Supplementary Materials

## Well-defined CoP/Ni<sub>2</sub>P nanohybrids encapsulated in the nitrogen-doped carbon matrix as advanced multifunctional electrocatalysts for efficient overall water splitting and zinc-air batteries

Xianwei Lv, Wenwen Tian, Yuping Liu\* and Zhong-Yong Yuan\*

Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China. E-mail: <u>liuypnk@nankai.edu.cn</u>; zyyuan@nankai.edu.cn

## Physicochemical characterization

The morphologies of catalysts were determined by scanning electron microscopy (SEM, JEOL JSF-7500 L) operated at 5 kV. Transmission electron microscopy (TEM) tests were recorded on a JEOL JEM-2800 (200 kV) electron microscopy. Powder X-ray diffraction (XRD) data of the asobtained products were recorded on a Bruker D8 Focus diffractometer with Cu- $K\alpha$  radiation. X-ray photoelectron spectroscopy (XPS) measurements were recorded on Thermo Scientific ESCALAB 250Xi spectrometer used Al  $K\alpha$  X-rays (1486.6 eV) as the excitation source.



Fig. S1 XRD pattern for N-doped carbon.



Fig. S2 XPS survey spectrum of CoP/Ni<sub>2</sub>P@NC.



Fig. S3 EDX spectrum of the obtained CoP/Ni<sub>2</sub>P@NC.



Fig. S4 TEM images of (a) CoP@NC and (b) Ni<sub>2</sub>P@NC.



Fig. S5 (a) XRD patterns of CoP/Ni<sub>2</sub>P@NC before and after long-term HER durability test in 0.5 M  $H_2SO_4$ . (b) HRTEM image of CoP/Ni<sub>2</sub>P@NC after long-term HER durability test in 0.5 M  $H_2SO_4$ .



**Fig. S6** Cyclic voltammograms of CoP@NC (a) and Ni<sub>2</sub>P@NC (b) measured at different scan rates from 20 to 100 mV s<sup>-1</sup>. Inset in (a, b): Plots of the current density at 0.90 V versus the scan rate.



**Fig. S7** (a) Polarization curves for Pt/C and CoP/Ni<sub>2</sub>P@NC for HER with a scan rate of 2 mV s<sup>-1</sup>. (b) Chronoamperometry curve of CoP/Ni<sub>2</sub>P@NC at a fixed overpotential of -700 mV for 12 h.

| Catalyst                 | Electrolyte              | $E_{\eta=10}(mV)VS.$ | Tafel slop            | Reference  |
|--------------------------|--------------------------|----------------------|-----------------------|------------|
|                          |                          | RHE                  | $(mV \cdot dec^{-1})$ |            |
| CoP/Ni <sub>2</sub> P@NC | 0.5 M H <sub>2</sub> SO4 | 91                   | 62                    | This work. |
| CoNiP@NF                 | 0.1M H <sub>2</sub> SO4  | 60                   | 39                    | 1          |
| CoNi@NC                  | 0.5M H <sub>2</sub> SO4  | 142                  | 104                   | 2          |
| CoP/CC                   | $0.5M H_2 SO_4$          | 92                   | 58                    | 3          |
| CoP NBAs/Ti              | $0.5M H_2 SO_4$          | 203                  | 40                    | 4          |
| Co <sub>2</sub> P/Ti     | $0.5M H_2 SO_4$          | 95                   | 45                    | 5          |
| CoP/CNT                  | $0.5M H_2 SO_4$          | 122                  | 54                    | 6          |
| Ni <sub>2</sub> P@C      | $0.5M H_2 SO_4$          | 186                  | 64                    | 7          |

Table S1. Comparison of HER performance of some recently reported bimetallic CoNi-based materials in  $0.5 \text{ M H}_2\text{SO}_4$ .

**Table S2.** Comparison of HER performance of some recently reported bimetallic CoNi-based materials in 1.0 M KOH.

| Catalyst                                    | Electrolyte | $E_{\eta=10}(mV)VS.$  | Tafel slop            | Reference  |
|---------------------------------------------|-------------|-----------------------|-----------------------|------------|
|                                             |             | RHE                   | $(mV \cdot dec^{-1})$ |            |
| CoP/Ni <sub>2</sub> P@NC                    | 1.0 M KOH   | 143                   | 62                    | This work. |
| CoNiP@NF                                    | 1.0 M KOH   | 155                   | 115                   | 1          |
| NiCoP/NF                                    | 1.0 M KOH   | 32                    | 37                    | 8          |
| Co <sub>0.5</sub> Ni <sub>0.5</sub> P/NC/NF | 1.0 M KOH   | 90                    | 70.9                  | 9          |
| Ni@Co-Ni-P                                  | 1.0 M KOH   | 52                    | 65.1                  | 10         |
| CoNi <sub>2</sub> S <sub>4</sub>            | 1.0 M KOH   | 400 ( $E_{\eta=32}$ ) | 85                    | 11         |
| CoNi <sub>2</sub> Se <sub>4</sub>           | 1.0 M KOH   | 220                   | N.A.                  | 12         |
| FeCoNi                                      | 1.0 M KOH   | 149                   | 77                    | 13         |
| Co <sub>x</sub> Ni <sub>y</sub> P           | 1.0 M KOH   | 129                   | 52                    | 14         |

