Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2019

Electronic Supplementary Information

Water-compatible Fluorescent [2]Rotaxanes for Au³⁺ Detection and Bioimaging

Sing-Ming Chan,^a Fung-Kit Tang,^a Chak-Shing Kwan,^a Ching-Yau Lam,^a Sam C. K. Hau^b and Ken Cham-Fai Leung^{*a}

 ^aDepartment of Chemistry, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong SAR, P. R. China
 ^bDepartment of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, P. R. China

Table of content

General information	S2
Cell culture and cytotoxicity assays	S3
Cellular gold(III) ion sensing	S3
Synthesis	S4
Additional spectra	S10
NMR spectra	S12
Mass spectra	S18
Crystal data and structure refinement for RRA	S21
References	S23

General information

Unless otherwise stated, all reagents and anhydrous solvents were purchased from commercial sources and used without further purification. Flash column chromatography was performed using Aluminum oxide, neutral (Aluminum oxide, neutral, Brockmann I, for chromatography, 50-200 µm, 60A, ACROS Organics[™]). Analytical TLC was performed on pre-coated silica gel plates (0.25 mm thick, 60F254, Merck, Germany) and pre-coated ALUGRAM[®] (0.20 mm thick, F254, MN, Germany). Spots are observed under UV light. ¹H and ¹³C NMR spectra were recorded on a Bruker Advance-III spectrometer (at 400 and 101 MHz, respectively). Chemical shifts are reported in parts per million from low to high field and referenced to residual solvent (CDCl₃: ¹H, 7.26 ppm; ¹³C, 77.16 ppm. CD₃CN: ¹H, 1.94 ppm; ¹³C, 1.32 ppm.). NMR data was processed using MestReNova software (Mestrelab). Coupling constants are reported in Hertz. Standard abbreviations indicating multiplicity were used as follows: m = multiplet, quint = quintet, q = quartet, t = triplet, d = doublet, s = singlet, app. = apparent, br = broad. High-resolution mass spectra were recorded on a Bruker Autoflex mass spectrometer (MALDI-TOF) and a Thermo Fisher Scientific UPLC-Q exactive focus hybrid quadrupole-orbitrap mass spectrometer in positive ion mode (ESI-MS). Fluorescent emission spectra of RA-H·PF₆ and RRB were collected on PTI-QM4. Fluorescent emission spectra of RRA were collected on Perkin Elmer LS55B. UV-vis spectra were collected on Agilent Cary 8454 UV-Vis Spectrometer.

LiNO₃, NaCl, KNO₃, Mg(NO₃)₂, CaCl₂, NH₄Cl, AgNO₃, AlCl₃, Ni(NO₃)₂· $6H_2O$, ZnCl₂, CdCl₂, Co(NO₃)₂· $9H_2O$, HgCl₂, FeCl₂· $4H_2O$, FeCl₃, Cr(NO₃)₃· $9H_2O$, CsCl, Pb(NO₃)₂, Cu(NO₃) · $3H_2O$, K₂PtCl₄, AuCl₃, MnCl₂, VCl₃, K₂PdCl₄, IrCl₃·xH₂O, RhCl₃ and RuCl₃· $3H_2O$ were prepared as 10 mM aqueous solution and used in the fluorescence analysis. For NMR titration, metal salts were prepared as 500 mM aqueous solution.

For NMR titration of metal ions with rotaxanes, probe solution (10 mM) in MeCN was prepared. Then, metal ions (500 mM) were added. The NMR spectra were obtained immediately after the addition. For fluorescence titration of Au^{3+} , multiple sets of probe solutions were prepared. Then, various amount of Au^{3+} were added into the probe solutions to give the required concentration of Au^{3+} in probe solution. The fluorescence intensities were measured after the equilibrium of the detection.

For adjusting the pH of solution, HCl and NaOH were prepared in pH = 1 and 13

aqueous solution respectively, and further diluted to corresponding pH. The aqueous solution was mixed with MeCN and 1 mM probe solution to give the results as shown in red line. 10 mM Metal ion in solution was then added another solution to give the red line results in Figure 4.

