Electronic Supplementary Information

Bilayer chlorophyll derivatives as efficient holetransporting layers for perovskite solar cells

Na Li,^a Chunxiang Dall'Agnese,^a Wenjie Zhao,^a Shengnan Duan,^a Gang Chen,^a Shin-ichi Sasaki,^{bc} Hitoshi Tamiaki,^b Yoshitaka Sanehira,^d Tsutomu Miyasaka^d and Xiao-Feng Wang^{*a}

^a Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun 130012, P. R. China

^b Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
^c Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga 526-0829, Japan
^d Graduate School of Engineering, Toin University of Yokohama, 1614 Kurogane-cho, Aoba, Yokohama, Kanagawa, 225-8503, Japan

Corresponding Author

Xiao-Feng Wang, *E-mail*: xf_wang@jlu.edu.cn

Materials

The preparation of zinc methyl 3-devinyl-3-hydroxymethyl-pyropheophorbide-*a* $(Zn-Chl)^{S1}$ and methyl 13¹-deoxo-13¹-dicyanomethylene-pyropheophorbide-*a* $(H_2-Chl)^{S2}$ has been reported before. ITO was purchased from Dongguan City Everest Display Technology Co., Ltd. SnO₂ colloidal dispersion (15% in H₂O) was obtained from Alfa Aesar. MoO₃ was purchased from Sinopharm Chemical Reagent Co., Ltd. Methylammonium iodide (CH₃NH₃I, >99.5%) and lead iodide (PbI₂, >99.99%) were obtained from Xian Polymer Light Technology Co. The ultra-dry solvents *N*,*N*-dimethylformamide (DMF, 99.8%), dimethyl sulfoxide (DMSO, 99.7%), and chlorobenzene (CB, 99.8%) were purchased from INFI. Chloroform (CF, \geq 99.0%) was purchased from BEIJING SHIJI Co., Ltd. Tetrahydrofuran (THF, \geq 99.9%) was obtained from Aladdin Industrial Corporation.

Fabrication of perovskite solar cells (PSCs)

The pre-patterned ITO glass substrates were cleaned with detergent, deionized water, ethanol, acetone, CF, and 2-propanol in sequence in the ultrasonic bath for each step 20 minutes, and then treated under ultraviolet ozone for 30 minutes. Then the diluted SnO₂ colloid dispersion (3% in H₂O) was spin-coated on the prepared ITO substrates at 3000 rpm for 30 s and annealed at 150 °C for 30 minutes in air to form a compact SnO₂ thin layer. Subsequently, the substrates were transferred into the glove box. A perovskite precursor solution was prepared by dissolving CH₃NH₃I (1.3 mol L⁻¹) and PbI₂ (1.3 mol L⁻¹) in DMF:DMSO (4:1, v/v) and stirred for 60 minutes in the glove box at room temperature. Then the perovskite precursor solution was spin-coated on the SnO₂ thin layer at 5000 rpm for 30 s and CB (360 µL) was rapidly dropped on the center of substrates after spin-coating for 5 s, then annealed at 100°C for 10 minutes. For the hole-transporting layers, Zn-Chl was dissolved in the mixed solvents of THF and CF at the volume ratio of 4:1 (10 mg mL⁻¹) and H₂-Chl was dissolved in CF (8 mg mL⁻¹), then Zn-Chl and H₂-Chl solutions were spin-coated on top of the perovskite at 2000 rpm for 30 s in sequence, and eventually two layers of complete Chl films (bilayer Chl) were formed.^{S3} Finally, a 100 nm thick Ag electrode was thermally evaporated on top of the bilayer chlorophyll films to compose a complete PSC device.

Measurements of materials and devices

The ultraviolet-visible-near infrared (UV-VIS-NIR) absorption spectra of Zn-Chl and H₂-Chl dissolved in THF and Zn-Chl, H2-Chl, Zn-Chl/H2-Chl films spin-coated on glass were recorded by a Shimadzu UV-3100 spectrophotometer. The scanning electron microscope (SEM) images of Zn-Chl, H₂-Chl, and Zn-Chl/H₂-Chl thin films spin-coated on ITO and the cross-sectional **SEM** image of the devices. ITO/SnO₂/MAPbI₃/Zn-Chl and ITO/SnO₂/MAPbI₃/Zn-Chl/H₂-Chl, were obtained from a Hitachi SU8000 field emission scanning electron microscope. The X-ray diffraction (XRD) patterns of these films deposited on glass were measured by using the Bruker D8 X-ray diffractometer at room temperature. The photo-electron spectroscopic data of Zn-Chl and H₂-Chl films were measured by ionization energy photoelectron yield spectroscopy (IPS) in the vacuum. The hole mobilities of Zn-Chl, H₂-Chl, and Zn-Chl/H₂-Chl were measured by the dark current density-voltage (J-V) curves of the hole-only devices (ITO/MoO₃/Chls/MoO₃/Ag) using space charge limited current (SCLC) method. And the dark J-V characteristics of the hole-only devices were measured by forward scanning from 0~10 V using a computer-controlled Keithley 2400 source meter measurement system. The J-V characteristics of the PSCs were measured by a computer-controlled Keithley 2400 source meter measurement system with an AM 1.5G filter at a calibrated intensity of 100 mW cm⁻² illumination, as regulated by a standard silicon reference cell (91150V Oriel Instruments). The incident photon-to-electron conversion efficiency (IPCE) responses of these PSCs were measured under standard measurement conditions by using a commercial IPCE setup (CrowntechQTest Station 1000AD, SOFN INSTRUMENTS CO., LTD). The working area of these PSCs was controlled by a metal mask at 0.04 cm². The steady-state photoluminescence (PL) spectra of these devices (glass/MAPbI₃, glass/MAPbI₃/Zn-Chl, and glass/MAPbI₃/Zn-Chl/H₂-Chl) were carried out on a PL spectrometer (Shimadzu, RF-530PC) with the excitation wavelength at 403 nm. The electrochemical impedance spectroscopy (EIS) was recorded by using a VSP multichannel potentiostatic-galvanostatic system (Bio-Logic Science Instruments) with the frequency ranging between 1 MHz and 10 Hz under illumination (AM 1.5G, 100 mW cm⁻²) at 0 V relative to the open-circuit potential. The fitting data of the equivalent circuit model for the impedance spectra were calculated by computer simulation using the Z-view software. The device stability at their maximum power points (MPP) under 1-sun illumination in air was compared using the same galvanostatic-potentiostatic system.