| Catalyst                            | Electrolyte | $E_{\eta=10}(mV)vs.$ | Tafel slop              | Reference |
|-------------------------------------|-------------|----------------------|-------------------------|-----------|
|                                     |             | RHE                  | (mV·dec <sup>-1</sup> ) |           |
| CoP/Ni <sub>2</sub> P@NC/NF         | 1.0 M KOH   | 330                  | 68                      | This work |
| NiCoP/NF                            | 1.0 M KOH   | 280                  | 87                      | 8         |
| CoNi <sub>2</sub> Se <sub>4</sub>   | 1.0 M KOH   | 160                  | 72                      | 12        |
| FeCoNi                              | 1.0 M KOH   | 288                  | 92                      | 13        |
| Co <sub>x</sub> Ni <sub>y</sub> P   | 1.0 M KOH   | 245                  | 61                      | 14        |
| Ni <sub>3</sub> Se <sub>2</sub> /CF | 1.0 M KOH   | $340 (E_{\eta=50})$  | 80                      | 15        |
| CoNiP@LDH                           | 1.0 M KOH   | 216                  | 45                      | 16        |
| Co-P film                           | 1.0 M KOH   | 345                  | 47                      | 17        |
| Ni <sub>3</sub> N/Ni-foam           | 1.0 M KOH   | ~ 399                | 65                      | 18        |

**Table S3.** Comparison of OER performance of some recently reported non-noble-metal catalysts in 1.0 M KOH.

| Catalyst                                 | Electrolyte | Half-cell   | Limiting current density | Reference |
|------------------------------------------|-------------|-------------|--------------------------|-----------|
|                                          |             | potential   | (mA cm-2)                |           |
|                                          |             | (V vs. RHE) |                          |           |
| CoP/Ni <sub>2</sub> P@NC/NF              | 0.1 M KOH   | 0.79        | 4.95                     | This work |
| CoO <sub>x</sub> @NGCR                   | 0.1 M KOH   | 0.80        | 4.90                     | 19        |
| Co/CoN <sub>x</sub> /NCNT/C              | 0.1 M KOH   | 0.80        | 3.84                     | 20        |
| Co <sub>9</sub> S <sub>8</sub> /N, S-CNS | 0.1 M KOH   | 0.80        | 4.50                     | 21        |
| Co-NC@CoP-NC                             | 0.1 M KOH   | 0.78        | 3.74-4.15                | 22        |
| Co/CoP-HNC                               | 0.1 M KOH   | 0.83        | N.A.                     | 23        |
| Co-Ni(1:1)@NC-900                        | 0.1 M KOH   | 0.821       | N.A.                     | 24        |
| NiO/CoN PINWs                            | 0.1 M KOH   | 0.68        | N.A.                     | 25        |
| NiCo <sub>2</sub> S <sub>4</sub> /N-CNT  | 0.1 M KOH   | 0.80        | 3.2                      | 26        |
| CoP@SNC                                  | 0.1 M KOH   | 0.79        | N.A.                     | 27        |
| CoP NCs                                  | 0.1 M KOH   | 0.70        | 4.5                      | 28        |
| Co <sub>2</sub> P@CoNPG-800              | 0.1 M KOH   | 0.80        | 6.68                     | 29        |

**Table S4.** Comparison of ORR performance of some recently reported non-noble-metal catalysts in 0.1 M KOH.

| Catalyst                               | Electrolyte | $E_{\eta=10}\left(V\right)$ vs. RHE | Reference |
|----------------------------------------|-------------|-------------------------------------|-----------|
| CoP/Ni <sub>2</sub> P@NC/NF            | 1.0 M KOH   | 1.60                                | This work |
| NiCoP/NF                               | 1.0 M KOH   | 1.58                                | 8         |
| CoNi <sub>2</sub> Se <sub>4</sub>      | 1.0 M KOH   | 1.61                                | 12        |
| FeCoNi                                 | 1.0 M KOH   | 1.687                               | 13        |
| Co <sub>x</sub> Ni <sub>y</sub> P      | 1.0 M KOH   | 1.59                                | 14        |
| CoNiP@LDH                              | 1.0 M KOH   | 1.44                                | 16        |
| NiCo <sub>2</sub> S <sub>4</sub> NA/CC | 1.0 M KOH   | 1.68                                | 30        |
| CoP-MNA/NF                             | 1.0M KOH    | 1.62                                | 31        |
| Ni <sub>5</sub> P <sub>4</sub> Films   | 1.0 M KOH   | ~ 1.7                               | 32        |

