvents, excited at 500 nm.



Figure S5. Normalized UV-vis (top) and fluorescence spectra (bottom) of 1a (5  $\mu$ M) in methanol and glycerol, excited at 500 nm.



Figure S6. Normalized UV-vis (top) and fluorescence spectra (bottom) of 1b (5  $\mu$ M) in different solvents, excited at 480 nm.



Figure S7. Normalized UV-vis (top) and fluorescence spectra (bottom) of 1b (5  $\mu$ M) in methanol and glycerol, excited at 480 nm.



Figure S8. Normalized UV-vis (top) and fluorescence spectra (bottom) of 1c in different solvents, excited at 480 nm.



Figure S9. Normalized UV-vis (top) and fluorescence spectra (bottom) of 1d in different solvents, excited at 480 nm.

### 3. Aggregation-induced emission properties



Figure S10. Absorbance (a) and fluorescence (b) spectra of 1a (50  $\mu$ M) in acetonitrile/water with different water fractions ( $f_w$ ), excited at 500 nm. Photographs of acetonitrile and the mixed acetonitrile-water system containing 90% water of 1a under 365 nm handheld UV lamp irradiation condition.



Figure S11. Absorbance (a) and fluorescence (b) spectra of 1b (30  $\mu$ M) in acetonitrile/water with different water fractions ( $f_w$ ), excited at 480 nm. Photographs of acetonitrile and the mixed acetonitrile-water system containing 99% water of 1b under 365 nm handheld UV lamp irradiation condition.



**Figure S12.** Absorbance (a) and fluorescence (b) spectra of **1c** (30  $\mu$ M) in acetonitrile/water with different water fractions (*f*<sub>w</sub>), excited at 480 nm.



**Figure S13.** Absorbance (a) and fluorescence (b) spectra of **1d** (30  $\mu$ M) in acetonitrile/water with different water fractions ( $f_w$ ), excited at 480 nm.

# 4. SEM and TEM images



**Figure S14.** SEM (a, b) and TEM (c, d) images of nanoballs for 1c (30  $\mu$ M) and nanocuboid for 1d (30  $\mu$ M) in acetonitrile-water system with  $f_w = 90\%$ .

# 5. Dynamic light scattering



Figure S15. Dynamic light scattering (DLS) of the nanoparticles 1a (50  $\mu$ M) in acetonitrile-water system with water fraction equal to 99%.



Figure S16. Dynamic light scattering (DLS) of the nanoparticles 1b (30  $\mu$ M) in acetonitrile-water system with water fraction equal to 99%.

### 6. Viscosity sensitivity studies



Figure S17. Changes of fluorescence intensity of 1b (5  $\mu$ M, excited at 480 nm) in methanolglycerol system with the variation of solution viscosity.



Figure S18. Viscosity change of the absorbance and fluorescence emission spectra of 1c (5  $\mu$ M) in methanol-glycerol mixtures, excited at 500 nm.



Figure S19. Viscosity change of the absorbance and fluorescence emission spectra of 1d (5  $\mu$ M) in methanol-glycerol mixtures, excited at 480 nm.



Figure S20. The linear relationship of 1b between the fluorescent intensity and the viscosity  $\eta$ .



**Figure S21.** The fluorescence lifetime spectra of **1b** with different viscosity collected at 560 nm.



Figure S22. The linear relationship of 1b between the fluorescence lifetime and the viscosity  $\eta$ .

## 7. Cell culture



**Figure S23.** a) SEM image of BODIPY **1a** (5  $\mu$ M) in phosphate-buffered saline (PBS) and EDS mapping in the rectangle frame for B (b), C (c), F (d), N (e), O (f), Na (g) and P (h).



Figure S24. Absorbance of BODIPY 1a with different concentrations of 2.5  $\mu$ M, 5  $\mu$ M, 10  $\mu$ M and 15  $\mu$ M in dulbecco's modified eagle medium (DMEM).



**Figure 25.** Co-location imaging studies in MCF-7 cells: (A) Stained with **1a** (5  $\mu$ M,  $\lambda_{ex}$  = 515 nm,  $\lambda_{em}$  = 520-600 nm); (B) Stained with DND-99 (1  $\mu$ M,  $\lambda_{ex}$  = 559 nm,  $\lambda_{em}$  = 575-620 nm); (C) Stained with Mito Deep Red (1  $\mu$ M  $\lambda_{ex}$  = 635 nm,  $\lambda_{em}$  = 655-755 nm); (D) Merge of A and B; (E) Merge of A and C.



