Electronic Supplementary Information (ESI) for

Effects of Fused Rings Linked to the 2,5-Position of Pyrrole Derivatives with Near-Infrared Emission on their Aggregation-Enhanced Emission Properties

Fei Ren, Jianbing Shi,^{*} Bin Tong, Zhengxu Cai, and Yuping Dong^{*}

Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China.

* E-mail: <u>bing@bit.edu.cn</u> (J. Shi); <u>chdongyp@bit.edu.cn</u> (Y. Dong).

Table of Contents

1. Experimental	2
1.1 Materials	2
1.2 Equipment	2
1.3 Synthesis	3
2. UV and PL spectra of MAPs and MAPs-FE.	36
3. Photophysical property data of compounds MAPs and MAPs-FE.	38
4. Solvatochromic properties of MAPs and MAPs-FE.	39
5. The aggregation PL property of MAPs and MAPs-FE.	42
6. The dynamic light scattering data of MAPs and MAPs-FE.	44
7. References	48

1. Experimental

1.1 Materials

The target compounds were obtained by conventional synthetic routes, as shown in Scheme S1. All chemicals were used from commercial suppliers without further purification unless otherwise stated. CuCl, Pd(PPh₃)₄ and ethyl 4-aminobenzoate **3** were purchased from J&K. POCl₃ was purchased from Xiya Reagent. 3-Hydroxy-3-methylbutan-2-one, malononitrile, 2,5-dimethoxytetrahydrofuran, naphthalen-1-ylboronic acid, naphthalen-2-ylboronic acid, and 1-bromopyrrolidine-2,5-dione were purchased from Energy Chemical. Anthracen-2-ylboronic acid and anthracen-9-ylboronic acid were purchased from Bidepharm. Pyren-1-ylboronic acid was purchased from Alfa. Chloroform-*d* and DMSO-*d*₆ were purchased from Innochem.

1.2 Equipment

¹H and ¹³C NMR spectra were measured on a Bruker AV 400 spectrometer. Mass spectra were collected by using a Finnigan Biflex III mass spectrometer. UV-Vis spectra were recorded on a TU-1901 double beam UV-Vis spectrophotometer. Fluorescence spectra were measured on a Hitachi F-7000 fluorescence spectrophotometer. PL quantum yields were measured by using an integrating sphere on a NanoLog FL3-2iHR fluorescence spectrometer (Horiba Jobin Yvon), and PL time-resolved decays were measured with a DeltaFlex ultrafast lifetime spectrofluorometer (Horiba Jobin Yvon). Single-crystal data were collected on a Bruker-AXS SMART APEX 2 CCD diffractometer.

1.3 Synthesis

Scheme S1. Synthetic route to target compounds.

The compound 2-(3-cyano-4,5,5-trimethylfuran-2(5H)-ylidene)malononitrile **2** was prepared by a method in the literature that has been reported.¹ The compounds ethyl 4-(1*H*-pyrrol-1-yl)benzoate **4**, ethyl 4-(2,5-dibromo-1*H*-pyrrol-1-yl)benzoate **5**, **MAP1**, and **MAP1-CHO** were prepared according to the synthetic route shown in Scheme S1. Details can be found in our previous work.² The synthesis and characterization of the other target compounds are given below.

Synthesis of ethyl 4-(2,5-di(naphthalen-1-yl)-1*H*-pyrrol-1-yl)benzoate (MAP2). 4-(2,5-Dibromo-1*H*-pyrrol-1-yl)benzoate (0.3729 g, 1.00 mmol), naphthalen-1-ylboronic acid (0.5126 g, 3.00 mmol) and Pd(PPh₃)₄ (0.0462 g, 0.04 mmol) were dissolved in degassed DMF (10 ml), and then a saturated aqueous solution of K₂CO₃ (3 mL) was added. After stirring for 24 h at 90 °C under nitrogen protection, the solution was cooled to room temperature and then extracted with dichloromethane and washed with water. Then, the organic layer was dried over anhydrous MgSO₄. The solvent was removed under reduced pressure, and the crude product was purified by silica gel column chromatography using a dichloromethane/petroleum ether mixture (1/5, V_d/V_p) as the eluent to give compound **MAP2** with 49.7% yield. ¹H NMR (400 MHz, CDCl₃): δ = 8.10 (d, *J* = 8.0 Hz, 2H), 7.86-7.78 (m, 2H), 7.74 (d, *J* = 8.0 Hz, 2H), 7.51-7.40 (m, 6H), 7.31 (t, *J* = 8.0 Hz, 2H), 7.22 (d, *J* = 8.0 Hz, 2H), 6.80 (d, *J* = 8.8 Hz, 2H), 6.65 (s, 2H), 4.17 (q, *J* = 7.2 Hz, 2H), 1.23 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 165.83, 142.83, 133.59, 133.03, 132.56, 130.96, 129.39, 129.24, 128.16, 127.96, 127.92, 127.21, 126.17, 125.80, 124.93, 112.33, 60.88, 14.14. MS (MALDI, *m/z*) Calcd for C₃₃H₂₅NO₂ [M]⁺: 467.19, found: 466.94.