Cell culture and cytotoxicity assays

HeLa cells were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 10% fetal bovine serum (FBS) and 100 units per mL of penicillin and 100 mg per mL of streptomycin at 37 °C with 5% CO₂ in a humidified incubator. After reaching the confluence, the cells were seeding in 96-well plate at the density of 1×10^4 cells/well. Then, the cells were treated with **RRA** (2–0.1 μ M) and **RRB** (10–0.5 μ M) with different concentrations for 24 h, respectively. After the treatment, the media containing sensors were discarded, and the cells were washed with Hank's balanced salt solution (HBSS) twice and their viability was assessed using Cell Counting Kit-8 (CCK-8, Sigma-Aldrich, St Louis, USA). In brief, cells were cultured with fresh DMEM containing CCK-8 reagent (100 μ L of media and 10 μ L of CCK-8 reagent per well) for 2 h. The absorbance of the supernatant was read at 450 nm using SpectraMax M2 Microplate Reader (Molecular Devices, California, USA). Two independent experiments were performed in triplicate.

Cellular gold(III) ion sensing

HeLa cells were cultured in μ -Slide 8 well chambers with polymer coverslip bottom (ibidi GmbH, Munich, Germany) at the density of 1×10⁴ cells/well. The cells were firstly treated with gold(III) ion (Au³⁺) at different concentrations (20, 10 and 5 mM) for 24 h. After the treatment, the cells were gently washed with fresh DMEM twice, and the media containing **RRB** at the concentration of 2 μ M were added to the well and incubated with cells for 2 h. Afterwards, the cells were washed with HBSS to remove the extra sensor and then stained with Hoechst 33342 for 15 min. The fluorescence in the cells were examined using Nikon Eclipse Ti microscope equipped with Nikon Intensilight C-HGFI (light sources). All the fluorescent images were acquired under same exposing conditions.

Synthesis

Synthesis of **RA-**H·PF₆:

The synthesis of **RA**-H·PF₆ was reported in literature.¹

¹H NMR spectrum (400 MHz, CD₃CN) of **RA**-H·PF₆. δ 9.91 (br, 2H), 8.55 (dd, J = 8.9, 1.0 Hz, 2H), 8.35 (s, 1H), 7.92 (s, 2H), 7.80 (d, J = 8.4 Hz, 2H), 7.71 (t, J = 7.7 Hz, 1H), 7.34 – 7.21 (m, 4H), 7.19 – 7.11 (m, 2H), 7.08 – 6.98 (m, 4H), 6.83 (td, J = 7.6, 1.2 Hz, 2H), 6.52 (d, J = 2.3 Hz, 2H), 6.48 (dd, J = 7.8, 1.6 Hz, 2H), 6.11 (t, J = 2.3 Hz, 1H), 5.82 (t, J = 6.6 Hz, 2H), 5.13 (t, J = 6.8 Hz, 2H), 4.35 – 4.25 (m, 4H), 4.15 – 3.99 (m, 2H), 3.87 – 3.57 (m, 10H), 3.32 (s, 6H).

¹³C NMR spectrum (101 MHz, CD₃CN) of **RA**-H·PF₆. δ 161.89, 157.96, 154.20, 153.98, 144.57, 140.38, 138.87, 133.03, 132.42, 131.19, 130.19, 129.81, 129.42, 127.87, 126.76, 126.03, 125.58, 122.46, 119.12, 112.85, 106.80, 99.73, 70.71, 67.73, 55.90, 54.63, 45.47.

HRMS (MALDI-TOF): calcd. for $C_{51}H_{53}N_4O_7$ [M–PF₆]⁺ m/z 833.3914, found 833.3945.

Synthesis of RRA:

A solution of RA-H·PF₆ (300 mg, 0.31 mmol) in MeNO₂ (150 mL) was added 1 M BH₃-THF (2 mL) at 0 °C. The yellow mixture was stirred for overnight at room temperature. The excess of solvent was evaporated under reduced pressure. The mixture was dissolved in CHCl₃ (50 mL) and washed with 1 M HCl (20 mL), 1 M NaOH (20 mL). The organic layer was dried with anhydrous MgSO₄ and concentrated by evaporation. The product was purified by neutral aluminum oxide column chromatography with (1/3, v/v) CH₂Cl₂/*n*-hexane, followed by CH₂Cl₂ to afford **RRA** as a pale-yellow powder (210 mg, Yield: 70%). Single crystals suitable for X-ray analysis were obtained by slow evaporation in CH₂Cl₂/MeCN (CCDC code: 1942423). ¹H NMR spectrum (400 MHz, CD₃CN) of **RRA**. δ 8.44 – 8.34 (m, 3H), 7.93 (d, J = 8.4 Hz, 2H), 7.34 (q, J = 7.6 Hz, 3H), 7.24 – 7.15 (m, 4H), 6.83 (t, J = 7.6 Hz, 2H), 6.79 – 6.70 (m, 4H), 6.63 – 6.52 (m, 4H), 6.23 (m, 2H), 6.03 (s, 1H), 4.61 (d, *J* = 7.2 Hz, 2H), 4.31 (dd, J = 12.8, 7.8 Hz, 2H), 4.11 (dd, J = 12.8, 4.2 Hz, 2H), 4.02 – 3.94 (m, 4H), 3.70 (d, J = 7.7 Hz, 2H), 3.47 (s, 6H), 3.45 – 3.36 (m, 2H), 2.98 (dd, J = 25.3, 9.8 Hz, 3H), 2.82 – 2.71 (m, 2H), 2.71 – 2.59 (m, 2H), 2.54 – 2.45 (m, 2H), 2.45 – 2.35 (m, 2H).

