Design and Performance Study of High Efficiency/Low Efficiency Roll-off/High CRI Hybrid WOLEDs Based on Aggregation-Induced Emission Materials as Fluorescent Emitters

Zeng Xu¹, Jiabao Gu¹, Jian Huang¹, Chengwei Lin¹, Yuanzhao Li¹, Dezhi Yang¹, Xianfeng Qiao¹, Anjun Qin¹, Zujin Zhao¹, Ben Zhong Tang^{1,2,*}, Dongge Ma^{1,*}

Mr. Z. Xu, Mr. J. Gu, Mrs. J. Huang, Mr. C. Lin, Mr. Y. Li, Dr. D. Y, Dr. X. Qiao, Prof.

A. Qin, Prof. Z. Zhao, Prof. B. Tang and Prof. D. Ma

¹Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China.

E-mail: msdgma@scut.edu.cn

Prof. B. Z. Tang

²Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.

E-mail: tangbenz@ust.hk

1. EL spectra of monochromatic devices

Figure S1. EL spectra of TPB-AC, CP-BP-PXZ, and Ir(dmppr-mp)₂(divm) based monochromatic devices.

2. Current efficiency-luminance characteristics of devices W1, W2, and W3

Figure S2. Current efficiency–luminance characteristic of device W1 with the configuration of ITO/HAT-CN (5 nm)/TAPC (50 nm)/TCTA (5 nm)/TCTA: 3 wt% Ir(dmppr-mp)₂(divm) (8 nm)/CP-BP-PXZ (8 nm)/TPB-AC (10 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (120 nm). Inset: the structure of emitting layer in device W1.

Figure S3. Current efficiency–luminance characteristic of device W2 with the configuration of ITO/HAT-CN (5 nm)/TAPC (50 nm)/TCTA (5 nm)/TCTA: 3 wt% Ir(dmppr-mp)₂(divm) (8 nm)/CP-BP-PXZ (7 nm)/TCTA (2 nm)/TPB-AC (10 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (120 nm). Inset: the structure of emitting layer in device W2.

Figure S4. Current efficiency–luminance characteristic of device W3 with the configuration of ITO/HAT-CN (5 nm)/TAPC (50 nm)/TCTA (5 nm)/TCTA: 3 wt% Ir(dmppr-mp)₂(divm) (5 nm)/CP-BP-PXZ (10 nm)/TCTA (3 nm)/TPB-AC (10

nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (120 nm). Inset: the structure of emitting layer in device W3.

3. EL spectra of devices C1-C3, and W2

Figure S5. EL spectra of devices C1-C3, and W2 measured at 4 V. Device structure is ITO/HAT-CN (5 nm)/TAPC (50 nm)/TCTA (5 nm)/TCTA: y wt% Ir(dmppr-mp)₂(divm) (8 nm)/CP-BP-PXZ (7 nm)/TCTA (2 nm)/TPB-AC (10 nm)/TmPyPB (40 nm)/LiF (1 nm)/Al (120 nm), where y = 0 for device C1, y = 1 for device C2, y = 2 for device C3, y = 3 for device W2.

4. PL spectra of film 1-4

Figure S6. PL spectra of films 1-4. Structures of film 1: substrate/TCTA (8 nm)/CP-BP-PXZ (7 nm), film 2: substrate/TCTA : 3 wt% Ir(dmppr-mp)₂(divm) (8 nm)/CP-BP-PXZ (7 nm), film 3: substrate/TCTA (2 nm)/TPB-AC (10 nm), film 4: substrate/CP-BP-PXZ (7 nm)/TCTA (2 nm)/TPB-AC (10 nm).