Supporting Information

Layer-By-Layer Growth in Solution Deposition of Monocrystalline

Lead Sulfide Thin Films on GaAs(111)

Tzvi Templeman ${ }^{1}$, Maayan Perez ${ }^{1}$, Ofir Friedman ${ }^{1}$, Ran Eitan Abutbul ${ }^{1}$, Michael
Shandalov ${ }^{2}$, Vladimir Ezersky ${ }^{1}$, Oleg Konovalov ${ }^{3}$ and Yuval Golan ${ }^{1 *}$

Supplementary Figure 1. AFM surface topography images: Typical AFM line profiles taken in air from the following samples: (top row) epi ready $\mathrm{GaAs}(111)$ wafer, (second row) $\mathrm{PbS}, 3$ min growth duration and (third row) $\mathrm{PbS}, 11 \mathrm{~min}$ growth duration.

Supplementary Figure 2. Schematic illustrations of the custom-built fluid cell used for in-situ GIXD characterization at ESRF ID-10. (a) Cell overview and (b) Cell section.

Scattering model for VW (3D) growth

In the model of polycrystalline nucleation and growth, the film thickness t is composed of an assembly of M small single crystals having N repetition of ${ }^{d_{(111)}}$ arranged along z direction:
(1) $t=N \cdot d_{(111)} \cdot M$

Scattering intensity of individual crystals is proportional to N^{2}, as described in the main text, and the incoherent sum of scattering intensity from crystallites along the film thickness results in
(2) $I_{\Sigma}=\sum_{i=1}^{M} I=I_{S} \cdot N^{2} \cdot M$

From (2) one can conclude the linear dependency of the intensity vs. film thickness.

Error calculations

Thickness:

Thickness is estimated from the formula
$I=I_{0} \exp (-z / \tau) \rightarrow^{z=\tau\left[\ln \left(I_{0}\right)-\ln (I)\right]}$

Intensity error
$\Delta I=\sqrt{I}$

Following the theory of errors
$\Delta z=\sqrt{\left(\frac{\partial z}{\partial \tau} \Delta \tau\right)^{2}+\left(\frac{\partial z}{\partial I_{0}} \Delta I_{0}\right)^{2}+\left(\frac{\partial z}{\partial I} \Delta I\right)^{2}}=\sqrt{\left(\Delta \tau\left[\ln \left(I_{0}\right)-\ln (I)\right]\right)^{2}+\tau^{2}\left(\frac{\Delta I_{0}}{I_{0}}\right)^{2}+\tau^{2}\left(\frac{\Delta I}{I}\right)^{2}}$

With $\frac{\Delta I}{I} \sim 3 \%$ and $\Delta \tau \rightarrow 0$

We can write $\Delta z=\tau \cdot 0.03 \cdot \sqrt{2} \approx \tau \cdot 0.04$

Assuming $\tau \sim 4 \mathrm{~nm}$, then $\Delta z \approx 0.17 \mathrm{~nm}$

Thus we can say that the minimum of Δz is 0.2 nm

In-plane coherence length:
$L_{x y}=0.9 \frac{2 \pi}{f w h m_{q_{x y}}}$
$\Delta L_{x y}=\sqrt{\left(\frac{\partial L_{x y}}{\partial f w h m_{q_{x y}}} \Delta f w h m_{q_{x y}}\right)^{2}}=\frac{L_{x y}}{f w h m_{q_{x y}}} \cdot \Delta f w h m_{q_{x y}}$

Width error taken from measurement resolution, $\Delta f w h m_{q_{x y}}=1.1 \cdot 10^{-3} \mathrm{~nm}^{-1}$
resulting in a maximum value of $\Delta L_{x y} \sim 5 \mathrm{~nm}$

Similarly ford-spacing:
$d=\frac{2 \pi}{q}$
$\Delta d=\sqrt{\left(\frac{\partial d}{\partial q} \Delta q\right)^{2}}=\frac{d}{q} \cdot \Delta q \approx 4 \cdot 10^{-4} n m$