¹³C NMR spectrum (101 MHz, CD₃CN) of **RRA**. δ 160.59, 159.40, 147.57, 139.70, 137.69, 132.47, 131.64, 129.34, 126.60, 126.26, 125.74, 123.31, 122.08, 116.94, 110.98, 110.32, 107.08, 99.31, 70.77, 70.61, 68.79, 55.63, 50.73.

HRMS (ESI): calcd. for $C_{51}H_{56}N_4O_7 [M+H]^+ m/z 837.4222$, found 837.4193.

Scheme S1. Synthetic route of Axle 4

Synthesis of compound S1:

Compound S1 was synthesized according to literature reported procedure.²

Synthesis of S2:

A solution of **S1** (300 mg, 0.85 mmol) in MeOH (150 mL) was added 3,5dimethoxybenzylamine (142 mg, 0.85 mmol) at room temperature. The orange colour mixture was reflux for overnight. Then the mixture was cooled to 0 °C and NaBH₄ (0.10 g, 2.64 mmol) was added. The mixture was stirred for overnight and then quenched by water. The solvents were evaporated under reduced pressure. The mixture was dissolved in ethyl acetate (50 mL) and washed with water. The organic layer was dried with anhydrous MgSO₄ and concentrated by evaporation. The product was purified by silica gel column chromatography with (1/3, v/v) CH₂Cl₂/*n*-hexane, followed by CH₂Cl₂ to afford **S2** as an orange powder (110 mg, Yield: 26%).

¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.1 Hz, 2H), 6.52 (d, J = 2.2 Hz, 2H), 6.38 (t, J = 2.2 Hz, 1H), 5.97 (s, 2H), 3.89 (s, 2H), 3.80 (s, 6H), 3.76 (s, 2H), 2.55 (s, 6H), 1.38 (s, 6H). NH signal is missing.

¹³C NMR (101 MHz, CDCl₃) δ 161.04, 155.48, 143.17, 142.25, 141.83, 140.98, 133.78, 131.59, 129.02, 128.11, 121.28, 106.26, 99.10, 55.43, 53.14, 52.62, 14.68, 14.54.
HRMS (ESI): calcd. for C₂₉H₃₂BF₂N₃O₂ [M+H]⁺ *m/z* 504.2634, found 504.2617.

Synthesis of **4**:

A solution of **S2** (0.15 g, 0.30 mmol) in CH₂Cl₂/MeOH (10 mL) was added conc. HCl (2 mL). The mixture was stirred for 2 hours. Then the solvent was evaporated under reduced pressure. The mixture was dissolved in acetone (50 mL) and saturated NH₄PF₆ aqueous solution was added. The mixture was stirred for 2 hours. Then the organic solvent was evaporated under reduced pressure. The precipitate was filtered and washed with water to afford Ar^1Ar^1 -H·PF₆ as a red solid (0.16 g, 83%).

¹H NMR (400 MHz, CD₃CN) δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.3 Hz, 2H), 6.62 (d, *J* = 2.2 Hz, 2H), 6.57 (t, *J* = 2.2 Hz, 1H), 6.10 (s, 2H), 4.29 (s, 2H), 4.16 (s, 2H), 3.80 (s, 6H), 2.49 (s, 6H), 1.38 (s, 6H). NH₂⁺ signal is missing.

¹³C NMR (101 MHz, CD₃CN) δ 162.33, 156.68, 144.46, 142.22, 137.07, 133.32, 132.44, 132.13, 131.98, 129.85, 122.43, 108.91, 102.14, 56.24, 52.43, 51.91, 14.77, 14.75.

HRMS (ESI): calcd. for C₂₉H₃₃BF₂N₃O₂ [M–PF₆]⁺ *m/z* 504.2628, found 504.2617.

