Electronic Supplementary Information

Single-component gold(I)-containing highly white-emissive crystals based on a

polymorph doping strategy

Yubao Dong,^a Fei Zhu,^a Zhao Chen,*^{a,b} Jun Yin^a and Sheng Hua Liu*^{a,c}

^a Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, PR China. E-mail: chshliu@mail.ccnu.edu.cn; Fax: +86-27-67867725; Tel: +86-27-67867725.

^b Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China. E-mail: chenzhao666@126.com; Fax: +86-791-83831996; Tel: +86-791-83831996.

^c State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China

Contents

1. Tables S1-S7	
2. Figs. S1-S8	8

1. Tables S1-S7

Sample	$\lambda_{\rm em}{}^a({\rm nm})$	$arPhi^b(\%)$	$\tau^{c}(\mu s)$	
1W	455, 500	88.2	15.29 (455 nm)	253.12 (500 nm)
1 B	455	52.4	15.86 (455 nm)	
1 G	455, 520	87.6	21.55 (455 nm)	192.59 (520 nm)

Table S1. Optical properties of three polymorphs 1W, 1B and 1G.

^{*a*}Emission maximum, ^{*b*}Absolute photoluminescence quantum yields, ^{*c*}Average lifetime.

	-
Empirical formula	C ₁₈ H ₁₅ AuF ₅ NO
Formula weight	553.28
Temperature (K)	100(2)
Crystal system	Monoclinic
Space group	$P2_1/c$
<i>a</i> (Å)	7.3042(9)
<i>b</i> (Å)	19.814(3)
<i>c</i> (Å)	11.9572(15)
α (deg)	90
β (deg)	95.327(2)
γ (deg)	90
$V(Å^3)$	1723.0(4)
Z	4
Density _{calcd} (Mg/m ³)	2.133
Absorption coefficient (mm-1)	8.596
F(000)	1048
Crystal size (mm ³⁾	0.20 x 0.20 x 0.10
Theta range for data collection (deg)	2.00 to 26.00
Index ranges	-8<=h<=9, -24<=k<=23, -14<=l<=14
Reflections collected	12639
Independent reflections	3377 [R(int) = 0.2015]
Data / restraints / parameters	3377 / 0 / 236
Final R indices [I>2sigma(I)]	R1 = 0.0604, wR2 = 0.1386
R indices (all data)	R1 = 0.0638, $wR2 = 0.1421$
Goodness of fit on F ²	1.042
Largest diff. peak and hole (e Å ⁻³)	4.074 and -6.162

 Table S2. Structure determination summary of 1B.

Au(1)-C(7)	1.984(8)	F(4)-C(5)-C(4)	119.0(5)
Au(1)-C(1)	2.027(6)	C(6)-C(5)-C(4)	119.3(5)
C(1)-C(6)	1.384(8)	F(5)-C(6)-C(5)	116.1(5)
C(1)-C(2)	1.403(8)	F(5)-C(6)-C(1)	118.9(5)
C(2)-C(3)	1.353(9)	C(5)-C(6)-C(1)	125.0(5)
C(2)-F(1)	1.357(6)	N(1)-C(7)-Au(1)	178.8(6)
C(3)-F(2)	1.347(7)	C(9)-C(8)-N(1)	119.8(5)
C(3)-C(4)	1.395(8)	C(9)-C(8)-C(13)	120.4(6)
C(4)-F(3)	1.312(7)	N(1)-C(8)-C(13)	119.7(5)
C(4)-C(5)	1.391(8)	C(10)-C(9)-C(8)	119.8(5)
C(5)-F(4)	1.333(7)	C(10)-C(9)-H(9)	120.1
C(5)-C(6)	1.372(9)	C(8)-C(9)-H(9)	120.1
C(6)-F(5)	1.362(7)	C(9)-C(10)-C(11)	120.8(5)
C(7)-N(1)	1.127(9)	C(9)-C(10)-H(10)	119.6
C(8)-C(9)	1.387(8)	С(11)-С(10)-Н(10)	119.6
C(8)-N(1)	1.391(8)	O(1)-C(11)-C(10)	126.1(5)
C(8)-C(13)	1.423(8)	O(1)-C(11)-C(12)	115.6(5)
C(9)-C(10)	1.377(8)	C(10)-C(11)-C(12)	118.2(5)
C(9)-H(9)	0.93	C(13)-C(12)-C(11)	121.7(5)
C(10)-C(11)	1.394(8)	C(13)-C(12)-H(12)	119.1
C(10)-H(10)	0.93	С(11)-С(12)-Н(12)	119.1
C(11)-O(1)	1.344(7)	C(12)-C(13)-C(8)	119.0(5)
C(11)-C(12)	1.425(8)	C(12)-C(13)-H(13)	120.5
C(12)-C(13)	1.340(8)	C(8)-C(13)-H(13)	120.5
C(12)-H(12)	0.93	O(1)-C(14)-C(15)	106.8(5)
C(13)-H(13)	0.93	O(1)-C(14)-H(14A)	110.4
C(14)-O(1)	1.451(7)	C(15)-C(14)-H(14A)	110.4
C(14)-C(15)	1.505(9)	O(1)-C(14)-H(14B)	110.4
C(14)-H(14A)	0.97	C(15)-C(14)-H(14B)	110.4
C(14)-H(14B)	0.97	H(14A)-C(14)-H(14B)	108.6
C(15)-C(16)	1.519(9)	C(14)-C(15)-C(16)	112.9(6)
C(15)-H(15A)	0.97	C(14)-C(15)-H(15A)	109
C(15)-H(15B)	0.97	C(16)-C(15)-H(15A)	109
C(16)-C(17)	1.530(9)	C(14)-C(15)-H(15B)	109
C(16)-H(16A)	0.97	C(16)-C(15)-H(15B)	109
C(16)-H(16B)	0.97	H(15A)-C(15)-H(15B)	107.8
C(17)-C(18)	1.535(12)	C(15)-C(16)-C(17)	113.7(6)
C(17)-H(17A)	0.97	C(15)-C(16)-H(16A)	108.8
C(17)-H(17B)	0.97	C(17)-C(16)-H(16A)	108.8

