Electronic Supplementary Information for:

Molecular Design to Increase the Photosensitivity of Photochromic Phenoxyl-Imidazolyl Radical Complex Derivatives

Ruiji Li,^a Yoichi Kobayashi,^b Katsuya Mutoh^a and Jiro Abe*^a

^{a.} Department of Chemistry, School of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan. E-mail: jiro_abe@chem.aoyama.ac.jp ^{b.} Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 525-8577, Japan

CONTENTS

1. ¹ H NMR Spectra	S2
2. HR-ESI-TOF-MS-Spectra	S12
3. HPLC Chromatogram	S16
4. Transient Vis-NIR Absorption Spectra	S18
5. TD-DFT Calculations for the Vis-vis Absorption Spectra	S19
6. Transient Absorption Spectra and First-Order Kinetic Profiles	S46
7. Eyring Plot and Activation Parameters	S47
8. Dihedral Angle Between PIC Unit and π -Electron Conjugation Unit	S48
9. Reference	S49

1. ¹H NMR Spectra

Figure S1. ¹H NMR spectrum of 3 in CDCl₃ (* solvent peaks).

Figure S2. ¹H NMR spectrum of 4 in CDCl₃ (* solvent peaks).

Figure S3. ¹H NMR spectrum of 5a in CDCl₃ (* solvent peaks).

Figure S4. ¹H NMR spectrum of 6a in CDCl₃ (* solvent peaks).

Figure S5. ¹H NMR spectrum of **7a** in DMSO- d_6 (* solvent peaks).

Figure S6. [']H NMR spectrum of **Ph-PIC** in DMSO-*d*₆ (* solvent peaks).

Figure S7. ¹H NMR spectrum of 5b in CDCl₃ (* solvent peaks).

Figure S8. ¹H NMR spectrum of 6b in CDCl₃ (* solvent peaks).

Figure S9. ¹H NMR spectrum of **7b** in DMSO- d_6 (* solvent peaks).

Figure S10. ¹H NMR spectrum of Np-PIC in DMSO-*d*₆ (* solvent peaks).

Figure S11. ¹H NMR spectrum of 5c in CDCl₃ (* solvent peaks).

Figure S12. ¹H NMR spectrum of 6c in CDCl₃ (* solvent peaks).

Figure S13. ¹H NMR spectrum of **7c** in DMSO- d_6 (* solvent peaks).

Figure S14. ¹H NMR spectrum of An-PIC in DMSO-*d*₆ (* solvent peaks).

Figure S15. ¹H NMR spectrum of **5d** in CDCl₃ (* solvent peaks).

Figure S16. ¹H NMR spectrum of compound 6d in CDCl₃ (* solvent peaks).

Figure S17. ¹H NMR spectrum of **7d** in DMSO- d_6 (* solvent peaks).

Figure S18. ¹H NMR spectrum of compound Py-PIC in DMSO-*d*₆ (* solvent peaks).

2. HR-ESI-TOF-MS-Spectra

Figure S20. HR-ESI-TOF-MS of 6a.

Figure S21. HR-ESI-TOF-MS of Ph-PIC.

Figure S22. HR-ESI-TOF-MS of 6b.

Figure S23. HR-ESI-TOF-MS of 7b.

Figure S24. HR-ESI-TOF-MS of Np-PIC.

Figure S25. HR-ESI-TOF-MS of 6c.

Figure S26. HR-ESI-TOF-MS of 7c.

Figure S28. HR-ESI-TOF-MS of 7d.

Figure S29. HR-ESI-TOF-MS of Py-PIC.

3. HPLC Chromatogram

HPLC analysis was performed by using a reverse phase analytical column (Mightysil RP18, 25cm×4.6mm, 5µm particle) from Kanto Chemical Co., Inc. The mobile phase was CH₃CN (detection wavelength; 254, 300 and 355 nm). The HPLC analytical system consists of a pump unit (PU-2080 plus, JASCO), a photodiode array detector (MD-2018, JASCO), and a control unit (LCNetII/ADC, JASCO).

Figure S30. HPLC charts of Ph-PIC (inject: $2\mu L$, $\lambda_{abs.} = 254$ nm and 355 nm, eluent: CH₃CN).

Figure S31. HPLC charts of Np-PIC (inject: $2\mu L$, $\lambda_{abs.} = 254$ nm and 355 nm, eluent: CH₃CN).

Figure S32. HPLC charts of An-PIC (inject: $2\mu L$, $\lambda_{abs.} = 254$ nm and 355 nm, eluent: CH₃CN).

Figure S33. HPLC charts of Py-PIC (inject: $2\mu L$, $\lambda_{abs.} = 254$ nm and 355 nm, eluent: CH₃CN).

4. Transient Vis-NIR Absorption Spectra

Figure S34. The profile of the transient absorption spectra of **PICR**, **Ph-PICR**, **Np-PICR**, **An-PICR** and **Py-PICR** in toluene at 20 ns after 355 nm excitation, observed at 700 nm (183 K, power: 4.2 mJ).

Figure S35. Transient vis-NIR spectra of (a) PIC, (b) Ph-PIC, (c) Np-PIC, (d) An-PIC and (e) Py-PIC in toluene. (excitation wavelength: 355 nm, Temp.: 183 K, power: 4.2 mJ, time interval: 4.0 ns).

5. TD-DFT Calculations for the UV-vis Absorption Spectra

All calculations were carried out using the Gaussian 09 program (Revision D.01).^{S1} The molecular structures were fully optimized at the UM052X/6-31G(d) level of theory, and analytical second derivative was computed using vibrational analysis to confirm each stationary point to be a minimum. TDDFT calculations were performed at the UMPW1PW91/6-31+G(d,p) level of the theory for the optimized structures.

Figure S36. (a) Molecular structure of compound Ph-PIC; (b) UV–vis absorption spectrum of Ph-PIC. The calculated spectra are shown by the perpendicular lines. (c) The calculated molecular orbitals of Ph-PIC.

Т	Samula al		Coordinates (Angstroms)	
Tag	Symbol	Х	Y	Z
1	С	3.4579610	-2.2642060	-0.0014800
2	С	2.8417340	-3.5175660	0.1340690
3	С	1.4629050	-3.6485610	0.2632010
4	С	0.6900550	-2.4947500	0.2593690
5	С	1.2966780	-1.2407040	0.1229960

Table S1. Standard Orientation of the Optimized Geometry for Ph-PIC

6	С	2.6643770	-1.1077390	-0.0027050
7	С	4.9301950	-2.1603330	-0.1419040
8	С	-0.7468820	-2.2697770	0.3405390
9	С	0.2463990	-0.1159160	0.1519010
10	С	0.2023200	0.6373120	-1.1396730
11	С	0.5155320	1.9317140	-1.2646120
12	С	0.9643420	2.6815490	-0.0466180
13	Ν	-1.8553740	-2.9630290	0.3356800
14	С	-2.8592870	-2.0189570	0.2712800
15	С	5.6359280	-1.1354800	0.4970580
16	С	7.0156970	-1.0344850	0.3628490
17	С	7.7127970	-1.9575630	-0.4115100
18	С	7.0203170	-2.9815840	-1.0513560
19	C	5.6403080	-3.0817000	-0.9184800
20	C	0.8728390	2.0203810	1.2975610
21	C	0.5051410	0.7353810	1.3557980
22	C	0.4301280	2 6752090	-2 5953180
22	0	1 3929540	3 8213800	-0 1438250
23	C	1 1938860	2 8441900	2 5430000
24	C	2 6643090	3 2984190	2.5450000
25	C C	0.9873140	2 0225080	3 8198610
20	C C	0.2647060	4 0684470	2 6190900
27	C C	1 8291260	3 1369070	-3.0394360
20	C C	-0 5101470	3.8860360	-2 4533760
30	C	-0.5101470	1.7729600	-2.4555700
31	C C	-0.1442050	0.7321510	-3.0920340
22	N	-2.3302430	-0.7521510	0.2243790
32	N C	-0.9703490	-0.9232100	0.3038040
24	C	-4.2707730	-2.4339280	0.2302170
54 25	C	-2.9292270	0.5945570	-0.0024430
33 26	C	-2.0894000	1.000/840	0.868/810
30	C	-3.21/0210	2.9198170	0.6009030
3/	C	-4.0033860	5.1210/50	-0.5282590
38	C	-5.2986900	-1.58/58/0	0.6855810
39	C	-6.6212560	-2.0150220	0.6515100
40	C	-6.9357360	-3.2938790	0.2006260
41	C	-5.9151150	-4.14/3450	-0.2108940
42	C	-4.5927600	-3.7222810	-0.1831540
43	C	-4.2635700	2.0589940	-1.3920380
44	С	-3.7245810	0.8039730	-1.1345/10
45	H	3.4638150	-4.4032510	0.1630080
46	H	0.9999550	-4.6200330	0.3727050
47	H	3.1147650	-0.1299790	-0.1312760
48	Н	-0.1104660	0.0412160	-1.9871000
49	Н	5.1011440	-0.4305350	1.1220840
50	Н	7.5473240	-0.2393880	0.8701630
51	Н	8.7874500	-1.8790540	-0.5160420
52	Н	7.5538980	-3.6981730	-1.6628450
53	Н	5.1026230	-3.8628150	-1.4418120