Synthesis of **RB**-H·PF₆:

A solution of thread 4 (71.3 mg, 0.11 mmol) in MeCN (15 mL) was added diamine 1 (41.4 mg, 0.11 mmol) and dialdehyde 2 (14.85 mg, 0.11 mmol). The red mixture was stirred for overnight at room temperature. The solvents were evaporated under reduced pressure. The mixture was purified by neutral alumina column chromatography with (1/3, v/v) CH₂Cl₂/*n*-hexane, followed by CH₂Cl₂ to afford **RB**-H·PF₆ as a red powder (90.0 mg, 83.3%).

¹H NMR (400 MHz, CD₃CN) δ 10.12 (br, 2H), 8.43 (s, 2H), 8.05 – 7.98 (m, 1H), 7.69 (d, J = 7.8 Hz, 2H), 7.41 – 7.34 (m, 2H), 7.27 (d, J = 8.2 Hz, 2H), 7.20 (dd, J = 8.4, 1.2 Hz, 2H), 7.04 (td, J = 7.6, 1.1 Hz, 2H), 6.99 – 6.93 (m, 4H), 6.52 (d, J = 2.3 Hz, 2H), 5.99 (t, J = 2.3 Hz, 1H), 5.95 (s, 2H), 4.80 – 4.72 (m, 2H), 4.63 – 4.51 (m, 4H), 4.47 – 4.40 (m, 2H), 3.98 – 3.87 (m, 4H), 3.62 – 3.50 (m, 8H), 3.38 (s, 6H), 2.41 (s, 6H), 0.97 (s, 6H).

¹³C NMR (101 MHz, CD₃CN) δ 162.07, 161.09, 156.45, 152.98, 152.86, 144.30, 142.44, 141.00, 140.07, 135.76, 135.56, 134.80, 131.89, 130.82, 130.68, 129.94, 128.95, 122.68, 122.19, 121.92, 113.58, 108.90, 101.47, 71.63, 71.39, 70.15, 69.63, 55.60, 53.12, 52.53, 14.72, 14.66.

HRMS (ESI): calcd. for C₅₆H₆₂BF₂N₆O₇ [M–PF₆]⁺ *m*/*z* 979.4736, found 979.4719.

Synthesis of RRB:

A solution of **RB**-H·PF₆ (40 mg, 0.04 mmol) in MeCN (150 mL) was added 1 M BH₃-THF (0.5 mL) at 0 °C. The yellow mixture was stirred for overnight at room temperature. The solvents were evaporated under reduced pressure. The mixture was dissolved in CHCl₃ (50 mL) and washed with 1 M HCl (20 mL), 1 M NaOH(20 mL). The organic layer was dried with anhydrous MgSO₄ and concentrated by evaporation. The product was purified by neutral aluminum oxide column chromatography with (1/3, v/v) CH₂Cl₂/*n*-hexane, followed by CH₂Cl₂ to afford **RRB** as a red powder (30.0 mg, Yield: 75%).

¹H NMR (400 MHz, CD₃CN) δ 7.43 (d, J = 7.9 Hz, 2H), 7.35 (dd, J = 8.4, 6.8 Hz, 1H), 7.29 – 7.24 (m, 2H), 6.98 – 6.94 (m, 2H), 6.77 (td, J = 7.6, 1.3 Hz, 2H), 6.69 (dt, J =8.0, 1.2 Hz, 4H), 6.55 (td, J = 7.7, 1.6 Hz, 2H), 6.51 (d, J = 2.3 Hz, 2H), 6.04 (t, J = 2.3Hz, 1H), 6.02 – 5.97 (m, 2H), 4.29 – 4.14 (m, 4H), 4.07 – 3.94 (m, 4H), 3.57 (s, 6H), 3.57 – 3.51 (m, 4H), 3.49 – 3.43 (m, 2H), 3.40 – 3.31 (m, 4H), 3.31 – 3.20 (m, 6H), 2.44 (s, 6H), 1.27 (s, 6H). NH singals are missing.

¹³C NMR (101 MHz, CD₃CN) δ 161.05, 159.76, 156.02, 147.46, 144.56, 143.97, 139.50, 137.82, 132.74, 132.25, 129.29, 127.83, 123.33, 121.91, 117.10, 110.86, 110.69, 107.85, 99.15, 71.91, 71.52, 70.78, 68.50, 55.64, 54.61, 53.53, 50.79, 30.62, 15.10, 14.69.

HRMS (MAIDI-TOF): calcd. for $C_{56}H_{65}BF_2N_6O_7$ [M+H]⁺ m/z 983.5054, found 983.5035.