**Table S5.** The overall water splitting activities of CoP/Ni<sub>2</sub>P@NC/NF and the previously reported bifunctional non-noble metal catalysts in 1.0 M KOH.

| Air catalyst used                                | Peak power density     | Cycling tests                       | Reference |
|--------------------------------------------------|------------------------|-------------------------------------|-----------|
|                                                  | (mW cm <sup>-2</sup> ) |                                     |           |
| CoP/Ni <sub>2</sub> P@NC/NF                      | 77                     | 20 min/cycle for 100 cycles; 33.3 h | This work |
| NiO/CoN PINWs                                    | 79.6                   | 10 min/cycle for 50 cycles; 8.3 h   | 25        |
| CoP@SNC                                          | N.A.                   | 600 s/cycle for 180 cycles; 30 h    | 27        |
| NiO/Ni(OH) <sub>2</sub>                          | N.A.                   | 70 min/cycle for 70 cycles; 82 h    | 33        |
| NPMCs                                            | 55                     | N.A.                                | 34        |
| N-GRW                                            | 65                     | N.A.                                | 35        |
| MnO <sub>2</sub> /Co <sub>3</sub> O <sub>4</sub> | 33                     | 7 min/cycle for 60 cycles; 7 h      | 36        |
| Co@Co <sub>3</sub> O <sub>4</sub> @NC-900        | ~ 64                   | 120 min/cycle for 100 cycles; 200 h | 37        |
| Co-Ni-S@NSPC                                     | 51.6                   | 20 min/cycle for 180; 60 h          | 38        |
| 200-CNTs-Co/NC                                   | 83.1                   | N.A.                                | 39        |
| ZnCo <sub>2</sub> O <sub>4</sub> /N-CNT          | 82.3                   | 20 min/cycle for 17 cycles; 5.67 h  | 40        |