54	Н	0.4221540	0.2056060	2.2964540
55	Н	2.8576950	3.9467080	1.6577830
56	Н	2.8942360	3.8437940	3.4274940
57	Н	3.3282170	2.4314350	2.4541870
58	Н	1.2100430	2.6521690	4.6834170
59	Н	1.6525360	1.1566510	3.8592210
60	Н	-0.0451160	1.6764320	3.9182380
61	Н	0.4871770	4.6328910	3.5281430
62	Н	0.3974560	4.7230430	1.7611360
63	Н	-0.7806640	3.7510900	2.6670390
64	Н	2.4962430	2.2783760	-3.1514800
65	Н	1.7521990	3.6355820	-4.0091970
66	Н	2.2618190	3.8310550	-2.3232930
67	Н	-0.6066490	4.3779960	-3.4248980
68	Н	-0.1245510	4.6076790	-1.7372030
69	Н	-1.5030760	3.5609480	-2.1330420
70	Н	-0.2162250	2.3477370	-4.6179980
71	Н	0.4960790	0.9094990	-3.8886380
72	Н	-1.1468130	1.4211980	-3.4353750
73	Н	-2.0935730	1.4987560	1.7577330
74	Н	-3.0193530	3.7407560	1.2787520
75	Н	-4.4188070	4.1010880	-0.7334910
76	Н	-5.0618650	-0.6001960	1.0596510
77	Н	-7.4063920	-1.3498760	0.9888150
78	Н	-7.9662820	-3.6254100	0.1777240
79	Н	-6.1497850	-5.1468210	-0.5553980
80	Н	-3.7910390	-4.3782650	-0.4946090
81	Н	-4.8785140	2.2096350	-2.2703010
82	Н	-3.9139270	-0.0254930	-1.8045060

Table S2. TDDFT calculation data of Ph-PIC

Wavelength (nm)	Oscillator strength	The main transition	coefficient
438.20	0.0003	$HOMO \rightarrow LUMO$	0.70445
342.27	0.5148	$HOMO \rightarrow LUMO+1$	0.69297
311.64	0.2222	$HOMO \rightarrow LUMO+2$	0.68658
299.71	0.1050	$HOMO-1 \rightarrow LUMO$	0.15589
		$HOMO \rightarrow LUMO+3$	0.66447

Figure S37. (a) Molecular structure of compound **Np-PIC**; (b) UV–vis absorption spectrum of **Np-PIC**. The calculated spectra are shown by the perpendicular lines. (c) The calculated molecular orbitals of **Np-PIC**.

	Table 55. Standar		Junized Geometry for I	vp-11C
Tag	Symph al		Coordinates (Angstroms)	
Tag	Symbol	Х	Y	Z
1	С	-3.2514890	1.2342960	0.6323260
2	С	-2.9031380	2.5693630	0.8909350
3	С	-1.5758970	2.9833490	0.9426760
4	С	-0.5826960	2.0347940	0.7324090
5	С	-0.9226250	0.7020830	0.4749370
6	С	-2.2390570	0.2871390	0.4285260
7	С	-4.6738020	0.8021820	0.6321400
8	С	0.8709930	2.1231740	0.6853570
9	С	0.3379700	-0.1614730	0.2899290
10	С	0.4169070	-0.7464070	-1.0845970
11	С	0.3566130	-2.0565610	-1.3463820
12	С	0.1722680	-3.0078550	-0.2027260
13	Ν	1.8046140	3.0385490	0.6974420

Table S3. Standard Orientation of the Optimized Geometry for Np-PIC

14	С	2.9730530	2.3512240	0.4423010
15	С	-5.6523070	1.4212700	-0.2101900
16	С	-7.0062270	0.9909810	-0.1172130
17	С	-7.3536660	-0.0506460	0.7796370
18	С	-6.3954740	-0.6531710	1.5495060
19	С	-5.0537280	-0.2202230	1.4734310
20	С	0.2651300	-2.4912560	1.2035390
21	С	0.3768010	-1.1718590	1.3944130
22	С	0.4755550	-2.6216020	-2.7597140
23	0	-0.0403170	-4.1926070	-0.4108410
24	С	0.2402040	-3.4938130	2.3554840
25	С	-1.1088970	-4.2342370	2.3799320
26	С	1.3935320	-4.5010460	2.2023680
27	С	0.4123850	-2.7904430	3.7061240
28	С	0.7688710	-1.5095330	-3.7726000
29	С	1.6448800	-3.6214200	-2.8194340
30	С	-0.8358360	-3.3113360	-3.1737300
31	С	2.7227370	0.9935250	0.2613940
32	Ν	1.3665070	0.8735760	0.4572250
33	С	4.2603320	3.0623790	0.3929900
34	С	3.5595610	-0.1333410	-0.1854490
35	С	3.6244090	-1.3273390	0.5384350
36	C	4.3745940	-2.3978420	0.0623930
37	C	5.0825350	-2.2800940	-1.1305440
38	С	5.4754240	2.4110360	0.6313700
39	C	6.6732760	3.1141810	0.5745250
40	C	6.6754630	4.4774060	0.2925550
41	C	5.4678730	5.1351810	0.0724610
42	C	4.2688770	4.4349510	0.1227250
43	C	5.0368300	-1.0866250	-1.8486130
44	C	4.2762680	-0.0209290	-1.3823400
45	C	-7.9879210	1.6020310	-0.9387570
46	C	-7 6467560	2 5830230	-1 8316230
47	C	-6 2979410	2.9880190	-1 9510110
48	C C	-5 3274440	2.9000190	-1 1642590
40	н	-3 6944970	3 2866220	1 0698570
50	н	-1 3177380	4 0135530	1.1481850
51	н	-2.4916620	-0.7466410	0.2204150
52	н	0.5295040	-0.0119860	-1 8714250
53	н П	8 3805230	-0.0119800	-1.8714230
55	н П	-6.5895250	-0.3030300	2 2200510
55	11 11	-0.0004830	-1.4320900	2.2299310
55	11 11	-4.3070990	-0.0784420	2.1109920
50	п	0.4484300	-0.7399800	2.3646660
51 50	п	-1.1508550	-4.9155/10	5.2363000 2.4010400
38 50	Н	-1.950/980	-3.3219340	2.4910490
39 60	н	-1.2003340	-4.8103290	1.4/10040
0U (1	Н	1.3/80300	-5.1960180	3.0457760
61	Н	2.3564080	-3.9824820	2.2106/80