 Table S3. Selective bond lengths [Å] and angles [₀] of 1B.

C(18)-H(18A)	0.96	C(15)-C(16)-H(16B)	108.8
C(18)-H(18B)	0.96	C(17)-C(16)-H(16B)	108.8
C(18)-H(18C)	0.96	H(16A)-C(16)-H(16B)	107.7
C(7)-Au(1)-C(1)	177.3(2)	C(16)-C(17)-C(18)	112.5(6)
C(6)-C(1)-C(2)	113.3(6)	C(16)-C(17)-H(17A)	109.1
C(6)-C(1)-Au(1)	123.5(4)	C(18)-C(17)-H(17A)	109.1
C(2)-C(1)-Au(1)	123.2(4)	C(16)-C(17)-H(17B)	109.1
C(3)-C(2)-F(1)	117.3(5)	C(18)-C(17)-H(17B)	109.1
C(3)-C(2)-C(1)	124.3(5)	H(17A)-C(17)-H(17B)	107.8
F(1)-C(2)-C(1)	118.4(5)	C(17)-C(18)-H(18A)	109.5
F(2)-C(3)-C(2)	121.5(5)	C(17)-C(18)-H(18B)	109.5
F(2)-C(3)-C(4)	118.2(6)	H(18A)-C(18)-H(18B)	109.5
C(2)-C(3)-C(4)	120.2(5)	C(17)-C(18)-H(18C)	109.5
F(3)-C(4)-C(5)	121.1(5)	H(18A)-C(18)-H(18C)	109.5
F(3)-C(4)-C(3)	120.9(5)	H(18B)-C(18)-H(18C)	109.5
C(5)-C(4)-C(3)	118.0(6)	C(7)-N(1)-C(8)	174.4(7)
F(4)-C(5)-C(6)	121.7(5)	C(11)-O(1)-C(14)	117.1(4)

Table S4. Structure determination summary of 1W.

Empirical formula	$C_{18}H_{15}AuF_5NO$	
Formula weight	553.28	
Temperature (K)	100(2)	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
<i>a</i> (Å)	7.402(2)	
<i>b</i> (Å)	19.562(5)	
<i>c</i> (Å)	12.283(3)	
α (deg)	90	
β (deg)	97.320(4)	
γ (deg)	90	
$V(Å^3)$	1764.0(8)	
Z	4	
Density _{calcd} (Mg/m ³)	2.083	
Absorption coefficient (mm-1)	8.396	
F(000)	1048	
Crystal size (mm ³⁾	0.120 x 0.100 x 0.100	
Theta range for data collection (deg)	1.969 to 25.499	
Index ranges	-8<=h<=8, -23<=k<=22, -12<=l<=14	

Reflections collected	12438
Independent reflections	3271 [R(int) = 0.0478]
Data / restraints / parameters	3271 / 0 / 236
Final R indices [I>2sigma(I)]	$R_1 = 0.0334, wR_2 = 0.0902$
R indices (all data)	$R_1 = 0.0470, wR_2 = 0.0964$
Goodness of fit on F ²	1.047
Largest diff. peak and hole (e Å ⁻³)	1.255 and -1.068

Table S5. Selective bond lengths [Å] and angles $[\circ]$ of 1W.

