
Electronic Supplementary Information

Ultrafine NiCoP-decorated on N, S, P-codoped hierarchical porous 

carbon nanosheets as efficient bifunctional electrocatalyst for oxygen 

reduction and oxygen evolution 

Hua-Jie Niu, Ai-Jun Wang, Lu Zhang, Jing-Jing Guo, Jiu-Ju Feng *

College of Geography and Environmental Sciences, College of Chemistry and Life Sciences, 

Zhejiang Normal University, Jinhua 321004, China 

*Corresponding author: jjfeng@zjnu.cn (J.J. Feng).

Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers.
This journal is © the Partner Organisations 2019



Experimental

1. Chemicals

Thiourea, cobalt acetate (CA), nickel phthalocyanine (NiPc), phytic acid (PA), 

and commercial Pt/C (50 wt%) were supplied from Aladdin Chemical Reagent 

Company (Shanghai, China). The other chemicals were of analytical grade and used 

without further purification. All of the aqueous solutions were prepared with twice-

distilled water throughout the whole experiments.

2. Characterization

The morphology and structure of the samples were characterized by scanning 

electron microscopy (SEM) with a Hitachi S-4800 scanning electron microanalyzer 

with an accelerating voltage of 15 kV, transmission electron microscopy (TEM), 

high-resolution transmission electron microscopy (HR-TEM), and high-angle annular 

dark-field scanning transmission electron microscopy (HAADF-STEM) 

measurements on a JEM-2100F microscope operated at an acceleration voltage of 200 

kV. X-ray photoelectron spectroscopy (XPS) analysis was performed on a Thermo 

VG ESCALAB 250 spectrometer with an Al Ka X-ray irradiation (1486.6 eV photons) 

for excitation operated at 120 W. X-ray diffraction (XRD) spectra were acquired on a 

Philips PW3040/60 diffractometer by using Cu Ka radiation source (l ¼ 0.15405 nm). 

Raman spectrum was collected from a Renishaw 1000 spectrometer with a 532 nm 

laser excitation wavelength. Thermogravimetric analysis (TGA) was performed in air 

on a Netzsch STA 449 C thermogravimetric analyzer.



3. Preparation of NiCoP/NSP-HPCNS modified electrodes

For typically preparing the catalyst ink, 5 mg of the NiCoP/NSP-HPCNS sample 

was put into the mixture containing 500 μL of ethanol, 470 μL of water and 30 μL of 

Nafion (5 wt%). Next, the mixture was further ultrasonicated for 30 min to obtain a 

homogeneous suspension. Afterwards, 16 μL of the catalyst ink was dropped onto a 

freshly-cleaned glassy carbon rotating disk electrode (RDE, Φ = 5 mm) with a 

catalyst loading of 0.4 mg cm-2. In the controls, commercial Pt/C and RuO2 catalysts 

modified electrodes were constructed in a similar way with the mass loading of 0.15 

mg cm-2. 

4. Electrochemical experiments

Electrochemical measurements were performed on a CHI 660E electrochemical 

workstation (CH Instrument, Chenhua Co., Shanghai, China). A conventional three-

electrode system was adopted, including a RDE as the working electrode, a Pt wire as 

the counter electrode, and a saturated calomel electrode (SCE) as the reference 

electrode. Besides, a graphite rod was used as the counter electrode for oxygen 

evolution reaction (OER).

For oxygen reduction reaction (ORR), the cyclic voltammetry (CV) 

measurements were carried out in N2- or O2-saturated 0.1 M KOH solution with a 

scan rate of 50 mV s-1. The ORR measurements were performed by linear sweep 

voltammetry (LSV) in the O2-saturated alkaline electrolyte with a rotation rate of 

1600 rpm and a scan rate of 10 mV s-1. The electrolyte was initially bubbled with O2 



for 30 min before each experiment and maintained over the electrolyte during the 

whole test. In order to evaluate the methanol-tolerance at a rotation rate of 1600 rpm, 

the chronoamperometric curves were recorded in the alkaline solution by injecting 1 

M methanol at 300 s. 

The OER measurements were performed in the O2-saturated alkaline conditions. 

The electrocatalytic activity was examined by LSV with a rotation rate of 1600 rpm 

and a scan rate of 5 mV s-1. All the OER data were corrected with iR compensation. 