Figure S1. ¹H NMR spectrum of MAP2 in CDCl₃.

Figure S2. ¹³C NMR spectrum of MAP2 in CDCl₃.

Figure S3. MS spectrum of MAP2.

Synthesis of ethyl 4-(2,5-di(naphthalen-2-yl)-1*H*-pyrrol-1-yl)benzoate (MAP3). The synthesis procedure is the same as that of MAP2, and only replaced naphthalen-1-ylboronic acid by naphthalen-2-ylboronic acid (0.5126 g, 3.00 mmol). The yield of MAP2 gives 74.4%. ¹H NMR (400 MHz, CDCl₃): δ = 7.88 (d, *J* = 8.4 Hz, 2H), 7.78-7.72 (m, 2H), 7.69-7.58 (m, 6H), 7.46-7.37 (m, 4H),7.15 (d, *J* = 8.4 Hz, 2H), 7.10 (d, *J* = 8.8 Hz, 2H), 6.65 (s, 2H), 4.33 (q, *J* = 7.2 Hz, 2H), 1.35 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 165.94, 142.95, 135.94, 133.24, 131.92, 130.40, 130.26, 129.08, 128.74, 127.98, 127.59, 127.52, 127.48, 126.98, 126.23, 125.92, 111.33, 61.21, 14.28. MS (MALDI, *m/z*) Calcd for C₃₃H₂₅NO₂ [M]⁺: 467.19, found: 466.98.

Figure S4. ¹H NMR spectrum of MAP3 in CDCl₃.

Figure S6. MS spectrum of MAP3.

Synthesis of ethyl 4-(2,5-di(anthracen-2-yl)-1*H*-pyrrol-1-yl)benzoate (MAP4). The synthesis procedure is the same as that of MAP2, and only replaced naphthalen-1ylboronic acid by anthracen-2-ylboronic acid (0.6663 g, 3.00 mmol). The yield of MAP4 gives 46.6%. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.33$ (s, 2H), 8.23 (s, 2H), 8.00-7.90 (m, 6H), 7.79 (d, J = 8.8 Hz, 2H), 7.74 (s, 2H), 7.47-7.39 (m, 4H), 7.24 (d, J = 7.6Hz, 2H), 7.14 (d, J = 8.8 Hz, 2H), 6.72 (s, 2H), 4.33 (q, J = 7.2 Hz, 2H), 1.34 (t, J = 7.2Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 165.94$, 143.04, 136.11, 131.98, 131.78, 131.41, 130.36, 130.27, 129.64, 129.18, 128.69, 128.16, 128.05, 127.78, 127.23, 126.68, 126.23, 125.94, 125.53, 125.38, 111.58, 61.21, 14.24. MS (MALDI, *m/z*) Calcd for C₄₁H₂₉NO₂ [M]⁺: 567.22, found: 566.99.

Figure S7. ¹H NMR spectrum of MAP4 in CDCl₃.

Figure S8. ¹³C NMR spectrum of MAP4 in CDCl₃.

Figure S9. MS spectrum of MAP4.

Synthesis of ethyl 4-(2,5-di(anthracen-9-yl)-1*H*-pyrrol-1-yl)benzoate (MAP5). The synthesis procedure is the same as that of MAP2, and only replaced naphthalen-1-ylboronic acid by anthracen-9-ylboronic acid (0.6663 g, 3.00 mmol). The yield of MAP5 gives 51.8%. ¹H NMR (400 MHz, CDCl₃): δ = 8.41 (s, 2H), 8.11 (d, *J* = 8.8 Hz, 4H), 7.94 (d, *J* = 8.4 Hz, 4H), 7.59-7.35 (m, 8H), 7.00 (d, *J* = 8.4 Hz, 2H), 6.82 (s, 2H), 6.60 (d, *J* = 8.4 Hz, 2H), 3.94 (q, *J* = 7.2 Hz, 2H), 1.04 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ = 165.59, 142.52, 132.42, 131.19, 130.21, 128.86, 128.54, 127.94, 127.80, 126.50, 126.13, 125.89, 125.18, 113.43, 60.67, 14.01. MS (MALDI, *m/z*) Calcd for C₄₁H₂₉NO₂ [M]⁺: 567.22, found: 567.04.