Au(1)-C(7)	1.974(9)	C(7)-Au(1)-C(1)	177.5(3)
Au(1)-C(1)	2.025(7)	C(6)-C(1)-C(2)	114.2(6)
C(1)-C(6)	1.372(8)	C(6)-C(1)-Au(1)	122.8(5)
C(1)-C(2)	1.378(8)	C(2)-C(1)-Au(1)	122.9(5)
F(6)-C(6)	1.348(7)	C(11)-O(1)-C(14)	119.7(5)
O(1)-C(11)	1.336(7)	C(5)-C(6)-F(6)	116.4(6)
O(1)-C(14)	1.422(8)	C(5)-C(6)-C(1)	123.8(6)
F(1)-C(2)	1.362(7)	F(6)-C(6)-C(1)	119.8(6)
F(3)-C(4)	1.330(7)	C(8)-C(13)-C(12)	118.9(6)
C(6)-C(5)	1.348(9)	C(8)-C(13)-H(13)	120.6
C(13)-C(8)	1.362(8)	С(12)-С(13)-Н(13)	120.6
C(13)-C(12)	1.377(9)	O(1)-C(11)-C(12)	124.8(6)
C(13)-H(13)	0.93	O(1)-C(11)-C(10)	116.4(6)
F(5)-C(5)	1.340(7)	C(12)-C(11)-C(10)	118.7(6)
C(11)-C(12)	1.371(9)	F(3)-C(4)-C(3)	120.7(6)
C(11)-C(10)	1.391(9)	F(3)-C(4)-C(5)	120.0(6)
C(4)-C(3)	1.356(9)	C(3)-C(4)-C(5)	119.3(6)
C(4)-C(5)	1.384(9)	N(1)-C(7)-Au(1)	176.8(7)
F(2)-C(3)	1.333(7)	F(1)-C(2)-C(3)	116.2(6)
C(7)-N(1)	1.128(9)	F(1)-C(2)-C(1)	119.5(6)
C(2)-C(3)	1.365(9)	C(3)-C(2)-C(1)	124.3(6)
C(8)-C(9)	1.394(9)	C(13)-C(8)-C(9)	121.6(6)
C(8)-N(1)	1.396(9)	C(13)-C(8)-N(1)	118.6(5)
C(12)-H(12)	0.93	C(9)-C(8)-N(1)	119.9(6)
C(9)-C(10)	1.338(9)	F(2)-C(3)-C(4)	120.0(6)
C(9)-H(9)	0.93	F(2)-C(3)-C(2)	121.1(6)
C(10)-H(10)	0.93	C(4)-C(3)-C(2)	118.8(6)
C(14)-C(15)	1.493(11)	C(11)-C(12)-C(13)	120.7(6)
C(14)-H(14A)	0.97	С(11)-С(12)-Н(12)	119.7
C(14)-H(14B)	0.97	C(13)-C(12)-H(12)	119.7

C(15)-C(16)	1.536(14)	F(5)-C(5)-C(6)	122.0(6)
C(15)-H(15A)	0.97	F(5)-C(5)-C(4)	118.4(6)
C(15)-H(15B)	0.97	C(6)-C(5)-C(4)	119.6(6)
C(16)-C(17)	1.409(13)	C(10)-C(9)-C(8)	118.4(6)
C(16)-H(16A)	0.97	C(10)-C(9)-H(9)	120.8
C(16)-H(16B)	0.97	C(8)-C(9)-H(9)	120.8
C(17)-C(18)	1.462(17)	C(9)-C(10)-C(11)	121.8(6)
C(17)-H(17A)	0.97	C(9)-C(10)-H(10)	119.1
C(17)-H(17B)	0.97	C(11)-C(10)-H(10)	119.1
C(18)-H(18A)	0.96	C(7)-N(1)-C(8)	176.2(6)
C(18)-H(18B)	0.96	O(1)-C(14)-C(15)	108.5(6)
C(18)-H(18C)	0.96	O(1)-C(14)-H(14A)	110
C(15)-C(14)-H(14A)	110	C(15)-C(16)-H(16B)	108.2
O(1)-C(14)-H(14B)	110	H(16A)-C(16)-H(16B)	107.4
C(15)-C(14)-H(14B)	110	C(16)-C(17)-C(18)	114.0(10)
H(14A)-C(14)-H(14B)	108.4	C(16)-C(17)-H(17A)	108.8
C(14)-C(15)-C(16)	111.5(8)	C(18)-C(17)-H(17A)	108.8
C(14)-C(15)-H(15A)	109.3	C(16)-C(17)-H(17B)	108.8
C(16)-C(15)-H(15A)	109.3	C(18)-C(17)-H(17B)	108.8
C(14)-C(15)-H(15B)	109.3	H(17A)-C(17)-H(17B)	107.6
C(16)-C(15)-H(15B)	109.3	C(17)-C(18)-H(18A)	109.5
H(15A)-C(15)-H(15B)	108	C(17)-C(18)-H(18B)	109.5
C(17)-C(16)-C(15)	116.3(9)	H(18A)-C(18)-H(18B)	109.5
C(17)-C(16)-H(16A)	108.2	C(17)-C(18)-H(18C)	109.5
C(15)-C(16)-H(16A)	108.2	H(18A)-C(18)-H(18C)	109.5
C(17)-C(16)-H(16B)	108.2	H(18B)-C(18)-H(18C)	109.5

