Supporting Information

Performance enhancement in up-conversion nanoparticles-embedded

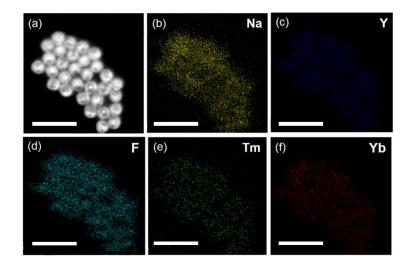
perovskite solar cells by harvesting near-infrared sunlight

Dongyu Ma,^{†a} Yingli Shen,^{†b} Tongtong Su,^a Juan Zhao,^{a*} Naveed Ur Rahman,^a Zongliang Xie,^a Feng Shi,^{b*} Shizhao Zheng,^{a*} Yi Zhang^a and Zhenguo Chi^a

^aPCFM Lab, GD HPPC Lab, Guangdong Engineering Technology Research Center for High-performance Organic and Polymer Photoelectric Functional Films, State Key Laboratory of Optoelectronic Material and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, PR China

^bKey Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science & Engineering, Shaanxi Normal University, Xi'an 710119, PR China

E-mail: zhaoj95@mail.sysu.edu.cn, zshizhao@mail.sysu.edu.cn, shifeng@snnu.edu.cn *These authors are contributed equally to this work.


1 Experimental

1.1 Device fabrication

The patterned fluorine-doped tin oxide (FTO) substrates with a sheet resistance of 7 Ω sq⁻¹ were cleaned by sonication sequentially with acetone, detergent, deionized water and isopropyl alcohol for 15 min respectively. The substrates were further treated with oxygen plasma to remove organic impurities. A compact-TiO₂ (c-TiO₂) layer was deposited on the clean pre-heated FTO substrates by spray pyrolysis from a precursor solution of titanium diisopropoxide bis (acetylacetonate) solution, followed by sintering at 500 °C for 50 min. The UCNPs layer was spin-coated on the layer of c-TiO₂ at 5000 rpm for 20 s. The samples were annealed at 80 °C for 30 min in the glovebox. For onestep method, PbI₂, FAI, MABr, and PbBr₂ were dissolved together in a mixed solvent of DMF and DMSO (DMF: DMSO = 4:1 in volume ratio) to form a 1 M precursor solution. The MABr and PbBr₂ (1:1 molar ratio) had 10 mol% in total perovskite precursor solution. Meanwhile, CsI was dissolved in 1 mL DMSO solution. The CsI solution was added into the perovskite precursor solution (1:20 volume ratio) and then the mixed solution was stirred overnight under a temperature of 60 °C. In one-step method, 45 µL of mixed perovskite precursor solution was first dropped on the UCNPs layer and followed by spin coating. The spin rate was 1000 rpm for 10 s in the step one and then increased to 6000 rpm for 20 s in the step two. 100 µL of chlorobenzene was dropped onto the spinning-film 5 s prior to the end of the second step. The as-prepared films were dried at 70 °C for 10 min and then thermally annealed at 100 °C for 60 min, resulting in mixed-cation perovskite Cs0.05(MA0.17FA0.83)99.5Pb(I0.83Br0.17)3 film. Spiro-OMeTAD was used as the hole-transporting layer and was spin coated on the perovskite layer by using 45 µL solution (85.7 mg, 33.84 µL 4-tert-butylpyridine, 10.05 mg lithium bis(trifluoromethyl sulphonyl) imide and 3.16 mg FK209 dissolved in 1 mL chlorobenzene) at 4000 rpm for 20 s. All the film deposition processes were performed in an N₂-filled glovebox. Finally, the devices were finished by thermally evaporating a 100-nm Au electrode layer. The active area of the solar cells was defined to be 0.07 cm² by using metal masks.

1.2 Device characterizations

The photocurrent density-voltage (J-V) curves were measured using the solar simulator (ABET Sun 3000 solar simulator) with Keithely model 2400 as a digital source meter under illumination of AM 1.5G solar light (100 mW cm⁻²). The incident photon to current efficiency (IPCE) as a function of wavelength of the PSCs was measured by a PV measurements QEXL from 300 to 900 nm. The devices stability measurements were performed in ambient environment at 25 °C and with relative humidity of 20%. The NIR response of the PSC devices was tested using a 980 nm laser (3 W cm⁻²) with an 800 nm high-pass optical filter on the light path. Time-resolved PL (TRPL) spectra were examined by using a fluorescence spectrophotometer RF-5301PC under excitation of a 470 nm pulsed laser.