Table S1 Photovoltaic parameters of the ITO/SnO₂/MAPbI₃/H₂-Chl/Ag device.^{a)}

HTM	$V_{\rm oc}$ [V]	$J_{\rm sc}$ [mA cm ⁻²]	FF [%]	PCE [%]
H ₂ -Chl	0.87±0.06	0.52±0.09	35.0±1.3	0.16±0.06

^{a)} The average values measured for ten independently fabricated devices with standard deviation.

Table S2 Photovoltaic parameters of the PSC based on Zn-Chl treated with neat CF.^{a)}

HTM	$V_{\rm oc}$ [V]	$J_{\rm sc}$ [mA cm ⁻²]	FF [%]	PCE [%]
Zn-Chl	0.92±0.03	22.2±0.5	56.8±1.6	11.6±1.0

a) The average values measured for ten independently fabricated devices with standard deviation.

HTMs	$R_{\rm s}\left[\Omega\right]$	$R_{\rm rec} [\Omega]$	CPE-T [F]	CPE-P
Zn-Chl	40.1	115	6.11×10 ⁻⁹	0.992
Zn-Chl/H ₂ -Chl	43.3	261	7.72×10-9	0.967

Table S3 Fitting parameters for EIS data of the PSCs based on Chls.

Fig. S1 UV-VIS-NIR absorption spectrum of bilayer film (Zn-Chl/H₂-Chl) spin-coated on the glass substrate.

Fig. S2 *J*–*V* curves of the hole-only devices based on (a) monolayer Zn-Chl or (b) H₂-Chl and (c) bilayer Zn-Chl/H₂-Chl in the dark.

The hole mobilities were calculated using the following equation: ^{S4}

$$J = 9\varepsilon_0 \varepsilon_r \mu V^2 (2L)^{-3} \tag{S1}$$

where μ is the hole mobility, ε_0 is the permittivity of free space, ε_r is the relative dielectric constant (assumed to be 3), L is the thickness of HTLs thin film, *J* and *V* are the values corresponding to the point of slope=2 in the dark-state *J*–*V* curves (Fig. S2).

Fig. S3 (a) The XRD patterns, (b) normalized UV-VIS-NIR absorption spectra, and (c) normalized UV-VIS-NIR transmission spectra of glass/MAPbI₃, glass/MAPbI₃/Zn-Chl, and glass/MAPbI₃/Zn-Chl/H₂-Chl.

Fig. S4 Absorption spectra of Zn-Chl thin film (blue line) and the already formed Zn-Chl thin film treated with neat solvent CF only (red line).

Fig. S5 The cross-sectional SEM images of the device with structures of (a) ITO/SnO₂/MAPbI₃/Zn-Chl and (b) ITO/SnO₂/MAPbI₃/Zn-Chl/H₂-Chl.

Fig. S6 The HOMO energy levels of (a) Zn-Chl and (b) H_2 -Chl thin films examined by IPS.

Fig. S7 (a) J-V curve and (b) IPCE spectra of the ITO/SnO₂/MAPbI₃/H₂-Chl/Ag device under standard AM1.5G illumination.

Fig. S8 (a) *J*–*V* curve and (b) IPCE spectra of the PSC based on Zn-Chl treated with solvent CF only under standard AM1.5G illumination.

Fig. S9 Stability tracking over time of unencapsulated PSCs based on Zn-Chl and Zn-Chl/ H_2 -Chl at MMP under 1-sun illumination in air.

References

- S1. H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga, A. R. Hotzwarth and K. Schaffner, *Photochem. Photobiol.*, 1996, 63, 92-99.
- S2. S. Sasaki, M. Yoshizato, M. Kunieda and H. Tamiaki, Eur. J. Org. Chem., 2010, 5287-5291.
- S3. S. Duan, C. Dall'Agnese, G. Chen, X.-F. Wang, H. Tamiaki, Y. Yamamoto, T. Ikeuchi and S. Sasaki, ACS Energy Lett., 2018, 3, 1708-1712.
- S4. J. Song, E. Zheng, X.-F. Wang, W. Tian and T. Miyasaka, Sol. Energy Mater. Sol. Cells, 2016, 144, 623-630.