62	Н	1.3056520	-5.0705000	1.2803510
63	Н	-0.4006710	-2.0883880	3.9055190
64	Н	0.4039980	-3.5422440	4.4978010
65	Н	1.3629250	-2.2538420	3.7670090
66	Н	0.8797440	-1.9568730	-4.7622710
67	Н	-0.0453780	-0.7830030	-3.8277070
68	Н	1.6979740	-0.9857200	-3.5329820
69	Н	1.7583050	-3.9760820	-3.8472390
70	Н	1.4681460	-4.4797050	-2.1754410
71	Н	2.5763470	-3.1351790	-2.5190080
72	Н	-1.6663190	-2.6013840	-3.1453650
73	Н	-0.7392010	-3.6795530	-4.1984940
74	Н	-1.0646400	-4.1502550	-2.5210790
75	Н	3.0909180	-1.4121220	1.4762310
76	Н	4.4126000	-3.3208470	0.6273480
77	Н	5.6686300	-3.1129590	-1.4979120
78	Н	5.4820370	1.3568130	0.8754570
79	Н	7.6057910	2.5970700	0.7629860
80	Н	7.6093310	5.0237810	0.2518040
81	Н	5.4596930	6.1971340	-0.1397040
82	Н	3.3245940	4.9366320	-0.0404600
83	Н	5.5878550	-0.9885230	-2.7752960
84	Н	4.2302030	0.9085280	-1.9362000
85	Н	-9.0154440	1.2692880	-0.8495450
86	Н	-8.4037880	3.0408420	-2.4554200
87	Н	-6.0283310	3.7458600	-2.6756550
88	Н	-4.2961500	2.7260560	-1.2796540

Table S4. TDDFT calculation data of Np-PIC

Wavelength (nm)	Oscillator strength	The main transition	coefficient
436.97	0.0004	$HOMO \rightarrow LUMO$	0.70362
346.96	0.5196	$HOMO \rightarrow LUMO+1$	0.67996
317.35	0.0778	$HOMO \rightarrow LUMO+2$	0.64062
300.60	0.1252	HOMO-1 \rightarrow LUMO+3	0.66027
297.10	0.2618	HOMO-1 \rightarrow LUMO+1	-0.40960
		$HOMO \rightarrow LUMO+3$	0.50938

Figure S38. (a) Molecular structure of compound **An-PIC**; (b) UV–vis absorption spectrum of **An-PIC**. The calculated spectra are shown by the perpendicular lines. (c) The calculated molecular orbitals of **An-PIC**.

	Table 55. Stallda		Junized Geometry for F	
Tag	Szumh al		Coordinates (Angstroms)	
Tag	Symbol	Х	Y	Z
1	С	-2.7333330	-1.5698130	-0.3683430
2	С	-2.2997100	-2.8340480	-0.7937070
3	С	-0.9482950	-3.1302250	-0.9537240
4	С	-0.0214620	-2.1287490	-0.6934850
5	С	-0.4495420	-0.8652940	-0.2699850
6	С	-1.7872930	-0.5721840	-0.0998690
7	С	-4.1849510	-1.2713500	-0.2216010
8	С	1.4343440	-2.0860460	-0.7557020
9	С	0.7409110	0.0965560	-0.1115440
10	С	0.8850920	0.5959300	1.2900570
11	С	0.6931200	1.8689000	1.6536720
12	С	0.2969390	2.8638440	0.6039420
13	Ν	2.4402910	-2.9046950	-0.9214460
14	С	3.5616820	-2.1353260	-0.6887720
15	С	-4.7836040	-0.3011120	-1.0507160

Table S5. Standard Orientation of the Optimized Geometry for An-PIC

16	С	-6.1776360	-0.0007040	-0.8933080
17	С	-6.9267800	-0.6875050	0.0597810
18	С	-6.3476900	-1.6533430	0.8797640
19	С	-4.9492330	-1.9461770	0.7510030
20	С	0.2995080	2.4497300	-0.8386310
21	С	0.5652560	1.1730460	-1.1372030
22	С	0.8683480	2.3499980	3.0918160
23	Ο	-0.0131480	4.0031770	0.9168520
24	С	0.0015270	3.5002790	-1.9054290
25	С	-1.4278510	4.0416120	-1.7171220
26	С	1.0217220	4.6489560	-1.8175450
27	С	0.0902210	2.9017530	-3.3132860
28	С	1.3675640	1.2157570	3.9935660
29	С	1.9185730	3.4746860	3.1392580
30	С	-0.4735290	2.8513200	3.6539330
31	С	3.2093520	-0.8274380	-0.3661220
32	Ν	1.8366410	-0.8202790	-0.4470860
33	С	4.9041840	-2.7289650	-0.7890810
34	С	3.9714230	0.3422110	0.1039280
35	С	4.7984850	0.2222630	1.2262440
36	С	5.4835920	1.3286670	1.7145950
37	С	5.3435680	2.5686270	1.0943040
38	С	6.0409060	-1.9566720	-1.0505650
39	С	7.2939300	-2.5541260	-1.1269940
40	С	7.4292410	-3.9288580	-0.9561740
41	С	6.2988200	-4.7054900	-0.7149490
42	С	5.0456410	-4.1116780	-0.6326290
43	С	4.5231550	2.6948080	-0.0232890
44	С	3.8473160	1.5859160	-0.5219500
45	С	-6.7780980	0.9959920	-1.7235610
46	С	-6.0502850	1.6545470	-2.6668800
47	С	-4.6724950	1.3407350	-2.8477420
48	С	-4.0630220	0.3963360	-2.0750900
49	С	-7.1209780	-2.3485650	1.8605560
50	С	-6.5454230	-3.2680240	2.6830790
51	С	-5.1508100	-3.5398420	2.5807450
52	С	-4.3807820	-2.9026630	1.6532670
53	Н	-3.0446590	-3.5910440	-1.0063140
54	Н	-0.6241670	-4.1078040	-1.2842440
55	Н	-2.1072120	0.4120050	0.2242110
56	Н	1.1563430	-0.1680800	2.0070530
57	Н	-7.9822830	-0.4625040	0.1685090
58	Н	0.5881910	0.8147240	-2.1588820
59	Н	-1.6502510	4.7526700	-2.5174090
60	Н	-2.1563720	3.2276310	-1.7728280
61	H	-1.5361960	4,5469450	-0.7609120
62	Н	0.8153050	5.3768480	-2.6062580
63	Н	2.0366700	4.2691170	-1.9663070
				1.,000010

64	Н	0.9700260	5.1534290	-0.8558600
65	Н	-0.6442360	2.1057020	-3.4618050
66	Н	-0.1182390	3.6866730	-4.0428150
67	Н	1.0862920	2.5049290	-3.5268700
68	Н	1.5043910	1.6056720	5.0040490
69	Н	0.6499480	0.3936000	4.0505740
70	Н	2.3290150	0.8256240	3.6493660
71	Н	2.0759320	3.7713480	4.1796710
72	Н	1.5938850	4.3467950	2.5765890
73	Н	2.8710210	3.1229300	2.7349710
74	Н	-1.2173730	2.0506810	3.6375490
75	Н	-0.3334320	3.1631230	4.6923110
76	Н	-0.8498810	3.6967050	3.0832400
77	Н	4.8958190	-0.7431220	1.7071040
78	Н	6.1214690	1.2249520	2.5832140
79	Н	5.8716060	3.4314980	1.4799120
80	Н	5.9427900	-0.8905000	-1.2076970
81	Н	8.1649710	-1.9440540	-1.3316910
82	Н	8.4060240	-4.3918230	-1.0187480
83	Н	6.3935950	-5.7769930	-0.5889790
84	Н	4.1595790	-4.7049010	-0.4503370
85	Н	4.4139560	3.6550190	-0.5117830
86	Н	3.2221040	1.6808160	-1.4005270
87	Н	-7.8302650	1.2129130	-1.5817200
88	Н	-6.5137220	2.4093780	-3.2889660
89	Н	-4.1064340	1.8534240	-3.6156140
90	Н	-3.0213050	0.1578260	-2.2400360
91	Н	-8.1776580	-2.1200160	1.9351410
92	Н	-7.1390190	-3.7882640	3.4237600
93	Н	-4.6984950	-4.2563840	3.2545850
94	Н	-3.3207910	-3.1077080	1.5986390

Table S6. TDDFT calculation data of An-PIC

Wavelength (nm)	Oscillator strength	The main transition	coefficient
435.87	0.0006	$HOMO-1 \rightarrow LUMO$	0.23646
		$HOMO \rightarrow LUMO$	0.66157
395.81	0.2781	$HOMO \rightarrow LUMO+1$	0.67967
332.41	0.1443	$\rm HOMO \rightarrow \rm LUMO{+}2$	0.68728
308.63	0.1759	$\text{HOMO-1} \rightarrow \text{LUMO+2}$	-0.39268
		$HOMO \rightarrow LUMO+3$	0.42256

Figure S39. (a) Molecular structure of compound **Py-PIC**; (b) UV–vis absorption spectrum of **Py-PIC**. The calculated spectra are shown by the perpendicular lines. (c) The calculated molecular orbitals of **Py-PIC**.