**Figure 26.** Co-location imaging studies in MCF-7 cells: (A) Stained with **1b** (5  $\mu$ M,  $\lambda_{ex} = 515$  nm,  $\lambda_{em} = 520-600$  nm); (B) Stained with DND-99 (1  $\mu$ M,  $\lambda_{ex} = 559$  nm,  $\lambda_{em} = 575-620$  nm); (C) Stained with Mito Deep Red (1  $\mu$ M,  $\lambda_{ex} = 635$  nm,  $\lambda_{em} = 655-755$  nm); (D) Merge of A and B; (E) Merge of A and C.



Figure S27. Imaging of 1b in MCF-7 cells. (A) MCF-7 cells were stained with 1b (5  $\mu$ M,  $\lambda_{ex}$  = 488 nm,  $\lambda_{em}$  = 510-600 nm); (B) DIC image; (C) Merge of A and B.

# 8. MTT Assay



Figure S28. Cell viability of 1a at different concentrations.



# Omin5min10min15min20min25min30min35min40min45min50min55min

### 9. Viscosity determination in real-time during apoptosis

Figure S30. FLIM of MCF-7 cells in the absence and presence of etoposide for 0-60 min (A-E); (G) Plots of fluorescence lifetimes of 1a (5  $\mu$ M) stimulate for different times using etoposide.



Figure S31. FLIM of MCF-7 cells in the absence and presence of etoposide for 0-60 min (A-E); (G) Plots of fluorescence lifetimes of 1b (5  $\mu$ M) stimulate for different times using etoposide.

# 10. NMR spectra for meso-2-ketopyrrolyl BODIPYs



<sup>1</sup>H NMR spectrum of *meso-2*-ketopyrrolyl derived BODIPY **1a** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of *meso*-2-ketopyrrolyl derived BODIPY **1a** in CDCl<sub>3</sub>



<sup>1</sup>H NMR spectrum of *meso*-2-ketopyrrolyl derived BODIPY **1b** in CDCl<sub>3</sub>



<sup>13</sup>C NMR spectrum of *meso*-2-ketopyrrolyl derived BODIPY **1b** in CDCl<sub>3</sub>







# 11. HRMS for meso-2-ketopyrrolyl derived BODIPYs

### HRMS of 1a



#### HRMS of 1b



#### HRMS of meso-2-ketopyrrolylBODIPY 1c



HRMS of meso-2-ketopyrrolylBODIPY 1d



# **12. DFT computations**

**Table S4.** Selected electronic excitation energies (eV) and oscillator strengths (f), configurations of the low-lying excited states of *meso*-2-ketopyrrolyl BODIPYs **1a** calculated by TDDFT//B3LYP/6–31+G(d,p), based on the optimized ground state geometries. The TDDFT calculations of all the molecules in dichloromethane were done by using the Self-Consistent Reaction Field method and the Polarizable Continuum Model.

| Electronic   | TD//B3LYP/6-31+G(d, p)    |           |                            |                   |  |
|--------------|---------------------------|-----------|----------------------------|-------------------|--|
| transition - | Energy/ eV <sup>[a]</sup> | $f^{[b]}$ | Composition <sup>[c]</sup> | CI <sup>[d]</sup> |  |
| S0→S1        | 2.6513 eV 467.63<br>nm    | 0.2725    | HOMO -1→ LUMO              | 0.4533            |  |
|              |                           |           | HOMO → LUMO                | 0.5334            |  |
| S0→S2        | 2.7606 eV 449.12<br>nm    | 0.3296    | HOMO -1 $\rightarrow$ LUMO | 0.5403            |  |
|              |                           |           | HOMO → LUMO                | 0.4408            |  |
| S0→S3        | 3.2421 eV 382.42<br>nm    | 0.1056    | HOMO -2 $\rightarrow$ LUMO | 0.6879            |  |
|              |                           |           | HOMO -1 $\rightarrow$ LUMO | 0.1514            |  |

| PCM-DFT optir | nized coordinates | for meso-2-ketop | oyrrolyl BODIPY 1a |
|---------------|-------------------|------------------|--------------------|
|---------------|-------------------|------------------|--------------------|

