Electronic Supplementary Information (ESI) Formation of Yolk-shell Structured NiO Nanospheres with Enhanced Lithium Storage Capacity

Jian Wang,^{a,+} Panpan Su,^{b,+} Jing Zhang,^{a,*} Fangfang Wang,^a Yali Chen,^c Hao Liu,^{c,d,*} and

Jian Liu^{b,e,*}

^a School of Chemistry and Materials Science, Liaoning Shihua University, No.1 West Dandong Road, Wanghua District, Fushun 113001, China. zhangjing@lnpu.edu.cn

^b Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Zhongshan Road 457, Dalian 116023, China. jian.liu@surrey.ac.uk

^c Joint International Laboratory on Environmental and Energy Frontier Materials, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China. haoliu@shu.edu.cn

^d Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Broadway, Sydney, NSW 2007, Australia. haoliu@shu.edu.cn

^e DICP-Surrey Joint Centre for Future Materials, Department of Chemical and Process Engineering, and Advanced Technology Institute, University of Surrey, Guilford, Surrey, GU2 7XH, UK. jian.liu@surrey.ac.uk

⁺ these authors contributed equally to this work.

Fig.S1 FTIR spectra of Ni-CPs and isophthalic acid (IPA).

Fig.S2 XRD patterns for (a) Ni-CPs, (b) NiO-10, (c) NiO-60 and (d) NiO-360.

Fig.S3 Raman spectra of (a) NiO-10, (b) NiO-60 and (c) NiO-360.

Fig.S4 HRTEM-EDS image of yolk-shell NiO-30.

Fig.S5 SEM image and TEM image of commercial NiO.

I able SI Specific surface area and average pore diameter of all NIO samples.		
Sample	Specificsurfacearea (m ² /g)	Average pore size (nm)
NiO-10	22	10
NiO-30	18	13
NiO-60	13	17
NiO-360	9	19

 Table S1
 Specific surface area and average pore diameter of all NiO samples.

Fig.S6 SEM images and TEM images of the Ni-CPs calcinated at the temperature of 500 °C for different time:(a, d) NiO-10, (b, e) NiO-60, (c, f) NiO-360.

Fig.S7 Magnetization (M) versus magnetic field (H) of the Ni-CPs calcinated at the temperature of 500 °C for different time at 300 K: (a) NiO-10, (b) NiO-30, (c) NiO-60 and (d) NiO-360.

Fig.S8 The lines of Z'- $\omega^{-1/2}$ of NiO-30 and commercial NiO.

Fig.S9 (a) N₂ adsorption-desorption isotherms and (b) the pore size distribution curves of commercial NiO.