**Table S6.** The comparisons of some recently reported Co/Ni-based cathodes for Zn-air battery in alkaline environment.

## References

- 1. A. Han, H. Chen, H. Zhang, Z. Sun and P. Du, J. Mater. Chem. A, 2016, 4, 10195-10202.
- 2. J. Deng, P. Ren, D. Deng and X. Bao, Angew. Chem. Int. Edit., 2015, 54, 2100-2104.
- 3. X.-y. Yan, S. Devaramani, J. Chen, D.-l. Shan, D.-d. Qin, Q. Ma and X.-q. Lu, *New J. Chem.*, 2017, **41**, 2436-2442.
- 4. Z. Niu, J. Jiang and L. Ai, *Electrochem. Commun.*, 2015, **56**, 56-60.
- J. F. Callejas, C. G. Read, E. J. Popczun, J. M. McEnaney and R. E. Schaak, *Chem. Mater.*, 2015, 27, 3769-3774.
- Q. Liu, J. Tian, W. Cui, P. Jiang, N. Cheng, A. M. Asiri and X. Sun, *Angew. Chem. Int. Edit.*, 2014, 53, 6710-6714.
- S. He, S. He, F. Gao, X. Bo, Q. Wang, X. Chen, J. Duan and C. Zhao, *Appl. Surf. Sci.*, 2018, 457, 933-941.
- H. Liang, A. N. Gandi, D. H. Anjum, X. Wang, U. Schwingenschlögl and H. N. Alshareef, Nano Lett., 2016, 16, 7718-7725.
- 9. C. Jiao, M. Hassan, X. Bo and M. Zhou, J. Alloy. Compd., 2018, 764, 88-95.
- 10. W. Li, X. Gao, X. Wang, D. Xiong, P.-P. Huang, W.-G. Song, X. Bao and L. Liu, *J. Power Sources*, 2016, **330**, 156-166.
- 11. D. Wang, X. Zhang, Z. Du, Z. Mo, Y. Wu, Q. Yang, Y. Zhang and Z. Wu,*Int. J. Hydrogen Energ.*, 2017, **42**, 3043-3050.
- 12. B. GolrokháAmin, *Chem. Commun.* 2017, **53**, 5412-5415.
- 13. Y. Yang, Z. Lin, S. Gao, J. Su, Z. Lun, G. Xia, J. Chen, R. Zhang and Q. Chen, *ACS Catal.*, 2016, **7**, 469-479.
- 14. L. Yan, L. Cao, P. Dai, X. Gu, D. Liu, L. Li, Y. Wang and X. Zhao, *Adv. Funct. Mater*, 2017, **27**, 1703455.
- 15. J. Shi, J. Hu, Y. Luo, X. Sun and A. M. Asiri, *Catal. Sci. Technol.*, 2015, **5**, 4954-4958.
- 16. L. Zhou, S. Jiang, Y. Liu, M. Shao, M. Wei and X. Duan, *ACS Appl. Energy Mate.*, 2018, **1**, 623-631.
- 17. N. Jiang, B. You, M. Sheng and Y. Sun, *Angew. Chem. Int. Edit.*, 2015, **127**, 6349-6352.
- M. Shalom, D. Ressnig, X. Yang, G. Clavel, T. P. Fellinger and M. Antonietti, *J. Mate. Chem. A*, 2015, 3, 8171-8177.
- 19. C.-C. Weng, J.-T. Ren, Z.-P. Hu and Z.-Y. Yuan, *ACS Sustain. Chem. Eng.*, 2018, **6**, 15811-15821.
- H. Zhong, Y. Luo, S. He, P. Tang, D. Li, N. Alonso-Vante and Y. Feng, ACS Appl. Mater. Inter., 2017, 9, 2541-2549.
- 21. C. Wu, Y. Zhang, D. Dong, H. Xie and J. Li, *Nanoscale*, 2017, 9, 12432-12440.
- 22. X. Li, Q. Jiang, S. Dou, L. Deng, J. Huo and S. Wang, *J. Mater. Chem. A*, 2016, **4**, 15836-15840.
- 23. Y. Hao, Y. Xu, W. Liu and X. Sun, *Mater. Horiz.*, 2018, **5**, 108-115.
- 24. J. Long, R. Li and X. Gou, *Catal. Commun.*, 2017, **95**, 31-35.
- 25. J. Yin, Y. Li, F. Lv, Q. Fan, Y.-Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi and S. Guo, *ACS Nano*, 2017, **11**, 2275-2283.
- 26. X. Han, X. Wu, C. Zhong, Y. Deng, N. Zhao and W. Hu, *Nano Energy*, 2017, **31**, 541-550.
- 27. T. Meng, Y.-N. Hao, L. Zheng and M. Cao, *Nanoscale*, 2018, **10**, 14613-14626.
- 28. H. Yang, Y. Zhang, F. Hu and Q. Wang, *Nano Lett.*, 2015, **15**, 7616-7620.
- 29. H. Jiang, C. Li, H. Shen, Y. Liu, W. Li and J. Li, *Electrochim. Acta*, 2017, **231**, 344-353.
- 30. D. Liu, Q. Lu, Y. Luo, X. Sun and A. M. Asiri, *Nanoscale*, 2015, **7**, 15122-15126.

- 31. Y. P. Zhu, Y. P. Liu, T. Z. Ren and Z. Y. Yuan, *Adv. Funct. Mater.*, 2015, **25**, 7337-7347.
- 32. M. Ledendecker, S. Krick Calderón, C. Papp, H. P. Steinrück, M. Antonietti and M. Shalom, *Angew. Chem. Int. Edit.*, 2015, **54**, 12361-12365.
- 33. D. U. Lee, J. Fu, M. G. Park, H. Liu, A. Ghorbani Kashkooli and Z. Chen, *Nano Lett.*, 2016, **16**, 1794-1802.
- 34. J. Zhang, Z. Zhao, Z. Xia and L. Dai, *Nat. Nanotechnol.*, 2015, **10**, 444.
- H. B. Yang, J. Miao, S.-F. Hung, J. Chen, H. B. Tao, X. Wang, L. Zhang, R. Chen, J. Gao and H. M.
  Chen, *Sci. Adv.*, 2016, 2, e1501122.
- 36. G. Du, X. Liu, Y. Zong, T. A. Hor, A. Yu and Z. Liu, *Nanoscale*, 2013, **5**, 4657-4661.
- Z. Guo, F. Wang, Y. Xia, J. Li, A. G. Tamirat, Y. Liu, L. Wang, Y. Wang and Y. Xia, *J. Mater. Chem. A*, 2018, 6, 1443-1453.
- 38. W. Fang, H. Hu, T. Jiang, G. Li and M. Wu, *Carbon*, 2019, **146**, 476-485.
- S. Liu, I. S. Amiinu, X. Liu, J. Zhang, M. Bao, T. Meng and S. Mu, *Chem. Eng. J.*, 2018, 342, 163-170.
- 40. Z. Q. Liu, H. Cheng, N. Li, T. Y. Ma and Y. Z. Su, *Adv, Mater.*, 2016, **28**, 3777-3784.