| F | -2.97442500 | -0.05047800 | 2.04099400  |
|---|-------------|-------------|-------------|
| F | -4.22904900 | 0.20534100  | 0.13134100  |
| Ν | -2.23428600 | -1.17516400 | 0.02409900  |
| Ν | -2.07065300 | 1.30760100  | 0.24501900  |
| Ν | 2.06125800  | -0.20249200 | 0.98092200  |
| Н | 1.16226200  | -0.15721300 | 1.43990700  |
| 0 | 1.28371000  | 0.05575600  | -2.54643500 |
| С | -0.80830300 | 1.25348100  | -0.35506900 |
| С | -0.96538300 | -1.18203100 | -0.56524500 |
| С | -0.25739200 | 0.01784800  | -0.72686800 |
| С | -2.70208400 | -2.44052900 | 0.04711100  |
| С | -2.37462800 | 2.59955900  | 0.48729200  |
| С | -0.65403000 | -2.53316000 | -0.92774900 |
| С | 2.24482900  | -0.14368700 | -0.39703200 |
| С | -0.32693800 | 2.59647700  | -0.49336200 |
| С | -1.31497900 | 3.43295300  | 0.03731400  |
| С | 3.25856500  | -0.32184500 | 1.61285000  |
| С | 1.14362900  | -0.02013200 | -1.32339800 |
| С | 4.26264300  | -0.34849500 | 0.63372900  |
| С | 3.62766800  | -0.23605400 | -0.63117300 |
| С | -1.75090600 | -3.31312900 | -0.54690500 |
| В | -2.92916100 | 0.07254000  | 0.63692300  |
| С | -4.03687600 | -2.78720000 | 0.62400800  |
| Н | -4.14732800 | -2.36807900 | 1.62871300  |
| Н | -4.16562100 | -3.86960800 | 0.67810600  |
| Н | -4.84480400 | -2.36746400 | 0.01481200  |
| С | 3.35451800  | -0.37903400 | 3.10514000  |
| Н | 3.51093200  | 0.61585200  | 3.54093100  |
| Н | 4.19273000  | -1.00784100 | 3.41791600  |

| Н | 2.44275300  | -0.79448900 | 3.54647100  |
|---|-------------|-------------|-------------|
| С | -3.65821100 | 3.00859600  | 1.13436600  |
| Н | -4.50465500 | 2.82989500  | 0.46235100  |
| Н | -3.63902300 | 4.06856300  | 1.39476300  |
| Н | -3.84365900 | 2.42348100  | 2.03995700  |
| С | 0.57843400  | -3.02931400 | -1.62623700 |
| Н | 0.70129900  | -2.55829700 | -2.60662000 |
| Н | 0.52837300  | -4.11066000 | -1.77243800 |
| Н | 1.48780600  | -2.81611800 | -1.05365500 |
| С | 0.95872300  | 3.04384700  | -1.12620800 |
| Н | 1.83484600  | 2.62555300  | -0.61901900 |
| Н | 1.04450400  | 4.13219900  | -1.09286700 |
| Н | 1.01910500  | 2.73217200  | -2.17380000 |
| С | 5.74204100  | -0.44856800 | 0.89770900  |
| Н | 5.91016900  | -0.98401000 | 1.84019900  |
| Н | 6.21165900  | -1.06259900 | 0.11975200  |
| С | 4.29192100  | -0.22164900 | -1.97579700 |
| Н | 3.78153200  | -0.88591700 | -2.67816300 |
| Н | 5.34009900  | -0.52372100 | -1.90008400 |
| Н | 4.26020700  | 0.77836200  | -2.42436000 |
| С | -1.30475800 | 4.93770400  | 0.09541600  |
| Н | -1.81683300 | 5.27307500  | 1.00546900  |
| Н | -0.27242400 | 5.29281400  | 0.19175600  |
| С | -1.95858000 | 5.61111200  | -1.12698600 |
| Н | -3.00677400 | 5.31066500  | -1.22927800 |
| Н | -1.44355800 | 5.33020700  | -2.05168300 |
| Н | -1.92582200 | 6.70268600  | -1.03618200 |
| С | -1.91288800 | -4.80149300 | -0.71069300 |
| Н | -2.97341700 | -5.04204700 | -0.84837300 |
| Н | -1.41733900 | -5.12274000 | -1.63411600 |
| С | 6.45705300  | 0.91500800  | 0.96022400  |
| Н | 6.04560200  | 1.53946900  | 1.76067100  |
| Н | 6.33967000  | 1.46361100  | 0.01986100  |
| Н | 7.52920400  | 0.78723400  | 1.14699400  |
| С | -1.35778500 | -5.62075200 | 0.47083000  |
| Н | -1.49927400 | -6.69448900 | 0.30378700  |
| Н | -1.85992700 | -5.35384300 | 1.40699900  |
| Н | -0.28685100 | -5.43591400 | 0.60718000  |