	Table 57. Standard Orientation of the Optimized Geometry for Ty-Tre						
Tag	Symbol		Coordinates (Angstroms)				
Tag	Symbol	Х	Y	Z			
1	С	2.3003110	0.8577890	-0.8957830			
2	С	2.0450290	2.1969310	-1.2310020			
3	С	0.7526570	2.7121930	-1.2559150			
4	С	-0.3003370	1.8615110	-0.9435120			
5	С	-0.0536600	0.5251970	-0.6091370			
6	С	1.2271860	0.0098730	-0.5880210			
7	С	3.6805830	0.3088370	-0.9299550			
8	С	-1.7400290	2.0668400	-0.8524580			
9	С	-1.3679600	-0.2212370	-0.3176050			
10	С	-1.4394280	-0.6879640	1.1018990			
11	С	-1.4625490	-1.9740640	1.4680350			
12	С	-1.3871890	-3.0233400	0.4005660			

Table S7. Standard Orientation of the Optimized Geometry for Py-PIC

13	Ν	-2.6001130	3.0510750	-0.8866620
14	С	-3.8069600	2.4744530	-0.5482650
15	С	4.7467640	0.8881100	-0.2109710
16	С	6.0502700	0.3316050	-0.3389630
17	С	6.2693150	-0.8032700	-1.1623650
18	С	5.1842190	-1.3723690	-1.8329310
19	С	3.9176590	-0.8227190	-1.7154670
20	С	-1.4987950	-2.6138780	-1.0390900
21	С	-1.5225350	-1.3091760	-1.3340710
22	С	-1.5705110	-2.4154270	2.9253460
23	0	-1.2453660	-4.1998830	0.6967810
24	С	-1.5782200	-3.7022800	-2.1071670
25	С	-0.2736830	-4.5194100	-2.1182620
26	C	-2.7787590	-4.6257890	-1.8345520
20 27	C	-1.7635390	-3.0973340	-3.5030510
28	C	-1.7485610	-1.2085190	3.8530920
29	C	-2 8037490	-3 3199800	3 0999550
30	C C	-0.2966920	-3 1637770	3 3547830
31	C C	-3 6546190	1 1140490	-0 2951040
32	N	-2 3207980	0.8756870	-0 5318040
32	C	-5.0304580	3 2890110	-0.4870270
34	C C	-4 5566320	0.0793110	0 2402270
35	C C	-5 2019840	0.2963950	1 4629790
36	C C	-6.0204030	-0.6852330	2 0092560
37	C	-6.1968/10	-1.8978160	1 3457640
38	C C	6 30/0510	-1.8978100	0.6334480
30	C C	-0.30+0310	2.7287800	-0.0334480
39 40	C C	-7.4373430	4 0014570	-0.5588550
40	C C	-7.5104500	4.9014J70 5 4677150	-0.3498110
41	C	-0.0300130	5.4077150	-0.2223900
42	C	-4.9138080	4.0092910	-0.2912840
45	C	-3.3004280	-2.1191840	0.1275250
44	C	-4.7314270	-1.132/700	-0.42/0840
45	C	/.1500900	0.9092430	0.3645470
46	C	6.9465610	2.0287420	1.2104470
4/	C	5.6136940	2.5438/00	1.3558/80
48	C	4.5689490	2.0020040	0.6860930
49	C	7.5984440	-1.3382040	-1.2844430
50	C	8.6409760	-0.7803320	-0.626/680
51	C	8.4536520	0.3634890	0.2242970
52	C	9.5175440	0.9482550	0.9174820
53	C	9.3095480	2.0489490	1.7405960
54	С	8.0357650	2.5841510	1.8889050
55	Н	2.8803030	2.8339860	-1.4940470
56	Н	0.5656100	3.7439640	-1.5216970
57	Н	1.4070640	-1.0259860	-0.3221790
58	Н	-1.4725710	0.1138160	1.8281650
59	Н	5.3444700	-2.2412600	-2.4601420
60	Н	3.0901480	-1.2548690	-2.2651730

61	Н	-1.5988310	-0.9521090	-2.3534850
62	Н	-0.3220260	-5.2643450	-2.9169090
63	Н	0.5809420	-3.8663720	-2.3147310
64	Н	-0.1186150	-5.0297620	-1.1713240
65	Н	-2.8426460	-5.3768600	-2.6259600
66	Н	-3.7095680	-4.0517800	-1.8386740
67	Н	-2.6818030	-5.1346030	-0.8786670
68	Н	-0.9190830	-2.4655710	-3.7884170
69	Н	-1.8325050	-3.9077090	-4.2312140
70	Н	-2.6820000	-2.5081700	-3.5718930
71	Н	-1.8528030	-1.5667800	4.8791170
72	Н	-0.8854500	-0.5388930	3.8234050
73	Н	-2.6479830	-0.6404030	3.6015640
74	Н	-2.9078520	-3.5813290	4.1563150
75	Н	-2.7079350	-4.2381490	2.5248240
76	Н	-3.7088940	-2.7943630	2.7852380
77	Н	0.5795920	-2.5198540	3.2453450
78	Н	-0.3829450	-3.4431150	4.4081950
79	Н	-0.1501590	-4.0654000	2.7651010
80	Н	-5.0549600	1.2399280	1.9737110
81	Н	-6.5153060	-0.5063900	2.9552930
82	Н	-6.8285100	-2.6650080	1.7752540
83	Н	-6.4074410	1.6678110	-0.8192490
84	Н	-8.4166140	3.0832530	-0.6756580
85	Н	-8.2006980	5.5239690	-0.2947790
86	Н	-5.9466060	6.5345520	-0.0680210
87	Н	-3.9271120	5.0983600	-0.1988050
88	Н	-5.7009770	-3.0568060	-0.3954240
89	Н	-4.2728450	-1.2974280	-1.3844760
90	Н	5.4565260	3.3769300	2.0308620
91	Н	3.5726510	2.3941700	0.8350220
92	Н	7.7444190	-2.2029410	-1.9208960
93	Н	9.6397560	-1.1884680	-0.7257590
94	Н	10.5110200	0.5303150	0.8061530
95	Н	10.1440110	2.4896190	2.2709890
96	Н	7.8735810	3.4386450	2.5352270

Table S8.	TDDFT	calculation	data	of Py-PIC
-----------	-------	-------------	------	------------------

Wavelength (nm)	Oscillator strength	The main transition	coefficient
438.07	0.0004	HOMO-1 \rightarrow LUMO	0.18582
		$HOMO \rightarrow LUMO$	0.67923
376.37	0.7384	$HOMO \rightarrow LUMO+1$	0.68946
339.45	0.1544	HOMO-1 \rightarrow LUMO+1	0.62196
304.81	0.2898	HOMO \rightarrow LUMO+3	0.36602
		$HOMO \rightarrow LUMO+4$	0.49875

Figure S40. (a) Molecular structure of compound Ph-PICR; (b) UV–vis absorption spectrum of Ph-PICR. The calculated spectra are shown by the perpendicular lines. (c) The calculated molecular orbitals of Ph-PICR.