Figure S10. ¹H NMR spectrum of MAP5 in CDCl₃.

Figure S11. ¹³C NMR spectrum of MAP5 in CDCl₃.

Figure S12. MS spectrum of MAP5.

Synthesis of ethyl 4-(2,5-di(pyren-1-yl)-1*H*-pyrrol-1-yl)benzoate (MAP6). The synthesis procedure is the same as that of MAP2, and only replaced naphthalen-1-ylboronic acid by pyren-1-ylboronic acid (0.7383 g, 3.00 mmol). The yield of MAP6 gives 72.8%. ¹H NMR (400 MHz, CDCl₃): $\delta = 8.47$ (d, J = 4.8 Hz, 2H), 8.19 (d, J = 2.8 Hz, 2H), 8.17 (d, J = 2.4 Hz, 2H), 8.07 (d, J = 9.2 Hz, 4H), 8.04-7.95 (m, 6H), 7.74 (d, J = 6.0 Hz, 2H), 7.38 (d, J = 8.4 Hz, 2H), 6.87 (d, J = 8.0 Hz, 2H), 6.85 (s, 2H), 4.07 (q, J = 7.2 Hz, 2H), 1.12 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 165.63$, 142.76, 133.25, 131.36, 130.97, 130.61, 130.39, 129.54, 129.13, 128.31, 128.00, 127.71, 127.66, 127.54, 127.33, 126.06, 125.49, 125.23, 125.05, 124.86, 124.71, 124.17, 113.25, 60.81, 14.04. MS (MALDI, *m/z*) Calcd for C₄₅H₂₉NO₂ [M]⁺: 615.22, found: 615.04.

Figure S13. ¹H NMR spectrum of MAP6 in CDCl₃.

Figure S14. ¹³C NMR spectrum of MAP6 in CDCl₃.

Figure S15. MS spectrum of MAP6.

The general synthesis procedure for MAP-CHO. POCl₃ (100 μ L, 1.10 mmol) was dropped slowly into DMF (15 mL) at 0 °C and stirred for 1 h at room temperature. A dichloromethane solution of MAP2 (0.4672 g, 1.00 mmol) was added to the above solution. After the mixture stirred for 12 h at room temperature, the residue was poured into a dilute aqueous solution of NaOH (150 mL) and extracted with dichloromethane. Then, the solution of dichloromethane was dried over anhydrous MgSO₄ and filtered by suction. The solvent was evaporated by vacuum distillation. The crude product was purified by gel chromatography using a dichloromethane/petroleum ether mixture (1/2, V_d/V_p) as the eluent. MAP-CHO was obtained with a certain yield.

MAP2-CHO: The yield gives 46.2%. ¹H NMR (400 MHz, CDCl₃): $\delta = 9.54$ (s, 1H), 8.08-8.00 (m, 1H), 7.89-7.72 (m, 5H), 7.52-7.39 (m, 8H), 7.36-7.26 (m, 2H), 7.14 (s, 1H), 6.82 (d, J = 8.4 Hz, 2H), 4.16 (q, J = 7.2 Hz, 2H), 1.22 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 186.83$, 165.41, 141.96, 141.14, 134.52, 133.51, 133.28, 132.66, 130.56, 129.91, 129.52, 129.42, 129.21, 129.11, 128.88, 128.42, 128.34, 127.13, 126.94, 126.64, 126.36, 126.11, 125.71, 125.60, 125.42, 124.86, 124.78, 109.78, 61.09, 14.10. HR-MS (EI, *m/z*) Calcd for C₃₄H₂₅NO₃ [M]⁺: 495.1829, found: 495.1831, error 0.40 ppm.

Figure S16. ¹H NMR spectrum of MAP2-CHO in CDCl₃.

Figure S17. ¹³C NMR spectrum of MAP2-CHO in CDCl₃.

Figure S18. HR-MS spectrum of MAP2-CHO.