 Table S6. Structure determination summary of 1G.

	5	
Empirical formula	C ₁₈ H ₁₅ AuF ₅ NO	
Formula weight	553.28	
Temperature (K)	100(2)	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
<i>a</i> (Å)	7.2889(4)	
<i>b</i> (Å)	19.8254(10)	
<i>c</i> (Å)	11.9641(6)	
α (deg)	90	
β (deg)	95.3060(10)	
γ (deg)	90	

$V(A^3)$	1764.0(8)
Z	4
Density _{calcd} (Mg/m ³)	2.135
Absorption coefficient (mm-1)	8.603
F(000)	1048
Crystal size (mm ³⁾	0.100 x 0.100 x 0.080
Theta range for data collection (deg)	1.994 to 30.496
Index ranges	-10<=h<=9, -28<=k<=28, -17<=l<=14
Reflections collected	18008
Independent reflections	5219 [R(int) = 0.0316]
Data / restraints / parameters	5219 / 0 / 236
Final R indices [I>2sigma(I)]	R1 = 0.0209, WR2 = 0.0489
R indices (all data)	R1 = 0.0296, $wR2 = 0.0647$
Goodness of fit on F ²	1.109
Largest diff. peak and hole (e Å ⁻³)	0.739 and -0.691

Table S7. Selective bond lengths [Å] and angles $[\circ]$ of 1G.

Au(1)-C(7)	1.966(4)	F(4)-C(5)-C(6)	121.1(3)
Au(1)-C(1)	2.028(3)	C(4)-C(5)-C(6)	119.7(3)
C(1)-C(2)	1.380(4)	F(5)-C(6)-C(5)	116.6(3)
C(1)-C(6)	1.386(4)	F(5)-C(6)-C(1)	119.4(3)
C(2)-F(1)	1.361(4)	C(5)-C(6)-C(1)	123.9(3)
C(2)-C(3)	1.381(4)	N(1)-C(7)-Au(1)	177.6(3)
C(3)-F(2)	1.350(4)	C(9)-C(8)-C(13)	121.7(3)
C(3)-C(4)	1.377(5)	C(9)-C(8)-N(1)	118.8(3)
C(4)-F(3)	1.334(4)	C(13)-C(8)-N(1)	119.5(3)
C(4)-C(5)	1.378(5)	C(10)-C(9)-C(8)	119.6(3)
C(5)-F(4)	1.347(4)	C(10)-C(9)-H(9)	120.2
C(5)-C(6)	1.379(4)	C(8)-C(9)-H(9)	120.2
C(6)-F(5)	1.359(4)	C(9)-C(10)-C(11)	119.7(3)
C(7)-N(1)	1.152(4)	C(9)-C(10)-H(10)	120.1
C(8)-C(9)	1.384(5)	C(11)-C(10)-H(10)	120.1
C(8)-C(13)	1.393(5)	O(1)-C(11)-C(12)	115.5(3)
C(8)-N(1)	1.399(4)	O(1)-C(11)-C(10)	124.7(3)
C(9)-C(10)	1.381(4)	C(12)-C(11)-C(10)	119.7(3)
C(9)-H(9)	0.95	C(13)-C(12)-C(11)	120.8(3)
C(10)-C(11)	1.399(4)	C(13)-C(12)-H(12)	119.6
C(10)-H(10)	0.95	C(11)-C(12)-H(12)	119.6