	Table 57: Standard Orientation of the Optimized Sconied y for Th-Tree						
Tag	Symbol		Coordinates (Angstroms)				
Tag	Symbol	Х	Y	Z			
1	С	0.9225260	-1.8181870	-0.0025820			
2	С	1.8011300	-0.7063530	-0.0619600			
3	С	-0.5079350	-1.6849270	0.1668340			
4	Ν	-1.3600630	-2.7376520	-0.0211260			
5	С	-2.5562760	-2.2399990	0.2364210			
6	С	-2.3974840	-0.8066240	0.5711960			
7	Ν	-1.1067900	-0.5279240	0.5568580			
8	С	-3.7495260	-3.0849260	0.2346560			
9	С	-3.3779820	0.2521040	0.8021710			

Table S9. Standard Orientation of the Optimized Geometry for Ph-PICR

10	С	-4.8224060	-2.8439700	1.1025650
11	С	-5.9164470	-3.7006560	1.1157900
12	С	-5.9535780	-4.8007960	0.2632710
13	С	-4.8840810	-5.0529160	-0.5947490
14	С	-3.7843540	-4.2072000	-0.6042120
15	С	-4.6615260	0.2160760	0.2411710
16	С	-5.5285060	1.2891220	0.4124520
17	С	-5.1267460	2.4050530	1.1414070
18	С	-3.8455670	2.4540670	1.6902120
19	С	-2.9724610	1.3911920	1.5149990
20	С	1.3434400	0.6841630	-0.2316840
21	С	0.4203190	1.0156730	-1.2527350
22	С	-0.0187100	2.2948440	-1.4496500
23	С	0.5030670	3.3565360	-0.5722070
24	С	1.4791730	3.0070940	0.4772540
25	С	1.8733420	1.6959250	0.5930340
26	0	0.1287100	4.5364550	-0.7126400
27	С	-1.0386400	2.6476080	-2.5273630
28	С	1.9983770	4.0975170	1.4066260
29	С	0.8230730	4.7271210	2.1785890
30	С	2.7308170	5.1821630	0.5943230
31	С	2.9867710	3.5406200	2.4379810
32	С	-2.3053420	3.2374800	-1.8781170
33	С	-1.4660040	1.4077980	-3.3212220
34	С	-0.4361910	3.6600340	-3.5185630
35	С	3.1783530	-0.9422510	-0.0335480
36	С	3.7125290	-2.2314160	-0.0071820
37	С	2.8281560	-3.3214000	-0.0115290
38	С	1.4628160	-3.1161420	-0.0084340
39	Н	-4.7867960	-2.0003430	1.7792040
40	Н	-6.7365590	-3.5122920	1.7965770
41	Н	-6.8093690	-5.4637810	0.2719670
42	Н	-4.9085420	-5.9114280	-1.2536250
43	Н	-2.9398840	-4.3948520	-1.2535730
44	Н	-4.9682740	-0.6369100	-0.3491980
45	Н	-6.5140500	1.2574840	-0.0339720
46	Н	-5.8043250	3.2391860	1.2717320
47	Н	-3.5246570	3.3276850	2.2429120
48	Н	-1.9646420	1.4246700	1.9070310
49	Н	0.0639260	0.2096330	-1.8771480
50	Н	2.5702580	1.3971410	1.3633280
51	Н	0.2978730	3.9647740	2.7602800
52	Н	1.2088290	5.4785520	2.8727790
53	Н	0.1206180	5.2020840	1.4983740
54	Н	3,5734860	4,7475450	0.0507240
55	н	2.0592880	5.6587620	-0 1147710
56	н	3 1224410	5 9401400	1 2782000
57	н	3.8677100	3 1031660	1 96183/0
51	11	5.007/100	5.1051000	1.7010340

58	Н	3.3260510	4.3592820	3.0758670
59	Н	2.5228450	2.7877660	3.0795670
60	Н	-2.0760160	4.1430650	-1.3216570
61	Н	-3.0275260	3.4796740	-2.6631160
62	Н	-2.7646530	2.5109520	-1.2036020
63	Н	-0.6240910	0.9482270	-3.8447890
64	Н	-1.9323030	0.6590030	-2.6753810
65	Н	-2.2014020	1.7075520	-4.0709320
66	Н	0.4576600	3.2454830	-3.9915680
67	Н	-1.1672340	3.8749820	-4.3027950
68	Н	-0.1737320	4.5883730	-3.0173210
69	Н	3.8478850	-0.0947270	-0.1145070
70	Н	3.2213040	-4.3291850	0.0254830
71	Н	0.7749290	-3.9493570	0.0322850
72	С	5.1783670	-2.4399520	-0.0009050
73	С	5.7523240	-3.4916990	-0.7229850
74	С	6.0164100	-1.5872080	0.7255030
75	С	7.1287610	-3.6852450	-0.7188590
76	С	7.3926850	-1.7812650	0.7297490
77	Н	5.5823180	-0.7857660	1.3107040
78	С	7.9534260	-2.8306670	0.0071740
79	Н	8.0264000	-1.1175430	1.3042010
80	Н	9.0252840	-2.9816830	0.0102980
81	Н	5.1185400	-4.1419910	-1.3131850
82	Н	7.5581000	-4.4982500	-1.2905520

Table S10. TDDFT calculation data of Ph-PICR

Wavelength (nm)	Oscillator strength	The main transition coefficient			
968.46	0.0323	$\alpha HOMO \rightarrow \alpha LUMO$ -0.14839			
		β HOMO $\rightarrow \beta$ LUMO	0.97786		
686.18	0.0361	$\alpha HOMO \rightarrow \alpha LUMO$	0.96243		
618.11	0.0269	$β$ HOMO-4 \rightarrow $β$ LUMO	-0.30956		
		$β$ HOMO-3 \rightarrow $β$ LUMO	0.82345		
547.07	0.1786	β HOMO-8 $\rightarrow \beta$ LUMO	0.27396		
		$β$ HOMO-4 \rightarrow $β$ LUMO	-0.29532		
		$β$ HOMO-1 \rightarrow $β$ LUMO	0.81201		
526.20	0.0557	$β$ HOMO-10 \rightarrow $β$ LUMO	-0.47794		
		$β$ HOMO-4 \rightarrow $β$ LUMO	0.59161		
		$β$ HOMO-1 \rightarrow $β$ LUMO	0.39232		
SCF Done: E(UM052X) S**2 before annihilation	1.0369, after	= -1769.79689772 0.6379	A.U.		
Zero-point correction		= 0.693485 ((Hartree/Particle)		

_

Thermal correction to Energy	=	0.731834
Thermal correction to Enthalpy	=	0.732779
Thermal correction to Gibbs Free Energy	=	0.618867
Sum of electronic and zero-point Energies	=	-1769.103412
Sum of electronic and thermal Energies	=	-1769.065063
Sum of electronic and thermal Enthalpies	=	-1769.064119
Sum of electronic and thermal Free Energies	=	-1769.178031

Low frequencies	-7.4100	-3.3652	-0.0005	0.0006	0.0009	3.0031
Low frequencies	5.1387	12.0223	19.6317			

Figure S41. (a) Molecular structure of compound **Np-PICR**; (b) UV–vis absorption spectrum of **Np-PICR**. The calculated spectra are shown by the perpendicular lines. (c) The calculated molecular orbitals of **Np-PICR**.