Additional spectra

Figure S1. (a) Absorption spectrum of **RRA** (20 μ M) upon addition of 10 equiv of Au³⁺ ion in THF/MeCN/H₂O solution (2:48:50, *v/v*). (b) Absorption spectrum of **RRB** (5 μ M) upon addition of 10 equiv of Au³⁺ in MeCN/H₂O solution (50:50, *v/v*). The calculation of binding constants (*K*_a) of **RRA** and **RRB** were determined by the

Benesi-Hildebrand equation: $K_a=1/(m(I_{max} - I_o))$.³ Where m is the slope of the graph $1/(I - I_o)$ against $1/[Au^{3+}]$.

Figure S2. Benesi–Hildebrand Plot of RRA (20 μ M) upon addition of Au³⁺. Slope = 2.00×10^{-7} .

Figure S3. Benesi–Hildebrand Plot of **RRB** (20 μ M) upon addition of Au³⁺. Slope = 1.21×10^{-10} .

Figure S4. (a) Time related fluorescence response of **RRA** (20 μ M, $\lambda_{ex} = 370$ nm) at 417 nm upon addition of 10 equiv of Au³⁺ in THF/MeCN/H₂O solution (2:48:50, *v/v/v*). (b) Time related fluorescence response of **RRB** (5 μ M, $\lambda_{ex} = 500$ nm) at 518 nm upon addition of 10 equiv of Au³⁺ in MeCN/H₂O solution (50:50, *v/v*).

Figure S5. The cell viability of HeLa cells treated with (a) **RRA** and (b) **RRB** for 24 h was assessed using CCK-8.

NMR spectra

Figure S6. ¹H NMR spectrum (400 MHz, CD₃CN) of RA-H·PF₆.

Figure S7. ¹³C NMR spectrum (101 MHz, CD₃CN) of RA-H·PF₆.

Figure S9. ¹³C NMR spectrum (101 MHz, CD₃CN) of RRA.

Figure S11. ¹³C NMR spectrum (101 MHz, CD₃CN) of S2.

Figure S13. ¹³C NMR spectrum (101 MHz, CD₃CN) of 4.

Figure S15. ¹³C NMR spectrum (101 MHz, CD₃CN) of RB-H·PF₆.

f1 (ppm)

140 130 120

)0

160 150

Figure S17. ¹³C NMR spectrum (101 MHz, CD₃CN) of RRB.

Mass spectra

Figure S18. HRMS (MADLI-TOF) of RA-H·PF₆.

Figure S19. HRMS (ESI) of RRA.

Figure S22. HRMS (ESI) of RB-H·PF₆.

Figure S23. HRMS (MALDI-TOF) of RRB.

Identification code		SAM020	
Empirical formula		C ₅₂ H _{57.5} N _{4.5} O ₇	
Formula weight		857.52	
Temperature/K		173	
Crystal system		monoclinic	
Space group		P21/c	
a/Å		15.215(5)	
b/Å		14.040(5)	
c/Å		23.048(8)	
α/°		90	
β/°		100.849(6)	
$\gamma/^{\circ}$		90	
Volume/Å ³		4835(3)	
Z		4	
ρ_{calcg/cm^3}		1.178	
μ/mm^{-1}	0.079		
F(000)	1828.0		
Crystal size/mm ³	0.5 imes 0.4 imes 0	.2	
Radiation	MoK α ($\lambda = 0.71073$) 2 Θ range for data collection/°		
2.726 to 52.744			
Index ranges	$-19 \le h \le 19, -17 \le k \le 17, -28 \le l \le 28$		
Reflections collected	96415		
Independent reflections	9868 [R _{int}		
$= 0.0385, R_{sigma} = 0.0184]$			
Data/restraints/parameters	9868/2/584		
Goodness-of-fit on F^2	1.063		
Final R indexes [I>= 2σ (I)] R ₁			
= 0.0717, wR ₂ $= 0.2199$ Final R			
indexes [all data] $R_1 = 0.0866$,			

Table S1 Crystal data and structure refinement for RRA (CCDC code: 1942423).

 $wR_2 = 0.2441$ Largest diff.

peak/hole / e Å⁻³ 1.28/-0.70

References

- W.-Y. Wong, K. C.-F. Leung and J. F. Stoddart, Org. Biomol. Chem., 2010, 8, 2332.
- 2 T. Matsumoto, Y. Urano, Y. Takahashi, Y. Mori, T. Terai and T. Nagano, J. Org. Chem., 2011, **76**, 3616.
- X.-L. Yue, C.-R. Li and Z.-Y. Yang, J. Photochem. Photobiol. A Chem., 2018,
 351, 1.