2. Supplementary figures

Figure S1. (a) STEM image and (b-f) EDX elemental mapping of β -NaYF₄:18%Yb,0.5%Tm UCNPs and line-profile analysis of β -NaYF₄:18%Yb,0.5%Tm UCNPs with different elements (Na, Y, F, Tm and Yb). All of the scale bars are 100 nm.

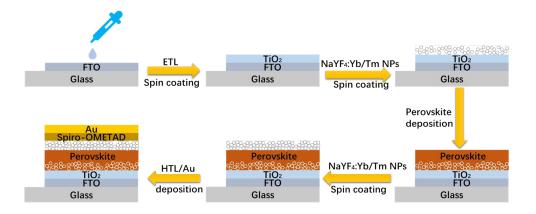
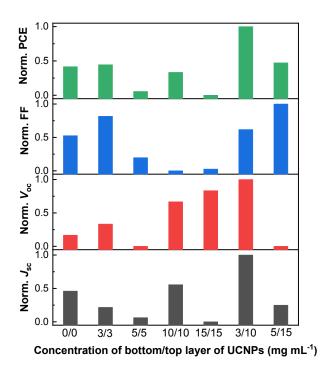



Figure S2. Fabrication processes for the double-UC PSCs.

Figure S3. Normalized photovoltaic parameters of double-UC PSCs with different concentrations of UCNPs (bottom layer/top layer).

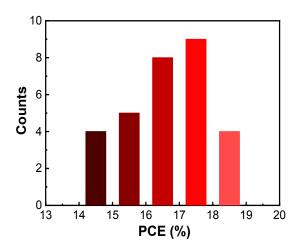


Figure S4. Statistical histogram of the double-UC PSCs.

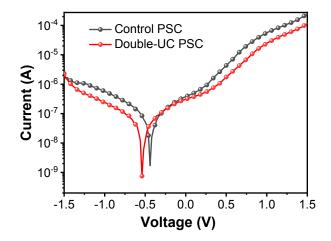
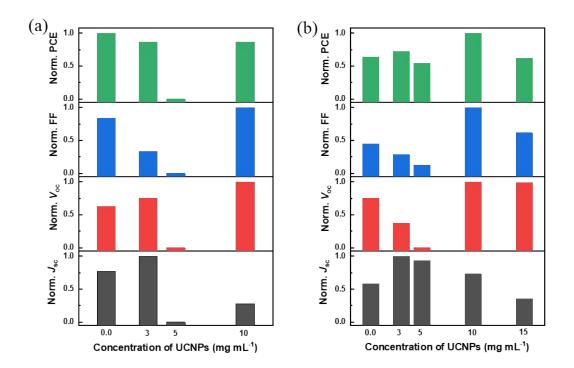



Figure S5. Dark I-V curves of the control and the double-UC PSCs.

Figure S6. Normalized photovoltaic parameters of (a) B-UC PSCs and (b) T-UC PSCs with different concentrations of UCNPs.

UCNPs	$J_{ m sc}$	$V_{\rm oc}$	FF	PCE	Ref.
	$(mA cm^{-2})$	(V)	(%)	(%)	
β -NaYF ₄ :Yb ³⁺ ,Tm ³⁺	25.46	1.06	67.50	18.20	This work
β-NaYF ₄ :Yb ³⁺ ,Er ³⁺	22.71	1.15	75.39	19.70	[1]
NaYF ₄ :Yb ³⁺ ,Er ³⁺	22.60	1.06	73.90	17.80	[2]
β-NaYF ₄ :Yb ³⁺ , Er ³⁺	20.23	1.10	72.00	15.98	[3]
β-NaYF ₄ :Yb ³⁺ ,Tm ³⁺	21.70	1.10	70.60	16.90	[4]

Table S1 Comparison of photovoltaic performance in PSCs incorporated with up-conversion nanomaterials.

References

- [1] F.-L. Meng, J.-J. Wu, E.-F. Zhao, Y.-Z. Zheng, M.-L. Huang, L.-M. Dai, X. Tao, J.-F. Chen, *Nanoscale*, 2017, 9, 18535–18545.
- [2] M. He, X. Pang, X. Liu, B. Jiang, Y. He, H. Snaith, Z. Lin, Angew. Chem. Int. Ed., 2016, 55, 4280–4284.
- [3] J. Roh, H. Yu, J. Jang, ACS Appl. Mater. Interfaces, 2016, 8, 19847–19852.
- [4] M. Que, W. Que, X. Yin, P. Chen, Y. Yang, J. Hu, B. Yu, Y. Du, Nanoscale, 2016, 8, 14432.