Taa	Szymah al		Coordinates (Angstroms)	
Tag	Symbol	Х	Y	Z
1	С	-0.7822650	1.2846910	0.3241390
2	С	-1.3094390	-0.0315280	0.3420820
3	С	0.6089080	1.5747220	0.0489670
4	Ν	1.1647690	2.7901200	0.3344520
5	С	2.4234960	2.6719320	-0.0502110
6	С	2.6187950	1.3017750	-0.5753730
7	Ν	1.4544160	0.6809980	-0.5333460
8	С	3.3521360	3.7987270	0.0175980
9	С	3.8213380	0.5892850	-1.0040020
10	С	4.3843460	3.9592360	-0.9161060
11	С	5.2222840	5.0655800	-0.8483280
12	С	5.0419210	6.0194510	0.1497100
13	С	4.0074480	5.8737970	1.0729170
14	С	3.1611070	4.7766660	1.0035640
15	С	3.6750670	-0.5026020	-1.8727860
16	С	4.7801270	-1.2540800	-2.2430830
17	С	6.0410480	-0.9406800	-1.7364710
18	С	6.1906100	0.1257650	-0.8541940
19	С	5.0888530	0.8900590	-0.4876870
20	С	-0.4752700	-1.2440720	0.3533190
21	С	-0.8147170	-2.3347650	-0.4730300
22	С	-0.0741430	-3.4914240	-0.4900450
23	С	1.0904210	-3.5945680	0.4099410
24	С	1.4199520	-2.4587520	1.2879900
25	С	0.6284920	-1.3466260	1.2357120
26	Ο	1.7806080	-4.6308900	0.4263300
27	С	-0.4067090	-4.6534920	-1.4181210
28	С	2.6350360	-2.5476640	2.2051220
29	С	3.9097980	-2.7506740	1.3634760
30	С	2.4706200	-3.7114350	3.1989460
31	С	2.8222060	-1.2585840	3.0136170
32	С	0.7747660	-4.9180030	-2.3704910
33	С	-1.6407660	-4.3555740	-2.2776130
34	С	-0.7068320	-5.9202920	-0.5943550
35	С	-2.6980340	-0.1896690	0.4239550
36	С	-3.5638460	0.8950640	0.5445060
37	С	-3.0182940	2.1883350	0.5987090
38	С	-1.6547900	2.3753400	0.4905290
39	Н	4.5152280	3.2289660	-1.7036110
40	Н	6.0118360	5.1854840	-1.5788990
41	Н	5.6998940	6.8774150	0.2041010
42	Н	3.8610810	6.6183050	1.8449350
43	Н	2.3468020	4.6531960	1.7046490
44	Н	2.6847000	-0.7496150	-2.2310770

 Table S11. Standard Orientation of the Optimized Geometry for Np-PICR

45	Н	4.6591410	-2.0923790	-2.9169510
46	Н	6.9013300	-1.5335930	-2.0198420
47	Н	7.1641130	0.3571500	-0.4415060
48	Н	5.2051660	1.7012720	0.2184660
49	Н	-1.6583210	-2.2159460	-1.1383820
50	Н	0.8317530	-0.4992430	1.8738200
51	Н	4.0476740	-1.9172640	0.6706590
52	Н	4.7755210	-2.7871170	2.0308650
53	Н	3.8633560	-3.6783220	0.7983690
54	Н	1.5776770	-3.5671750	3.8126380
55	Н	2.3923670	-4.6622790	2.6776380
56	Н	3.3384340	-3.7429340	3.8634210
57	Н	1.9710150	-1.0597780	3.6695350
58	Н	3.7088290	-1.3645120	3.6423420
59	Н	2.9758810	-0.3944870	2.3612240
60	Н	1.6672010	-5.1982950	-1.8167170
61	Н	0.5105770	-5.7300740	-3.0532610
62	Н	0.9892670	-4.0276740	-2.9672500
63	Н	-2.5301180	-4.1858780	-1.6656890
64	Н	-1.4873040	-3.4877060	-2.9233720
65	Н	-1.8379940	-5.2170390	-2.9189090
66	Н	-1.5520020	-5.7479420	0.0767500
67	Н	-0.9734430	-6.7341450	-1.2740810
68	Н	0.1575040	-6.2190020	-0.0074000
69	Н	-3.1108630	-1.1911860	0.4317160
70	Н	-3.6760630	3.0383440	0.7293770
71	Н	-1.2264250	3.3680160	0.5056420
72	С	-5.0236280	0.6677460	0.6932910
73	С	-5.9759650	1.3222290	-0.1525880
74	С	-5.4661200	-0.1856510	1.6801390
75	С	-5.5991020	2.1508120	-1.2431810
76	С	-7.3630400	1.1041750	0.0820370
77	С	-6.8431650	-0.4087960	1.8978170
78	Н	-4.7388320	-0.6679730	2.3218320
79	С	-6.5463300	2.7581760	-2.0272820
80	Н	-4.5495820	2.2879210	-1.4644800
81	С	-8.3179880	1.7523940	-0.7423880
82	С	-7.7718170	0.2323940	1.1228890
83	Н	-7.1562540	-1.0768710	2.6896800
84	С	-7.9228680	2.5673660	-1.7697840
85	Н	-6.2378570	3.3824820	-2.8561260
86	Н	-9.3700640	1.5827370	-0.5453490
87	Н	-8.8319400	0.0801050	1.2876380
88	Н	-8.6603110	3.0556120	-2.3939020

Wavelength (nm)	Oscillator strength	The main transition	coefficient
979.51	0.0348	β HOMO $\rightarrow \beta$ LUMO	0.97555
684.33	0.0367	$\alpha HOMO \rightarrow \alpha LUMO$	0.94515
622.17	0.0591	$β$ HOMO-3 \rightarrow $β$ LUMO $β$ HOMO-1 \rightarrow $β$ LUMO	0.65467 0.60938
615.97	0.1026	$β$ HOMO-3 \rightarrow $β$ LUMO $β$ HOMO \rightarrow $β$ LUMO	-0.49811 0.73158
484.65	0.0265	αHOMO-1 → $α$ LUMO+1 βHOMO-1 → $β$ LUMO+1	-0.48404 0.53616
475.56	0.0101	αHOMO-1 → $α$ LUMO βHOMO-6 → $β$ LUMO	0.69675 0.52008
470.70	0.0604	αHOMO-1 → $α$ LUMO βHOMO-1 → $β$ LUMO	0.64910 -0.63695
418.81	0.0180	$β$ HOMO-5 \rightarrow $β$ LUMO	0.76779

Table S12. TDDFT calculation data of Np-PICR

SCF Done: E(UM05 S**2 before annihilati	52X) on 1.	0277,	after	= 0.6	-1923.42 234	2844063	A.U.
Zero-point correction					=	0.740818	(Hartree/Particle)
Thermal correction to	Energy				=	0.781838	
Thermal correction to	Enthalpy				=	0.782782	
Thermal correction to	Gibbs Free	e Energy			=	0.662524	
Sum of electronic and	zero-point	Energies	5		=	-1922.687	623
Sum of electronic and	thermal Er	nergies			=	-1922.646	603
Sum of electronic and	thermal En	nthalpies			=	-1922.645	659
Sum of electronic and	thermal Fr	ee Energ	ies		=	-1922.765	916
Low frequencies	-6.2779	-3.0795	5 -0	.0007	-0.0006	0.0011	2.0687
Low frequencies	5.8237	10.522	21 1	9.5606			

Figure S42. (a) Molecular structure of compound An-PICR; (b) UV–vis absorption spectrum of An-PICR. The calculated spectra are shown by the perpendicular lines. (c) The calculated molecular orbitals of An-PICR.

Taa	Symphol		Coordinates (Angstroms)	
Tag	Symbol	Х	Y	Z
1	С	0.2936300	-1.4040930	0.1653170
2	С	0.8961750	-0.1227650	0.0906750
3	С	-1.1313120	-1.6097030	0.0067610
4	Ν	-1.7394260	-2.7844370	0.3492750
5	С	-3.0124760	-2.5918700	0.0505170
6	С	-3.1601060	-1.2157980	-0.4761000
7	Ν	-1.9586820	-0.6702440	-0.5243040
8	С	-3.9992570	-3.6613200	0.1879030
9	С	-4.3398580	-0.4272450	-0.8252020
10	С	-5.0911640	-3.7685000	-0.6833610
11	С	-5.9820490	-4.8277360	-0.5600780
12	С	-5.7955880	-5.7863430	0.4322800
13	С	-4.7040130	-5.6928470	1.2944700
14	С	-3.8050140	-4.6435820	1.1688560
15	С	-4.1755230	0.6675750	-1.6879000
16	С	-5.2492380	1.4941800	-1.9814560
17	С	-6.4961090	1.2523340	-1.4053010
18	С	-6.6621090	0.1825860	-0.5300250
19	С	-5.5920690	-0.6556280	-0.2386500
20	С	0.1323870	1.1364780	0.1189440
21	С	0.4290500	2.1554340	-0.8071970
22	С	-0.2609580	3.3437960	-0.8232100
23	С	-1.3132010	3.5601390	0.1871370
24	С	-1.5882620	2.5019080	1.1739070
25	С	-0.8595150	1.3481750	1.1084660
26	Ο	-1.9568370	4.6265030	0.2044860
27	С	0.0141990	4.4277910	-1.8579000
28	С	-2.6822820	2.7145280	2.2147010
29	С	-4.0386270	2.9247920	1.5139180
30	С	-2.3497350	3.9347200	3.0926690
31	С	-2.8251570	1.4963390	3.1341790
32	С	-1.2547990	4.6870830	-2.6923710
33	С	1.1311730	4.0177240	-2.8243960
34	С	0.4540420	5.7276230	-1.1580600
35	С	2.2929380	-0.0455190	0.0561490
36	С	3.0979490	-1.1785220	0.1560730
37	С	2.4869340	-2.4328410	0.2977720
38	С	1.1088580	-2.5409650	0.3002920
39	Н	-5.2270260	-3.0355230	-1.4676570
40	Н	-6.8176090	-4.9077630	-1.2433750
41	Н	-6.4939540	-6.6077930	0.5294230
42	Н	-4.5538220	-6.4411790	2.0620390
43	Н	-2.9456010	-4.5623460	1.8206050
44	Н	-3.1938070	0.8580350	-2.1008730