MAP3-CHO: The yield gives 57.8%. ¹H NMR (400 MHz, CDCl₃): $\delta = 9.80$ (s, 1H), 7.87-7.74 (m, 6H), 7.71-7.62 (m, 4H), 7.56-7.50 (m, 2H), 7.48-7.40 (m, 2H), 7.16-7.07 (m, 5H), 4.30 (q, J = 7.2 Hz, 2H), 1.32 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 187.04$, 165.51, 144.05, 141.25, 136.73, 133.07, 132.86, 132.66, 132.39, 131.23, 130.33, 129.88, 128.79, 128.57, 128.21, 128.08, 127.94, 127.86, 127.75, 127.61, 127.16, 126.85, 126.48, 126.43, 124.93, 108.57, 61.32, 14.20. HR-MS (EI, *m/z*) Calcd for C₃₄H₂₅NO₃ [M]⁺: 495.1829, found: 495.1819, error -2.02 ppm.

Figure S19. ¹H NMR spectrum of MAP3-CHO in CDCl₃.

Figure S21. HR-MS spectrum of MAP3-CHO.

MAP4-CHO: The yield gives 55.7%. ¹H NMR (400 MHz, CDCl₃): $\delta = 9.88$ (s, 1H), 8.40 (d, J = 8.0 Hz, 2H), 8.34 (s, 1H), 8.25 (s, 1H), 8.09-7.93 (m, 5H), 7.90-7.75 (m, 5H), 7.57-7.49 (m, 2H), 7.48-7.37 (m, 2H), 7.24-7.15 (m, 3H), 7.15-7.10 (m, 1H), 7.09-7.03 (m, 1H), 4.29 (q, J = 7.2 Hz, 2H), 1.30 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 187.03$, 165.52, 144.19, 141.37, 136.82, 132.44, 132.18, 132.05, 131.71, 131.12, 130.60, 130.42, 129.97, 128.51, 128.26, 128.22, 128.16, 128.11, 126.99, 126.72, 126.57, 126.29, 126.12, 126.07, 126.00, 125.84, 125.74, 125.05, 108.81, 61.33, 14.18. HR-MS (APCI, *m/z*) Calcd for C₄₂H₂₉NO₃ [M+H]⁺: 596.2220, found: 596.2223, error 0.45 ppm.

Figure S22. ¹H NMR spectrum of MAP4-CHO in CDCl₃.

MAP5-CHO: The yield gives 54.2%. ¹H NMR (400 MHz, CDCl₃): $\delta = 9.41$ (s, 1H), 8.51 (s, 1H), 8.44 (s, 1H), 8.06 (d, J = 9.2 Hz, 2H), 8.02-7.91 (m, 6H), 7.59-7.51 (m, 4H), 7.50-7.42 (m, 4H), 7.34 (s, 1H), 7.01 (d, J = 8.8 Hz, 2H), 6.64 (d, J = 8.8 Hz, 2H), 3.97 (q, J = 7.2 Hz, 2H), 1.06 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta =$ 186.82, 165.18, 140.62, 140.48, 132.89, 132.80, 132.12, 131.04, 130.91, 129.61, 129.14, 128.96, 128.88, 128.83, 128.71, 127.28, 126.80, 126.66, 125.97, 125.83, 125.49, 125.41, 125.33, 122.83, 111.10, 60.89, 13.97. HR-MS (EI, *m/z*) Calcd for C₄₂H₂₉NO₃ [M]⁺: 595.2142, found: 595.2135, error -1.18 ppm.

Figure S25. ¹H NMR spectrum of MAP5-CHO in CDCl₃.

Figure S26. ¹³C NMR spectrum of MAP5-CHO in CDCl₃.

Figure S27. HR-MS spectrum of MAP5-CHO.

MAP6-CHO: The yield gives 60.8%. ¹H NMR (400 MHz, CDCl₃): $\delta = 9.62$ (s, 1H), 8.41 (d, J = 9.2 Hz, 1H), 8.26-8.20 (m, 4H),8.16-8.10 (m, 5H), 8.10-8.04 (m, 3H), 8.04-7.92 (m, 4H), 7.77 (d, J = 8.0 Hz, 1H), 7.38-7.30 (m, 3H), 6.90 (d, J = 8.8 Hz, 2H), 4.03 (q, J = 7.2 Hz, 2H), 1.09 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) $\delta = 187.04$, 165.18, 141.12, 135.10, 131.98, 131.61, 131.28, 131.23, 130.86, 130.72, 130.47, 129.64, 129.54, 129.19, 128.96, 128.90, 128.64, 128.31, 128.15, 127.42, 127.24, 127.22, 126.46, 126.25, 126.17, 126.00, 125.81, 125.60, 125.44, 124.82, 124.76, 124.54, 124.43, 124.34, 124.21, 123.77, 110.54, 60.96, 13.98. HR-MS (EI, *m/z*) Calcd for C₄₆H₂₉NO₃ [M]⁺: 643.2147, found: 643.2140, error -1.09 ppm.