The electrochemically active surface area (ECSA) of the NiCoP/NSP-HPCNS 

was evaluated from the CV curves acquired at different scan rates (5, 10, 20, 40, 60, 

and 80 mV s-1) in the potential window of 1.049-1.149 V (vs. RHE). The double-layer 

capacitance (Cdl) was the slope of the linear segment in the plot of the current density 

(at 1.099 V vs. RHE) against the scan rate. The stability measurements were 

performed by chronopotentiometry. 



Fig. S1. The particle-size distribution of NiCoP NPs.
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Fig. S2. Elemental line-scanning profiles of NiCoP/NSP-HPCNS. Inset is the 

HAADF-STEM image.
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Fig. S3. TG-DSC curves of the NiCoP/NSP-HPCNS.
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Fig. S4. (A) Nitrogen adsorption-desorption isotherms and (B) pore size distribution 

curve of the NiCoP/NSP-HPCNS.
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Fig. S5. High-resolution S 2p XPS spectrum of NiCoP/NSP-HPCNS.
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Fig. S6. SEM images of the (A) NiCo/NSP-C-0.5 and (B) NiCo/NSP-C-4. 
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Fig. S7. SEM images of the (A) NiCo/NSP-C-700 and (B) NiCo/NSP-C-900. 
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Fig. S8. CV curves of the catalysts prepared at different pyrolysis temperature in 0.1 

M KOH at 50 mV s-1.
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Fig. S9. LSV curves of the catalysts prepared at different pyrolysis temperature (A) 

and mass ratios of thiourea (B).
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Fig. S10. (A) LSV curves of Pt/C with different rotating rates in the O2-saturated 0.1 

M KOH electrolyte at 10 mV s-1. (B) The K-L plots at different potentials.
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Fig. S11. LSV curves of Pt/C before and after 2,000 cycles in the O2-saturated 0.1 M 

KOH at 10 mV s-1.
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Fig. S12. CV curves of NiCoP/NSP-HPCNS (A) and Pt/C (B) without and with 1.0 M 

methanol in the O2-saturated alkaline electrolyte at 50 mV s-1.
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Fig. S13. CV curves of NiCoP/NSP-HPCNS (A) and RuO2 (B) acquired in 1 M KOH 

at different scan rates. (C) The Cdl values.
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Table S1. Comparison of the ORR data in 0.1 M KOH with other non-precious metal-

based catalysts reported previously.

Catalysts
Loading

(mg cm-2)

Eonset 

(V vs. RHE)

E1/2

(V vs. RHE)
n references

NiCoP/NSP-HPCNS 0.4 0.92 0.84 4 This work

Fe-N-HPC-AH 0.38 0.97 0.87 — 1

Fe/Co-CNTs-800 0.5 0.928 0.783 3.9 2

S-Co9-xFexS8@rGO 0.5 0.94 0.84 3.97 3

Co/CoxSy@S, N-
codoped carbon fibers 0.4 0.83 0.74 3.97 4

NiCo/porous fibrous 
carbon 0.13 0.92 0.79 3.89 5

CoNP@N-C/N-graphene 0.24 0.9 0.83 3.8 6

NiCo2S4/N-CNTs 0.25 0.93 0.8 3.82 7

S, N-Fe/N/C-CNTs 0.25 — 0.85 4 8

NiFe/Co, N-codoped 
carbon nanoframes 0.12 0.893 0.79 3.89 9

Co-Nx/C nanorod array 0.5 — 0.87 3.98 10

Note: CNTs (carbon nanotubes)



Table S2. Comparison of the OER data in 1 M KOH with non-precious metal-based 

catalysts in the literature.

Catalysts
Overpotential

(mV @ j=10 mA cm-2)

Tafel slopes

(mV dec-1)
References

NiCoP/NSP-HPCNS 299 71.1 This work

CoP@N-doped porous 
carbon spheres 350 103 11

CoP/N-carbon nanotube 
hollow polyhedron 310 70 12

NiCoP/C nanoboxes 330 96 13

NiFeP@3D-FeNC 250 65 14

Co4N/carbon fibers 
network/carbon cloths 310 81 15

N-CNT/CoFe-CoFe2O4 310 63 16

NiO/CoN porous nanowires 300 35 17

NiFe/N-C 330 45 18

CoPS@NSP-C 320 98 19

NiCo2Px/CNTs 284 50 20
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