Q(11) Q(1)	1.051(4)		110 ((2))
C(11)-O(1)	1.351(4)	C(12)-C(13)-C(8)	118.4(3)
C(11)-C(12)	1.396(5)	C(12)-C(13)-H(13)	120.8
C(12)-C(13)	1.381(4)	C(8)-C(13)-H(13)	120.8
C(12)-H(12)	0.95	O(1)-C(14)-C(15)	107.4(3)
C(13)-H(13)	0.95	O(1)-C(14)-H(14A)	110.2
C(14)-O(1)	1.439(4)	C(15)-C(14)-H(14A)	110.2
C(14)-C(15)	1.518(5)	O(1)-C(14)-H(14B)	110.2
C(14)-H(14A)	0.99	C(15)-C(14)-H(14B)	110.2
C(14)-H(14B)	0.99	H(14A)-C(14)-H(14B)	108.5
C(15)-C(16)	1.517(5)	C(16)-C(15)-C(14)	112.9(3)
C(15)-H(15A)	0.99	C(16)-C(15)-H(15A)	109
C(15)-H(15B)	0.99	C(14)-C(15)-H(15A)	109
C(16)-C(17)	1.518(5)	C(16)-C(15)-H(15B)	109
C(16)-H(16A)	0.99	C(14)-C(15)-H(15B)	109
C(16)-H(16B)	0.99	H(15A)-C(15)-H(15B)	107.8
C(17)-C(18)	1.522(6)	C(15)-C(16)-C(17)	113.2(3)
C(17)-H(17A)	0.99	C(15)-C(16)-H(16A)	108.9
C(17)-H(17B)	0.99	C(17)-C(16)-H(16A)	108.9
C(18)-H(18A)	0.98	C(15)-C(16)-H(16B)	108.9
C(18)-H(18B)	0.98	C(17)-C(16)-H(16B)	108.9
C(18)-H(18C)	0.98	H(16A)-C(16)-H(16B)	107.7
C(7)-Au(1)-C(1)	177.76(13)	C(16)-C(17)-C(18)	112.4(3)
C(2)-C(1)-C(6)	114.1(3)	C(16)-C(17)-H(17A)	109.1
C(2)-C(1)-Au(1)	123.3(2)	C(18)-C(17)-H(17A)	109.1
C(6)-C(1)-Au(1)	122.6(2)	C(16)-C(17)-H(17B)	109.1
F(1)-C(2)-C(1)	119.5(3)	C(18)-C(17)-H(17B)	109.1
F(1)-C(2)-C(3)	116.5(3)	H(17A)-C(17)-H(17B)	107.8
C(1)-C(2)-C(3)	123.9(3)	C(17)-C(18)-H(18A)	109.5
F(2)-C(3)-C(4)	119.0(3)	C(17)-C(18)-H(18B)	109.5
F(2)-C(3)-C(2)	121.2(3)	H(18A)-C(18)-H(18B)	109.5
C(4)-C(3)-C(2)	119.8(3)	C(17)-C(18)-H(18C)	109.5
F(3)-C(4)-C(3)	120.8(3)	H(18A)-C(18)-H(18C)	109.5
F(3)-C(4)-C(5)	120.6(3)	H(18B)-C(18)-H(18C)	109.5
C(3)-C(4)-C(5)	118.6(3)	C(7)-N(1)-C(8)	175.8(3)
F(4)-C(5)-C(4)	119.2(3)	C(11)-O(1)-C(14)	118.0(2)

2. Figs. S1-S8

Fig. S1. ¹H NMR spectrum of complex 1 in CDCl₃ at room temperature.

Fig. S2. ¹⁹F NMR spectrum of complex 1 in $CDCl_3$ at room temperature.

Fig. S3. Thermal gravimetric analysis (TGA) thermogram of complex 1 at a heating rate of 10 $^{\circ}$ C min⁻¹.

Fig. S4. Differential scanning calorimetry (DSC) curves of complex 1 at a heating/cooling rate of 10 °C min⁻¹.

Fig. S5. (a) Stacked pair structure of polymorph 1B. (b) molecular packing patterns of polymorph 1B.

Fig. S6. HOMO and LUMO frontier molecular orbitals of 1W (left) and 1G (right) obtained at the

density functional theory (DFT) calculations level. using a B3LYP/6-31G* basis set.

Fig. S7. (a) HOMO and LUMO frontier molecular orbitals of **1W** in aggregation state calculated using B3LYP/6-31G* basis set. (b) HOMO and LUMO frontier molecular orbitals of **1B** in aggregation state calculated using B3LYP/6-31G* basis set. (c) HOMO and LUMO frontier molecular orbitals of **1G** in aggregation state calculated using B3LYP/6-31G* basis set.

Fig. S8. Stacked pair structures of polymorphs (a) 1W and (b) 1G. Dihedral angles ($\theta_{dihedral}$) between isocyanide phenyl and pentafluorophenyl groups are shown.