Figure S28. ¹H NMR spectrum of MAP6-CHO in CDCl₃.

Figure S29. ¹³C NMR spectrum of MAP6-CHO in CDCl₃.

Figure S30. HR-MS spectrum of MAP6-CHO.

The general synthesis procedure for MAP-FE. MAP-CHO (0.50 mmol), 2-(3- cyano-4,5,5-trimethylfuran-2(5H)-ylidene)malononitrile (0.1905 g, 0.55 mmol) and

CH₃COONH₄ (0.0425 g, 0.55 mmol) were dissolved in 10 ml of a THF/C₂H₅OH (4/1) solvents mixture and then stirred at room temperature for 24 h. The solvent was evaporated by vacuum distillation. The crude product was purified by gel chromatography using a dichloromethane/petroleum ether mixture (3/1, Vd/Vp) as the eluent. MAP-FE was obtained with a certain yield.

MAP1-FE: The yield gives 71.3%. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 7.93$ (d, *J* = 16.0 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 2H), 7.43 (s, 1H), 7.40-7.24 (m, 8H), 7.23-7.12 (m, 4H), 7.03 (d, *J* = 16.0 Hz, 1H), 4.27 (q, *J* = 7.2 Hz, 2H), 1.65 (s, 6H) 1.28 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta = 178.21$, 177.75, 176.56, 165.29, 143.15, 142.90, 141.66, 138.29, 131.34, 131.13, 130.30, 130.03, 129.63, 129.30, 129.17, 129.00, 128.95, 128.83, 128.27, 121.98, 113.63, 112.69, 112.42, 112.30, 111.97, 110.45, 108.61, 104.13, 101.81, 99.05, 93.39, 61.56, 52.79, 25.38, 23.71, 14.70, 14.52. HR-MS (APCI, *m/z*) Calcd for C₃₇H₂₈N₄O₃ [M+H]⁺: 577.2234, found: 577.2230, error -0.79 ppm.

Figure S31. ¹H NMR spectrum of MAP1-FE in DMSO-*d*₆.

Figure S32. ¹³C NMR spectrum of MAP1-FE in DMSO-*d*₆.

Figure S33. HR-MS spectrum of MAP1-FE.

MAP2-FE: The yield gives 63.5%. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 7.99$ (d, *J* = 8.4 Hz, 2H), 7.92 (d, *J* = 8.4 Hz, 3H), 7.76-7.67 (m, 2H), 767-7.45 (m, 9H), 7.42 (d, *J* = 8.4 Hz, 2H), 7.14 (d, *J* = 8.0 Hz, 2H), 6.97 (d, *J* = 16.0 Hz, 1H), 4.07 (q, *J* = 7.2 Hz, 2H), 1.54 (s, 3H), 1.49 (s, 3H), 1.13 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta = 177.57$, 175.60, 164.39, 142.03, 141.03, 140.32, 135.62, 132.84, 132.78, 132.09, 131.89, 130.65, 129.80, 129.48, 128.89, 128.72, 128.53, 128.23, 128.09, 127.57, 127.03, 126.68, 126.28, 126.17, 126.07, 125.43, 125.06, 124.99, 124.94, 122.55, 113.02, 112.03, 111.55, 111.46, 110.04, 98.38, 92.89, 60.74, 52.13, 24.70, 24.66, 23.12, 13.77. HR-MS (ESI, *m*/*z*) Calcd for C₄₅H₃₂N₄O₃ [M-H]⁻: 675.2402, found: 675.2387, error -2.25 ppm.

Figure S34. ¹H NMR spectrum of MAP2-FE in DMSO-*d*₆.

Figure S36. HR-MS spectrum of MAP2-FE.

MAP3-FE: The yield gives 65.4%. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.07$ (d, *J* = 15.6Hz, 1H), 7.93 (s, 1H), 7.91-7.72 (m, 9H), 7.62 (s, 1H), 7.58-7.44 (m, 4H), 7.35 (d, *J* = 8.4 Hz, 2H), 7.21-7.06 (m, 3H), 4.23 (q, *J* = 7.2 Hz, 2H), 1.64 (s, 6H), 1.24 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta = 178.24$, 176.54, 165.25, 143.07, 142.86, 141.75, 138.41, 133.08, 132.87, 132.81, 132.46, 131.10, 130.43, 130.00, 129.67, 128.86, 128.37, 128.33, 128.19, 128.04, 127.73, 127.68, 127.27, 127.23, 126.63, 122.42, 113.64, 112.70, 112.63, 112.53, 109.28, 99.15, 93.43, 61.54, 52.76, 25.32, 14.47. HR-MS (ESI, *m/z*) Calcd for C₄₅H₃₂N₄O₃ [M+H]⁺: 677.2547, found: 675.2539, error -1.29 ppm.

