Supporting information

Role of Double Interfaces in Inspiring Energy Storage Devices in CC@Ni(OH)Cl@NiO Flexible Electrodes

Sixian Fu,^a Liping Li,^a Lingshen Meng,^a Mengyue Gao,^a Shuaikai Xu,^b Xiyang Wang,^a

Yuelan Zhang^a and Guangshe Li^{*a}

^a State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China

^b Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, Jilin University, Changchun 130012, P.R. China

*E-mail: guangshe@jlu.edu.cn.

Fig. S1 SEM images of CC@Ni(OH)Cl synthesized by different solvothermal conditions: (a) 10 mmol NiCl₂· $6H_2O$ precursor reacted at 140 °C for 12 h; (b) 10 mmol NiCl₂· $6H_2O$ precursor reacted at 160 °C for 12 h; (c) 6 mmol NiCl₂· $6H_2O$ precursor reacted at 180 °C for 12 h; (d) 10 mmol NiCl₂· $6H_2O$ precursor reacted at 200 °C for 12 h.

Fig. S2 SEM images of CC@Ni(OH)NO₃ synthesized by different solvothermal conditions: (a) 12 mmol Ni(NO₃)₂·6H₂O precursor reacted at 180 °C for 12 h; (b) 14 mmol Ni(NO₃)₂·6H₂O precursor reacted at 180 °C for 12 h; (c) 10 mmol Ni(NO₃)₂·6H₂O precursor reacted at 200 °C for 12 h; (d) 10 mmol Ni(NO₃)₂·6H₂O precursor reacted at 160 °C for 12 h.

Fig. S3 SEM images of CC@Ni(OH)CH₃COO synthesized by different solvothermal conditions: (a) 10 mmol Ni(CH₃COO)₂·4H₂O precursor reacted at 140 °C for 12 h; (b) 10 mmol Ni(CH₃COO)₂·4H₂O precursor reacted at 160 °C for 12 h; (c) 10 mmol Ni(CH₃COO)₂·4H₂O precursor reacted at 200 °C for 12 h; (d) 10 mmol Ni(CH₃COO)₂·4H₂O precursor reacted at 180 °C for 24 h; (e-f) 10 mmol Ni(CH₃COO)₂·4H₂O precursor reacted at 180 °C for 12 h; (d) 10 mmol Ni(CH₃COO)₂·4H₂O precursor reacted at 180 °C for 24 h; (e-f) 10 mmol Ni(CH₃COO)₂·4H₂O precursor reacted at 180 °C for 12 h.

Fig. S4 CV curves of CC@Ni(OH)Cl@NiO electrode with scan rates from 5 to 40 mV s⁻¹ in various voltage windows: (a) 1 V, (b) 0.8 V, and (c) 0.6 V.

Fig. S5 CV curves of CC@Ni(OH)Cl electrode with scan rates from 5 to 40 mV s⁻¹ in various voltage windows: (a) 1 V, (b) 0.8 V, and (c) 0.6 V.

Fig. S6 CV curves of Ni(OH)Cl pasted on CC electrode with scan rates from 5 to 40 mV s⁻¹ in various voltage windows: (a) 1 V, (b) 0.8 V, and (c) 0.6 V.

Fig. S7 GCD curves under various current densities: (a) CC@Ni(OH)Cl@NiO, (b) CC@Ni(OH)Cl, and (c) Ni(OH)Cl pasted on CC.

Fig. S8 (a) CV curves of CC@Ni(OH)CH₃COO electrode at various scan rates; (b) CV curves of CC@Ni(OH)NO₃ electrode at various scan rates; (c) Comparative GCD curves of CC@Ni(OH)Cl, CC@Ni(OH)CH₃COO, and CC@Ni(OH)NO₃ electrodes at 20 mA cm⁻²; (d) Nyquist plots of CC@Ni(OH)Cl, CC@Ni(OH)Cl, CC@Ni(OH)Cl, and CC@Ni(OH)Cl@NiO electrodes.

Fig. S9 (a) CV curves of graphene on CC electrode at various scan rates; (b) GCD curves of graphene on CC electrode under different current densities.

Fig. S10 (a) CV curves of CC@Ni(OH)Cl@NiO//graphene device at potential window from 0.6 V to 1 V; (b) CV curves of CC@Ni(OH)Cl@NiO//graphene device at various scan rates; (c) Volumetric capacitance of CC@Ni(OH)Cl@NiO//graphene device under various scan rates.

Table S1 Comparison of capacitive performance for double-interface

Material	Electrolyte (KOH concentration)	Reference	Current density (mA cm ⁻ ²)	Areal capacita nce (F cm ⁻²)	Current density (A g ⁻¹)	Specific capacitance (F g ⁻¹)
CC@Ni(OH)Cl@NiO	6 M	This work	30 120	8.29 3.58	8	2241 968
Ni-Co@Ni-Co LDH NTAs/CFC	1 M	1	4.6	2.0	5	2200
Co-Ni LDH/PWC	6 M	2	-	1.076	5	1592.76
NiMoO4@Ni-Co-S	2 M	3	5	2.27	-	1892
Ni-decorated Co ₉ S ₈	6 M	4	1	5.64	-	-
Ni-Co-S/ACC	6 M	5	-	-	1	2392
Ni(OH) ₂ –MnO ₂ /C composite	6 M	6	-	-	2 40	862 574

References

1 Y. Liu, N. Fu, G. Zhang, M. Xu, W. Lu, L. Zhou and H. Huang, *Adv. Funct. Mater.*, 2017, **27**, 1605307.

2 X. Liang, G. Long, C. Fu, M. Pang, Y. Xi, J. Li, W. Han, G. Wei and Y. Ji, *Chem. Eng. J.*, 2018, **345**, 186-195.

3 C. Chen, D. Yan, X. Luo, W. Gao, G. Huang, Z. Han, Y. Zeng and Z. Zhu, *ACS Appl. Mater. Interfaces*, 2018, **10**, 4662-4671.

4 Y. Wen, Y. Liu, S. Dang, S. Tian, H. Li, Z. Wang, D. He, Z.-S. Wu, G. Cao and S. Peng, *J. Power Sources*, 2019, **423**, 106-114.

5 W. Zhao, Y. Zheng, L. Cui, D. Jia, D. Wei, R. Zheng, C. Barrow, W. Yang and J.
Liu, *Chem. Eng. J.*, 2019, **371**, 461-469.

K. Xu, W. Shi, W. Liu, S. Ye, R. Yin, L. Zhang, L. Xu, M. Chen, M. Zhong and X.
Cao, J. Mater. Chem. A, 2018, 6, 24086-24091.