 Table S13. Standard Orientation of the Optimized Geometry for An-PICR

45	Н	-5.1131210	2.3353510	-2.6488820
46	Н	-7.3314100	1.9037230	-1.6286020
47	Н	-7.6227570	0.0063780	-0.0634590
48	Н	-5.7188170	-1.4678270	0.4643310
49	Н	1.1914970	1.9541400	-1.5466880
50	Н	-1.0308160	0.5501670	1.8163430
51	Н	-4.2979370	2.0519560	0.9101950
52	Н	-4.8148450	3.0587600	2.2726520
53	Н	-4.0171750	3.8040380	0.8747810
54	Н	-1.3987650	3.7849730	3.6103090
55	Н	-2.2887700	4.8405780	2.4944630
56	Н	-3.1312260	4.0606070	3.8470000
57	Н	-1.9085080	1.2991920	3.6954650
58	Н	-3.6216870	1.6916690	3.8552440
59	Н	-3.0954200	0.5982730	2.5721510
60	Н	-2.0670840	5.0462640	-2.0655840
61	Н	-1.0359020	5.4380480	-3.4563080
62	Н	-1.5711170	3.7706250	-3.1978030
63	Н	2.0755290	3.8427720	-2.3034620
64	Н	0.8704380	3.1204380	-3.3905680
65	Н	1.2910920	4.8275370	-3.5391790
66	Н	1.3599820	5.5569990	-0.5710870
67	Н	0.6773970	6.4845180	-1.9149070
68	Н	-0.3279220	6.1024430	-0.5028380
69	Н	2.7639710	0.9288750	0.0008150
70	Н	3.1066300	-3.3159700	0.3916180
71	Н	0.6250420	-3.5051560	0.3761080
72	С	4.5820700	-1.0534510	0.1356860
73	С	5.3051960	-1.5292160	-0.9747020
74	С	5.2516250	-0.4630510	1.2245560
75	С	4.6671840	-2.1094460	-2.1179210
76	C	6.7347900	-1.4125400	-0.9890620
77	С	6.6806450	-0.3399680	1,1911110
78	C	4.5645610	0.0049060	2.3907370
79	C	5 3984110	-2 5605230	-3 1766510
80	Н	3.5881360	-2.1793730	-2.1363400
81	C	7 4639590	-1 9002540	-2 1173620
82	C	7.3870640	-0.8195280	0.0901120
83	C	7 3551540	0.2671720	2 2954960
84	н	3 4904260	-0.1071190	2.295 1980
85	C C	5 2449180	0 5747090	3 4255920
86	C	6.8197290	-2 4612570	-3 1775870
87	н	4 8959450	-2.9942390	-4 0318090
88	н	8 5437350	-1 8084680	-7.0510090
80	н Н	8 4678680	-0.7283640	-2.10/0490
07 00	II C	6 6610150	0.7203040	2 2770220
01	с u	8 A2A0650	0.2582710	2 2400840
91 0 2	11 LT	0.4340030	0.3362/10	4 202220
74	11	4./03/820	0.9204080	4.2903/20

94 H 7.1815990 1.1744750 4.2094	93	Н	7.3805940	-2.8270140	-4.0281370
	94	Н	7.1815990	1.1744750	4.2094710

Wavelength (nm)	Oscillator strength	The main transition	coefficient
979.51	0.0348	$\beta HOMO \rightarrow \beta LUMO$	0.97555
684.33	0.0367	$\alpha HOMO \rightarrow \alpha LUMO$	0.94515
622.17	0.0591	$βHOMO-3 \rightarrow βLUMO$ $βHOMO-1 \rightarrow βLUMO$	0.65467 0.60938
615.97	0.1026	$βHOMO-3 \rightarrow βLUMO$ $βHOMO \rightarrow βLUMO$	-0.49811 0.73158
484.65	0.0265	$ αHOMO-1 \rightarrow αLUMO+1 $ $ βHOMO-1 \rightarrow βLUMO+1 $	-0.48404 0.53616
475.56	0.0101	αHOMO-1 → $α$ LUMO βHOMO-6 → $β$ LUMO	0.69675 0.52008
470.70	0.0604	αHOMO-1 → $α$ LUMO βHOMO-1 → $β$ LUMO	0.64910 -0.63695
418.81	0.0180	$β$ HOMO-5 \rightarrow $β$ LUMO	0.76779

Table S14. TDDFT calculation data of An-PICR

SCF Done:E(UM052X)S**2 before annihilation1.0342, after	$= \frac{-2077.05328659}{0.6301}$ A.U.
Zero-point correction	= 0.788160 (Hartree/Particle)
Thermal correction to Energy	= 0.831994
Thermal correction to Enthalpy	= 0.832938
Thermal correction to Gibbs Free Energy	= 0.707804
Sum of electronic and zero-point Energies	-2076.265127
Sum of electronic and thermal Energies	-2076.221293
Sum of electronic and thermal Enthalpies	-2076.220349
Sum of electronic and thermal Free Energies	= -2076.345483
Low frequencies6.6677 -4.5312 -0	0.0001 0.0005 0.0014 4.4651
Low frequencies 9.2518 10.5456 1	12.9944

Figure S43. (a) Molecular structure of compound Py-PICR; (b) UV–vis absorption spectrum of Py-PICR. The calculated spectra are shown by the perpendicular lines. (c) The calculated molecular orbitals of Py-PICR.

-				J = = #==
Tee	0 1 1		Coordinates (Angstroms)	
Tag	Symbol	Х	Y	Z
1	С	0.1621630	1.0983850	0.4298910
2	С	-0.2369590	-0.2628020	0.4049870
3	С	1.5082430	1.5403660	0.1335070
4	Ν	1.9390890	2.7945750	0.4605250
5	С	3.1930750	2.8296940	0.0446630
6	С	3.5184070	1.5120560	-0.5453210
7	Ν	2.4296540	0.7669840	-0.5062490