Figure S37. ¹H NMR spectrum of MAP3-FE in DMSO-d₆.

Figure S39. HR-MS spectrum of MAP2-FE.

MAP4-FE: The yield gives 37.7%. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.55$ (d, *J* = 9.2Hz, 3H), 8.44 (s, 1H), 8.22-8.04 (m, 6H), 8.01-7.93 (m, 3H), 7.84 (d, *J* = 8.4 Hz, 2H), 7.71 (s, 1H), 7.61-7.49 (m, 4H), 7.44 (d, *J* = 8.4 Hz, 2H), 7.25 (d, *J* = 9.2 Hz, 1H), 7.17 (d, *J* = 15.6 Hz, 1H), 7.13 (d, *J* = 9.6 Hz, 1H), 4.22 (q, *J* = 7.2 Hz, 2H), 1.67 (s, 6H), 1.22 (t, *J* = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta = 178.20$, 176.41, 165.23, 143.24, 142.81, 141.82, 138.44, 132.37, 132.11, 132.06, 131.64, 131.10, 130.80, 130.58, 130.52, 130.45, 130.03, 129.57, 128.55, 128.29, 128.05, 127.57, 126.96, 126.77, 126.68, 126.52, 126.41, 126.29, 126.15, 122.65, 113.64, 112.68, 112.52, 109.60, 99.13, 93.45, 61.53, 52.79, 25.37, 14.43.HR-MS (EI, *m/z*) Calcd for C₅₃H₃₆N4O₃ [M]⁺: 776.2782, found: 776.2791, error 1.16 ppm.

Figure S40. ¹H NMR spectrum of MAP4-FE in DMSO-*d*₆.

Figure S42. HR-MS spectrum of MAP4-FE.

MAP5-FE: The yield gives 73.2%. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.76$ (s, 1H), 8.70 (s, 1H), 8.21-8.05 (m, 6H), 7.94 (d, J = 8.4Hz, 2H), 7.75 (s, 1H), 7.72-7.63 (m, 4H), 7.61-7.49 (m, 5H), 7.05 (d, J = 8.8 Hz, 2H), 6.95 (d, J = 16.0 Hz, 1H), 6.78 (d, J = 8.4 Hz, 2H), 3.90 (q, J = 8.4 Hz, 2H), 1.44 (s, 6H), 0.98 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta = 178.06$, 175.65, 164.54, 141.82, 141.07, 138.59, 134.11, 132.27, 131.94, 131.04, 131.01, 130.32, 129.45, 129.40, 129.21, 129.15, 128.28, 127.72, 126.32, 126.07, 125.44, 125.14, 124.32, 122.59, 113.50, 112.58, 112.47, 111.78, 98.96, 93.96, 61.17, 52.88, 25.11, 14.16. HR-MS (EI, *m/z*) Calcd for C₅₃H₃₆N₄O₃ [M]⁺: 776.2782, found: 776.2781, error -0.13 ppm.

Figure S43. ¹H NMR spectrum of MAP5-FE in DMSO-*d*₆.

Figure S45. HR-MS spectrum of MAP5-FE.

MAP6-FE: The yield gives 81.9%. ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 8.43-8.31$ (m, 6H), 8.30-8.08 (m, 11H), 8.05 (d, J = 9.2Hz, 1H), 7.83 (d, J = 16.0Hz, 1H), 7.74 (s, 1H), 7.32 (d, J = 8.4Hz, 2H), 7.22 (d, J = 8.4Hz, 2H), 7.08 (d, J = 16.0Hz, 1H), 3.91 (q, J = 7.2 Hz, 2H), 1.55 (s, 3H), 1.51 (s, 3H), 0.98 (t, J = 7.2 Hz, 3H). ¹³C NMR (100 MHz, DMSO-*d*₆) $\delta = 178.10$, 176.12, 164.75, 142.71, 141.66, 141.33, 136.70, 131.97, 131.34, 131.23, 131.17, 130.79, 130.65, 130.25, 129.54, 129.23, 128.96, 128.61, 128.43, 127.73, 127.13, 126.49, 126.28, 126.04, 125.41, 125.05, 124.82, 124.14, 124.08, 123.92, 123.79, 113.56, 112.55, 112.43, 112.07, 111.36, 98.99, 93.48, 61.14, 52.71, 25.26, 23.69, 14.14. HR-MS (APCI, *m*/*z*) Calcd for C₅₇H₃₆N₄O₃ [M+H]⁺: 825.2860, found: 825.2858, error -0.23 ppm.

