Ring size affects the kinetic and thermodynamic formation of [2]rotaxanes featuring an unsymmetric bis-crown ether component

Masaya Naito,^a Takaaki Fujino,^a Shinya Tajima,^a Shinobu Miyagawa,^a Kazuyuki Yoshida,^b Hajime Inoue,^b Hiroaki Takagawa,^b Tsuneomi Kawasaki^c and Yuji Tokunaga^{*a}

^aDepartment of Materials Science and Engineering, Faculty of Engineering, University of Fukui, Bunkyo, Fukui 910-8507, Japan.

^b Forensic Science Laboratory, Fukui Prefectural Police H.Q., Ohte, Fukui 910-8515, Japan.

^{c.} Department of Applied Chemistry, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

Supporting Information

1

Table of Contents

1.	Fig. S1 ¹ H NMR spectra of the mono-crown ether 1 and a mixture of 1 and	
	the dibenzylammonium salt 3 in the presence of 1.3 eq of hydrazine	2
2.	Fig. S2 ¹ H NMR spectrum of the [2]rotaxane 4L	3
3.	Fig. S3 Time-dependent ¹ H NMR spectra of a mixture of the bis-crown ether 2 and	
	the dibenzylammonium salt 3 in the presence of 1.0 eq of hydrazine	4
4.	Fig. S4 Time-dependent ¹ H NMR spectra of a mixture of the bis-crown ether 2 and	
	the dibenzylammonium salt 3 in the presence of 1.2 eq of hydrazine	5
5.	Fig. S5 Variable-temperature ¹ H NMR spectra of a mixture of the bis-crown ether 2 and	
	the dibenzylammonium salt 3 in the presence of 1.2 eq of hydrazine in equilibrium	6
6.	Fig. S6 Van't Hoff plots for the formation of the [2]rotaxanes 4S and 4L	7
7.	Fig. S7 ESI mass spectrum of a mixture of the [2]rotaxanes 4L and 4S	8
8.	Fig. S8 ¹ H NMR spectrum of the mono-crown ether 1	9
9.	Fig. S9 ¹³ C NMR spectrum of the mono-crown ether 1	9
10.	Fig. S10 COSY spectrum of the [2]rotaxane 4L	10
11.	Fig. S11 ROESY spectrum of the [2]rotaxane 4L	11
12.	Fig. S12 COSY spectrum of the [2]rotaxanes 4L and 4S	12
13.	Fig. S13 ROESY spectrum of the [2]rotaxanes 4L and 4S	13
14.	Fig. S14 Distributions of the mono-crown ether 1, bis-crown ether 2, and the [2]rotaxanes 4L and 4S	
	after mixing of the bis-crown ether 2 and the dibenzylammonium salt 3 in the presence of various	
	amount of hydrazine	14

Fig. S1 ¹H NMR spectra [500 MHz; CDCl₃/CD₃CN, 1:1 (v/v); 295 K] of (a) the mono-crown ether **1** (5.0 mM), (b) a mixture of **1** (5.0 mM) and hydrazine (1.0 eq), and (c) a mixture of **1** (5.0 mM), hydrazine (1.3 eq), and the dibenzylammonium salt **3** (1.0 eq).

Fig. S2 ¹H NMR spectrum [600 MHz; CDCl₃/CD₃CN, 1:1 (v/v), 295 K] of a mixture of the mono-crown ether **1** in CD₃CN (1.0×10^{-2} M, 3.0×10^{-1} mL, 3.0×10^{-3} mmol) and the dibenzylammonium salt **3** in CDCl₃ (5.0×10^{-2} M, 3.0×10^{-1} mL, 1.5×10^{-2} mmol), recorded 10 min after adding hydrazine monohydrate in CD₃CN (3.0×10^{-1} M, 9.0×10^{-3} mL, 2.7×10^{-3} mmol).

Fig. S3 Time-dependent ¹H NMR spectra [600 MHz; $CDCl_3/CD_3CN$, 1:1 (v/v); 295 K] of a mixture of the bis-crown ether **2** (5.0 mM, prepared *in situ* from the mono-crown ether **1** and an equimolar amount of hydrazine) and the dibenzylammonium salt **3** (1.0 eq), recorded after mixing them for (a) 15, (b) 25, (c) 40, (d) 60, (e) 80, and (f) 120 min. Blue dots denote the characteristic signals of **4L**.

