Supporting Information

1T-phase MoS₂ quantum dots as a superior to Pt co-catalyst decorated on carbon nitride nanorods for photocatalytic hydrogen evolution from water

Zhangqian Liang, Yichen Guo, Yanjun Xue, Hongzhi Cui^{*}, Jian Tian^{*}

School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China. Email: cuihongzhi1965@163.com (H. Cui), jiantian@sdust.edu.cn (J. Tian)

Fig. S1. XRD patterns of g-C₃N₄ nanosheets and C₃N₄ NRs.

Fig. S2. XPS survey spectra of 1T-MoS₂@C₃N₄ NRs composites (5.0 wt%).

Fig. S3. Raman spectra of C₃N₄ NRs and 1T-MoS₂@C₃N₄ NRs composites (5.0 wt%).

Fig. S4. The atomic force microscopy (AFM) image of 1T-MoS₂ QDs.

Fig. S5. Nitrogen adsorption/desorption isotherms of (a) C_3N_4 NRs and 1T-MoS₂@C₃N₄ NRs composites containing different amounts of 1T-MoS₂ QDs: (b) 0.5, (c) 1.0, (d) 3.0, (e) 5.0 and (f) 7.0 wt% (inset shows the corresponding BJH pore size distribution curves).

Table S1. BET surface area of C_3N_4 NRs and 1T-MoS₂@C₃N₄ NRs photocatalysts

Samples	BET Surface area (m ² g ⁻¹)
C ₃ N ₄ NRs	61.769
1T-MoS ₂ @C ₃ N ₄ -0.5 wt%	29.273
1T-MoS ₂ @C ₃ N ₄ -1.0 wt%	43.074
1T-MoS ₂ @C ₃ N ₄ -3.0 wt%	34.834
1T-MoS ₂ @C ₃ N ₄ -5.0 wt%	30.850
1T-MoS ₂ @C ₃ N ₄ -7.0 wt%	40.015

containing different amounts of 1T-MoS₂ QDs (0.5, 1.0, 3.0, 5.0 and 7.0 wt%).

Fig. S6. (a) UV-vis-NIR diffuse reflectance spectra and (b) band gap values of g-C₃N₄

nanosheets and C₃N₄ NRs.

Fig. S7. UV-vis-NIR diffuse reflectance spectrum of 1T-MoS₂ QDs.

Fig. S8. Photocatalytic H₂ production curves of pure C₃N₄ NRs as control experiments

in the absence of cocatalyst.

Fig. S9. Stability and recyclability of the 1T-MoS₂@C₃N₄ NRs (5.0 wt%).

Table S2. Comparison of AQE values over C₃N₄ NRs, Pt@C₃N₄ NRs and 1T-

MoS₂@C₃N₄ NRs photocatalysts containing different amounts of 1T-MoS₂ QDs (0.5,

Sample	AQE values (%)
C ₃ N ₄ NRs	0
Pt@C ₃ N ₄ NRs	0.99
1T-MoS ₂ @C ₃ N ₄ -0.5 wt%	0.47
1T-MoS ₂ @C ₃ N ₄ -1.0 wt%	1.13
$1T-MoS_2@C_3N_4-3.0$ wt%	1.31
1T-MoS ₂ @C ₃ N ₄ -5.0 wt%	1.73
1T-MoS ₂ @C ₃ N ₄ -7.0 wt%	1.21

1.0, 3.0, 5.0 and 7.0 wt%) under simulated solar light.

Fig. S10. High-resolution peaking-fitting XPS spectra of Mo 3d of 1T-MoS₂@C₃N₄

NRs composites (5.0 wt%) (a) before cycling and (b) after cycling.

Fig. S11. Mott-Schottky plots of C₃N₄ NRs.