Figure S46. ¹H NMR spectrum of MAP5-FE in DMSO-*d*₆.

Figure S48. HR-MS spectrum of MAP6-FE.

2. UV and PL spectra of MAPs and MAPs-FE.

Figure S49. (A) Absorption spectra of MAP1~6 in DMSO solution (1.0 × 10⁻⁵ mol/L).
(B) Absorption spectra of MAP1~6 in film.

Figure S50. (A) Absorption spectra of MAP1~6-FE in DMSO solution $[1.0 \times 10^{-5} \text{ mol/L}]$. (B) Absorption spectra of MAP1~6-FE in film.

Figure S51. Normalized PL spectra of MAP1~6 in DMSO solution (A) and in powder state (B). Excited wavelength (λ_{ex}): 350 nm for MAP1, 340 nm for MAP2, 340 nm for MAP3, 350 nm for MAP4, 350 nm for MAP5, and 350 nm for MAP6.

Figure S52. Normalized PL spectra of MAP1~6-FE in DMSO solution (A) and in powder state (B). λ_{ex} : 450 nm for MAP1-FE, 450 nm for MAP2-FE, 450 nm for MAP3-FE, 500 nm for MAP4-FE, 460 nm for MAP5-FE, and 510 nm for MAP6-FE.

3. Photophysical property data of compounds MAPs and MAPs-FE.

Compounds		$\lambda_{abs} (nm)^b$		$\lambda_{em} (nm)^c$				
	In THF	In DMSO	In Film	In THF	In DMSO	In Powder		
MAP1	285	289	318	479	536	435		
MAP2	325	325	329	447	507	445		
MAP3	318	322	324	478	533	438		
MAP4	334	336	345	495	530	506		
MAP5	390	392	399	464	505	486		
MAP6	360	359	377	470	494	509		

Table S1. Photophysical property data of compounds MAP1~6.^a

Notes: ^{*a*} [MAP1~6] = 1.0×10^{-5} mol/L. ^{*b*} The longest peak value. ^{*c*} The main peak value.

Table S2. Photophysical property data of compounds MAP1~6-FE.^a

Compounds		$\lambda_{abs} (nm)^b$		$\lambda_{em} (nm)^c$					
	In THF	In DMSO	In Film	In THF	In DMSO	In Powder			
MAP1-FE	484	500	501	601	631	642			
MAP2-FE	478	493	496	605	629	656			
MAP3-FE	485	487	501	613	646	670			
MAP4-FE	507	523	546	665	685	729			
MAP5-FE	475	485	524	657	729	676			
MAP6-FE	488	503	534	660	691	679			

Notes: ^{*a*} [MAP1~6-FE] = 1.0×10^{-5} mol/L. ^{*b*} The longest peak value. ^{*c*} The main peak value.

4. Solvatochromic properties of MAPs and MAPs-FE.

Figure S53. Normalized PL spectra of (A) MAP1 ($\lambda_{ex} = 350 \text{ nm}$), (B) MAP2 ($\lambda_{ex} = 340 \text{ nm}$), (C) MAP3 ($\lambda_{ex} = 340 \text{ nm}$), (D) MAP4 ($\lambda_{ex} = 350 \text{ nm}$), (E) MAP5 ($\lambda_{ex} = 350 \text{ nm}$) and (F) MAP6 ($\lambda_{ex} = 350 \text{ nm}$) in different solvents.

Figure S54. Normalized PL spectra of (A) MAP1-FE ($\lambda_{ex} = 450 \text{ nm}$), (B) MAP2-FE ($\lambda_{ex} = 450 \text{ nm}$), (C) MAP3-FE ($\lambda_{ex} = 450 \text{ nm}$), (D) MAP4-FE ($\lambda_{ex} = 500 \text{ nm}$), (E) MAP5-FE ($\lambda_{ex} = 460 \text{ nm}$) and (F) MAP6-FE ($\lambda_{ex} = 510 \text{ nm}$) in different solvents.