Fig. S4 Time-dependent ¹H NMR spectra [600 MHz; $CDCl_3/CD_3CN$, 1:1 (v/v); 295 K] of a mixture of the bis-crown ether **2** (5.0 mM, prepared *in situ* from the mono-crown ether **1** and 1.2 eq of hydrazine) and the dibenzylammonium salt **3** (1.0 eq), recorded after mixing them for (a) 0.25, (b) 0.5, (c) 1, (d) 2, (e) 4, and (f) 16 h. Blue and red dots denote the characteristic signals of **4L** and **4S**, respectively.

Fig. S5 Variable-temperature ¹H NMR spectra [500 MHz; CDCl₃/CD₃CN, 1:1 (v/v)] of a mixture of the bis-crown ether **2** (5.0 mM, prepared *in situ* from the mono-crown ether **1** and 1.2 eq of hydrazine) and the dibenzylammonium salt **3** (1.0 eq), recorded after reaching equilibrium at (a) 323, (b) 313, (c) 303, (d) 295, (e) 286, and (f) 277 K. Blue and red dots denote the characteristic signals of **4L** and **4S**, respectively.

Fig. S6 Van't Hoff plots for the formation of the [2]rotaxanes (a) 4S and (b) 4L in CD₃CN/CDCl₃ (1:1, v/v).

Fig. S7 ESI mass spectrum of a mixture of the mono-crown ether **1** and the dibenzylammonium salt **3** (5.0 eq) in the presence of hydrazine (0.9 eq).

Fig. S8 ¹H NMR spectrum (500 MHz, CDCl₃, 295 K) of the mono-crown ether 1.

Fig. S9¹³C NMR spectrum (125 MHz, CDCl₃, 295 K) of the mono-crown ether 1.

Fig. S10 COSY spectrum [600 MHz; $CDCl_3/CD_3CN$, 1:1 (v/v); 295 K] of a mixture of the mono-crown ether **1** (5.0 mM) and the dibenzylammonium salt **3** (5.0 eq) after adding hydrazine (0.9 eq).

ROESY 1

Fig. S11 ROESY spectrum [600 MHz; $CDCl_3/CD_3CN$, 1:1 (v/v); 295 K; mixing time, 0.25 s] of a mixture of the mono-crown ether **1** (5.0 mM) and the dibenzylammonium salt **3** (5.0 eq) after adding hydrazine (0.9 eq).

7.0

: parts per Million : Proton 8.0

o

7.9 7.8

8.2 8.1 8.0 X : parts per Million : Proton

Fig. S12 COSY spectrum [600 MHz; CDCl₃/CD₃CN, 1:1 (v/v); 295 K] of a mixture of the mono-crown ether **1** (5.0 mM) and the dibenzylammonium salt **3** (5.0 eq) after adding hydrazine (1.2 eq).

7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3 6.2

a−b' a−b ĸκ

Ajaj

0.1

NH₂

 $\rm NH_2$

0 abundance

Fig. S13 ROESY spectrum [600 MHz; $CDCl_3/CD_3CN$, 1:1 (v/v); 295 K; mixing time, 0.25 s] of a mixture of the mono-crown ether **1** (5.0 mM) and the dibenzylammonium salt **3** (5.0 eq) after adding hydrazine (1.2 eq).

Fig. S14 Distributions of the mono-crown ether **1** (gray dots), bis-crown ether **2** (black dots), and the [2]rotaxanes **4L** (blue dots) and **4S** (red dots) after mixing of the bis-crown ether **2** and the dibenzylammonium salt **3** (5.0 mM), as determined using ¹H NMR spectroscopy [600 MHz; CDCl₃/CD₃CN, 1:1 (v/v); 295 K]. The bis-crown ether **2** was prepared *in situ* from the mono-crown ether **1** (5.0 mM) and (a) 0.95, (b) 1.00, (c) 1.05, and (d) 1.10 eq of hydrazine.