Methods

Materials and Chemicals

Sodium hydroxide (Gadot, AR), lead nitrate (Aldrich, analytical 99.99+\%) and thiourea (Aldrich, ACS $\geq 99.0 \%$) were used without further purification. Single crystal $\mathrm{GaAs}(111) \mathrm{A}$ substrates were purchased from AXT (epi-polished, undoped, $\pm 0.1^{\circ}$ miscut). The films were deposited from a solution with a final composition of 30 mM lead nitrate, 50 mM thiourea and 1.2 M sodium hydroxide at a final $\mathrm{pH}>14$. For ex-situ experiments, films were deposited in a thermostatic bath into which a 50 ml Pyrex beaker was placed. The beaker was equipped with a custom-built Teflon stage for mounting the substrates. The substrates were placed epi-side down in the solution, at an angle of ca. 70° with respect to the air-solution interface. The beaker was covered using a glass Petri dish. Under these conditions a linear growth regime is obtained up to a duration of 2 hr after which saturation impedes continuous film growth. Note that several minutes after reaction initiation homogenous precipitation is observed within the beaker.

Structural and Chemical Characterization

X-Ray Diffraction (XRD)
The crystallographic phase and texture of the films were studied by XRD. A Panalytical Empyrean diffractometer equipped with a PIXcel linear detector and monochromator on diffracted beam was used. Data were collected in the 20/ θ geometry using $\mathrm{Cu} \mathrm{K} \alpha$ radiation $(\lambda=0.15405 \mathrm{~nm})$ at 40 kV and 30 mA . Diffraction scans were taken during 8 minutes in a 2θ range of $20-65^{\circ}$ with a step size of \sim 0.033°. Rocking curves were obtained using a parabolic X-ray mirror for $\mathrm{Cu} \mathrm{K} \alpha$ radiation installed on the incident beam, providing a quasi- parallel beam with divergence less than 0.05 of a degree.

Field Emission Gun Scanning Electron Microscopy (FEG-SEM)
The morphology of the films was observed using an ultrahigh resolution JEOL JSM7400F FEG-SEM without coating of the surface. Acceleration voltage was 3.5 kV and signal was collected using an in-lens secondary electron detector. Film thickness was measured from cleaved cross sections (X-sec) while surface topography was observed in plan-view.

Transmission Electron Microscopy (TEM)

Cross sections were prepared by cutting the sample into slices normal to the interface and gluing them together face-to-face using M-Bond 610 adhesive (Allied HighTech Ltd.). The samples were polished with a precision small-angle tripod holder on a series of diamond polishing papers (Allied HighTech Ltd) until a nominal thickness of $30 \mu \mathrm{~m}$ was achieved, and glued to a Mo slot grid $\left(1 \times 2 \mathrm{~mm}^{2}\right)$. Final thinning was done by Ar ion milling using a Gatan PIPS-2 precision ion polishing system. TEM, HAADF STEM and HRTEM were carried out using a JEOL JEM-2100F instrument operating at 200 kV .

Atomic Force Microscopy (AFM)
Atomic force microscopy (AFM) measurements were performed in AC-mode with an MFP-3D AFM from Asylum Research (Oxford Instruments). Analyses were performed on $1 \mathrm{X} 1 \mu \mathrm{~m}^{2}$ scans obtained at a scan rate of 1.5 Hz .

XPS

An ESCALAB 250 spectrometer with a monochromatic Al X-ray source (excitation energy 1486.6 eV) at a base pressure of $1 \times 10-9$ mbar was used for XPS measurements. Wide-scan survey spectrum for all elements and high-resolution spectra of selected elements were recorded.

GIXD Characterization

X-ray scattering measurements were performed at ID10 beamline at the European Synchrotron Radiation Facility (ESRF, Grenoble, France), which is especially designed for studies of liquid-solid interfaces using GIXD. A beamstop was used for detector protection in the position of direct and specularly reflected beams. GIXD data were obtained using monochromatic X-rays with an energy of 22 keV . The 2D GIXD patterns were recorded with a Pilatus 300 k detector (487×619 pixels with a pixel size $172 \times 172 \mu \mathrm{~m}^{2}$) from Dectris (Baden, Switzerland) at a distance of 284 mm from the sample. The beam grazing angle was $0.08^{\circ}, 80 \%$ of the GaAs critical angle $\left(0.1^{\circ}\right)$, and 67% of the PbS critical angle $\left(0.12^{\circ}\right)$. Phi scan rate was $0.02[\mathrm{deg} / \mathrm{sec}]$.