Compounds	λ_{\max} in different solvents (nm)							
Compounds	Toluene	DCM	THF	EA	AN	DMSO	(nm)	
MAP1	458	510	479	482	534	536	78	
MAP2	432	480	447	448	508	507	75	
MAP3	457	509	478	480	532	533	76	
MAP4	474	505	495	491	523	530	56	
MAP5	456	474	464	461	495	505	49	
MAP6	467	476	470	468	487	494	27	
MAP1-FE	577	607	601	595	620	631	54	
MAP2-FE	574	614	605	603	618	629	55	
MAP3-FE	580	620	613	607	617	646	66	
MAP4-FE	624	676	665	658	691	685	61	
MAP5-FE	591	669	657	649	718	729	138	
MAP6-FE	618	671	660	652	687	691	73	

Table S3. The maximum PL emission wavelength (λ_{max}) of MAP1~6 and MAP1~6-FE in different solvents.

Note: $\Delta\lambda$ means the net change of λ_{max} from DMSO to toluene.

Figure S55. PL spectra of (A) **MAP1**, (B) **MAP2**, (C) **MAP3**, (D) **MAP4**, (E) **MAP5**, (F) **MAP6** in THF solution and the mixture of THF/H₂O with 99% water fractions (*f*_w).

Figure S56. PL spectra of (A) MAP1-FE, (B) MAP2-FE, (C) MAP3-FE, (D) MAP4-FE, (E) MAP5-FE, (F) MAP6-FE in DMSO solution and the mixture of DMSO/H₂O with $f_w = 99\%$.

6. The dynamic light scattering data of MAPs and MAPs-FE.

Figure S57. Particle diameter size distributions of (A) MAP1, (B) MAP2, (C) MAP3, (D) MAP4, (E) MAP5 and (F) MAP6 in THF/water (1:99). [MAP1] = [MAP2] = $[MAP3] = [MAP4] = [MAP5] = [MAP6] = 1.0 \times 10^{-5} \text{ mol/L}.$

Figure S58. Particle diameter size distributions of (A) MAP1-FE, (B) MAP2-FE, (C) MAP3-FE, (D) MAP4-FE, (E) MAP5-FE and (F) MAP6-FE in DMSO/water (1:99). $[MAP1-FE] = [MAP2-FE] = [MAP3-FE] = [MAP4-FE] = [MAP5-FE] = [MAP6-FE] = 1.0 \times 10^{-5} mol/L.$

Table S4. The absolute quantum yield and fluorescence lifetime of MAP1~6 insolution and solid.

Comp-	Solution						Solid					
ounds	λ_{ex}^{b} (nm)	Φ _F (%)	λ _{em} ^c (nm)	τ (ns)	$k_{ m r}^{d}$ (×10 ⁸ s ⁻¹)	$k_{\rm nr}^{e}$ (×10 ⁸ s ⁻¹)	λ _{ex} (nm)	Φ _F (%)	λ _{em} (nm)	τ (ns)	<i>k</i> r (×10 ⁸ s ⁻¹)	$k_{\rm nr}$ (×10 ⁸ s ⁻¹)
MAP1	350	1.92	479	3.57	0.0538	2.747	350	25.04	435	10.48	0.2389	0.715
MAP2	340	13.19	447	4.76	0.2771	1.824	340	38.46	445	4.02	0.9567	1.531
MAP3	340	4.31	478	4.07	0.1059	2.351	340	22.64	438	2.30	0.9843	3.363
MAP4	350	49.15	495	3.62	1.3577	1.405	350	3.89	506	0.85	0.4576	11.307
MAP5	350	58.58	464	2.63	2.2274	1.575	350	12.35	486	1.73	0.7139	5.066
MAP6	350	90.86	470	1.84	4.9380	0.497	350	36.73	509	1.53	2.4007	4.135

Note: ^a Measured in THF at [MAPs] = 1.0×10^{-5} mol/L. ^b The excitation wavelength (λ_{ex}) for obtaining the absolute fluorescence quantum yield (Φ_F) by integrating sphere. ^c The emission wavelength (λ_{em}) for obtaining the fluorescence lifetime (τ). ^d Radiative rate (k_r). ^e Nonradiative rate (k_{nr}).

Figure S59. The change of k_r and k_{nr} of MAPs from solution to solid.

7. References

- Y.-R. Wang, L. Feng, L. Xu, Y. Li, D.-D. Wang, J. Hou, K. Zhou, Q. Jin, G.-B. Ge, J.-N. Cui and L. Yang, *Chem. Commun.*, 2016, **52**, 6064-6067.
- F. Ren, P. Liu, Y. Gao, J. Shi, B. Tong, Z. Cai and Y. Dong, *Mater. Chem. Front.*, 2019, 3, 57-63.