Table S15. Standard Orientation of the Optimized Geometry for Py-PICR

8	С	3.9945740	4.0481970	0.1404630
9	С	4.7808610	0.9590510	-1.0338240
10	С	5.0017770	4.3463870	-0.7868200
11	С	5.7063350	5.5405060	-0.6925540
12	С	5.4165240	6.4458030	0.3247360
13	С	4.4073610	6.1608090	1.2436280
14	С	3.6942760	4.9748280	1.1487950
15	С	4.7405690	-0.0639450	-1.9919480
16	С	5.9142660	-0.6659570	-2.4212310
17	С	7.1396370	-0.2717210	-1.8849510
18	С	7.1853390	0.7261200	-0.9153040
19	С	6.0141480	1.3425610	-0.4907020
20	С	0.7021110	-1.3937190	0.3353300
21	С	0.4126050	-2.4887000	-0.5051450
22	С	1.2381960	-3.5830160	-0.5859790
23	С	2.4499160	-3.6127460	0.2545080
24	С	2.7342780	-2.4717150	1.1416820
25	C	1.8544750	-1.4262460	1.1590680
26	0	3.2165610	-4.5932560	0.2149400
20	C	0.9467210	-4.7508300	-1.5204750
28	C	3 9999420	-2 4804280	1 9922580
29	C	5 2390370	-2 5684300	1 0801840
30	C	3 9795860	-3 6706270	2 9682300
31	C	4 1303940	-1 1948680	2.9002900
32	C	2 0941920	-4 9116820	-2 5354610
32	C C	-0.3476970	-4 5322370	-2.3334010
34	C	0.7836630	-6.0491680	-0 7073090
35	C	-1 6012250	-0.5551160	0 5265650
36	C C	-2 5621360	0.4352840	0.7187160
37	C C	-2.1401430	1 7717470	0.8123750
38	C C	-0.8049060	2 0919790	0.6709230
30	н	5 2150220	3 6549610	-1 5909930
40	н	6.4765510	5.7668590	-1.5505550
40	11 U	5.0600710	7 2722700	-1.4180080
41	11 U	J.9099710 4 1762720	6 8662220	0.3980330
42	11	4.1703720	0.8002220	2.0313700
45	п	2.8998330	4./413/10	1.044/100
44	п	5.7783300	-0.5771810	-2.3/46100
45	Н	5.8/48/00	-1.4313090	-3.1630100
40	Н	8.0537270	-0.74899990	-2.2143400
4/	Н	8.1325810	1.0191340	-0.4812110
48	Н	6.0511650	2.1018470	0.2794730
49	Н	-0.4688560	-2.4232740	-1.12/3//0
50	H	2.0220960	-0.5819600	1.8109850
51	H	5.2691890	-1./195060	0.3928460
52	H	6.1403460	-2.538/020	1.6989450
53	H	5.2380520	-3.4914860	0.5057410
54	H	3.1160230	-3.6037580	3.6349650
55	Н	3.9403810	-4.6151520	2.4312400

56	Н	4.8846620	-3.6498150	3.5814560
57	Н	3.3019760	-1.0733510	3.5195130
58	Н	5.0537970	-1.2435610	3.3981620
59	Н	4.1841950	-0.3105210	2.1764380
60	Н	3.0320440	-5.1330110	-2.0328320
61	Н	1.8558970	-5.7307000	-3.2193920
62	Н	2.2114410	-3.9989980	-3.1253250
63	Н	-1.2154950	-4.4394580	-1.6546800
64	Н	-0.2911390	-3.6449930	-2.9472630
65	Н	-0.5126280	-5.3956390	-2.9600330
66	Н	-0.0407420	-5.9536680	0.0037900
67	Н	0.5506100	-6.8716280	-1.3890400
68	Н	1.6945250	-6.2875760	-0.1644500
69	Н	-1.9172850	-1.5912600	0.5072450
70	Н	-2.8700990	2.5485570	1.0022450
71	Н	-0.4709510	3.1192890	0.7182670
72	С	-3.9862420	0.0610870	0.9037430
73	С	-5.0204520	0.6393820	0.1384430
74	С	-4.3013600	-0.8887700	1.8794310
75	С	-6.3678690	0.2706330	0.4070130
76	С	-4.7694770	1.5612610	-0.9405360
77	С	-5.6130670	-1.2538020	2.1374790
78	Н	-3.4973590	-1.3198180	2.4632700
79	С	-7.4342590	0.8499930	-0.3447520
80	С	-6.6643900	-0.6780030	1.4201280
81	С	-5.7834030	2.1046590	-1.6550300
82	Н	-3.7457030	1.8032710	-1.1899970
83	Н	-5.8329980	-1.9804640	2.9104350
84	С	-7.1548230	1.7812630	-1.3767580
85	С	-8.7802680	0.4934110	-0.0665430
86	С	-8.0358830	-1.0226310	1.6807670
87	Н	-5.5727580	2.7909530	-2.4667160
88	С	-8.2113230	2.3401380	-2.1024020
89	С	-9.8092760	1.0755710	-0.8125940
90	С	-9.0452480	-0.4621560	0.9750350
91	Н	-8.2411000	-1.7457420	2.4611570
92	С	-9.5260820	1.9905140	-1.8201870
93	Н	-7.9916010	3.0495620	-2.8913700
94	Н	-10.8353820	0.8024170	-0.5965630
95	Н	-10.0760690	-0.7265270	1.1789750
96	Н	-10.3345080	2.4310410	-2.3895750

Wavelength (nm)	Oscillator strength	The main transition	coefficient
979.51	0.0348	$\beta HOMO \rightarrow \beta LUMO$	0.97555
684.33	0.0367	$\alpha HOMO \rightarrow \alpha LUMO$	0.94515
622.17	0.0591	$β$ HOMO-3 \rightarrow $β$ LUMO $β$ HOMO-1 \rightarrow $β$ LUMO	0.65467 0.60938
615.97	0.1026	$β$ HOMO-3 \rightarrow $β$ LUMO $β$ HOMO \rightarrow $β$ LUMO	-0.49811 0.73158
484.65	0.0265	αHOMO-1 → $α$ LUMO+1 βHOMO-1 → $β$ LUMO+1	-0.48404 0.53616
475.56	0.0101	αHOMO-1 → $α$ LUMO βHOMO-6 → $β$ LUMO	0.69675 0.52008
470.70	0.0604	αHOMO-1 → $α$ LUMO βHOMO-1 → $β$ LUMO	0.64910 -0.63695
418.81	0.0180	$β$ HOMO-5 \rightarrow $β$ LUMO	0.76779

Table S16. TDDFT calculation data of Py-PICR

SCF Done: E(UM052X) S**2 before annihilation 1.0268, after	$= \begin{array}{c} -2153.30009061 & \text{A.U.} \\ 0.6252 \end{array}$
Zero-point correction	= 0.801760 (Hartree/Particle)
Thermal correction to Energy	= 0.846094
Thermal correction to Enthalpy	= 0.847038
Thermal correction to Gibbs Free Energy	= 0.720586
Sum of electronic and zero-point Energies	-2152.498331
Sum of electronic and thermal Energies	-2152.453997
Sum of electronic and thermal Enthalpies	-2152.453053
Sum of electronic and thermal Free Energies	= -2152.579505
Low frequencies6.9642 -4.2194 -	3.2484 -0.0007 -0.0005 0.0013
Low frequencies 8.2285 9.2073	14.1076

6. Transient Absorption Spectra and First-Order Kinetic Profiles

Figure S44. (a), (c), (e), (g) Transient absorption spectra and (b), (d), (f), (h) first-order kinetic profiles of the colored species generated from **Ph-PIC**, **Np-PIC**, **An-PIC** and **Py-PIC** in benzene. (λ_{ex} . = 355 nm, $\lambda_{abs.}$ = 700 nm. [**Ph-PIC**] = 3.2 × 10⁻⁵ M, [**Np-PIC**] = 3.5 × 10⁻⁵ M, [**An-PIC**] = 3.1 × 10⁻⁵ M, [**Py-PIC**] = 3.3 × 10⁻⁵ M, power density 4.2 mJ).

7. Eyring Plot and Activation Parameters

Figure S45. Eyring plot for the thermal back-reaction of colored species of Ph-PIC, Np-PIC, An-PIC, Py-PIC in benzene.

8. Dihedral Angle Between PIC Unit and π -Electron Conjugation Unit

Figure S46. The calculated dihedral angle of An-PIC between PIC unit and the π -electron conjugation unit ((UM052X/6-31(d) level).

Table S17. The calculated dihedral angle between PIC unit and the π -electron conjugation unit ((UM052X/6-31(d) level).

Compound	Dihedral angle
Ph-PICR	37.0°
Np-PICR	55.5°
An-PICR	69.3°
Py-PICR	55.4°

9. Reference

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Jr. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision D.01; Gaussian, Inc.: Wallingford CT, 2013