1

2 Utilizing aggregation-induced emission phenomenon to visualize

3 spontaneous molecular directed motion in solid state

4
5 Jianxun Liu, $\not \ddagger^{\mathrm{a}}$ Chang Xing, $\not \ddagger^{\mathrm{a}}$ Donghui Wei, ${ }^{\text {a }}$ Qianqian Deng, ${ }^{\text {a }}$ Cuiping Yang, ${ }^{\text {a }}$ Qiuchen Peng, ${ }^{\text {a,b }}$
6 Hongwei Hou, *a Yuanyuan Li, ${ }^{\text {b }}$ and Kai Li*a
$7{ }^{\text {a}}$ College of Chemistry and Molecular Engineering, Zhengzhou University, Henan 450001, P. R.
8 China.
$9{ }^{\text {b }}$ College of Chemistry, Chemical and Environmental Engineering, Henan University of 10 Technology, Henan 450001, P. R. China.
$11 \ddagger$ J. Liu, C. Xing contributed equally to this work.
12
5. Computational Methods. .S4

19 6. Caption of video..S5
20 7. Selected spectra and data referred in the paper. . 55

Supporting Information

Contents:

1. Materials.. S2
2. Characterization. S 2
3. Synthesis. S 3

21

1. Materials

Unless otherwise noted, all chemical reagents and solvents were commercially available and were used without further purification. Salicylaldehyde and p-phenetidine were purchased from Energy Chemical Co., Shanghai, China. p-propoxyaniline were purchased from Alfa Aesar (China) Chemical Co., Ltd. p-butoxyaniline were purchased from Tokyo Chemical Industry Co., Ltd. All the other reagents and solvents were purchased from Sinopharm Chemical Reagent Beijing Co., Beijing, China. Deionized water was used throughout all experiments.

2. Characterization

Absorption spectra were recorded by using a JASCO-750 UV-vis spectrometer. Fluorescence spectra were obtained by using a JASCO FP-8300 spectrometer. The temperatures in fluorescence measurements were controlled by an ETC-815 peltier thermostatted single cell holder, which offered a temperature control accuracy of $\pm 0.1^{\circ} \mathrm{C}$. Dynamic light scattering (DLS) experiments were measured on a NanoPlus-3 DLS particle size/zeta potential analyzer. Powder X-ray diffraction (PXRD) patterns were recorded with a Bruker D8 ADVANCE. The crystallographic data were collected on a Rigaku Saturn 724 CCD diffractometer with graphite monochromated Mo $\mathrm{K} \alpha$ radiation $\left(\lambda=0.71073 \AA\right.$). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ nuclear magnetic resonance (NMR) spectra were recorded on a Bruker AV400 NMR spectrometer operated at 400 MHz and 101 MHz in CDCl_{3}, respectively. Atomic force microscopy (AFM) patterns were obtained by Oxford Instruments MFP-3D Infinity atomic force microscope. Melting point were tested on a XT4A melting point meter (Temperature control type). Electrospray Ionization Mass Spectrometry (ESI-MS) were undertaken using an Agilent Technologies 6420 triple quadrupole LC/MS without using the liquid chromatography part. The photos and videos were taken by a Nikon D5500 camera. Unless otherwise noted, all the measurement experiments were performed at $25^{\circ} \mathrm{C}$.

3. Synthesis

General synthetic procedures of SEA, SPA and SBA are as follows. 10 mmol salicylaldehyde was dissolved in 20 mL absolute ethanol. Then 10 mmol corresponding aniline derivative was added. The mixture was stirred and heated to $80^{\circ} \mathrm{C}$ for 30 min . After cooling to room temperature, light yellow precipitate was formed. The resulting precipitate was filtrated and washed with 10 mL of cold absolute ethanol for three times. After being dried under reduced pressure, final product was obtained. The crystal of SEA, SPA and SBA are obtained in n-hexane by slowly volatilized at room temperature.

SPA

Scheme S1. Synthetic route for SEA, SPA and SBA.
Salicylaldehyde 4-ethyoxyaniline Schiff base (SEA): Schistose yellow crystalline, yield is $75 \%{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.43(\mathrm{t}, 3 \mathrm{H}, J=7.0 \mathrm{~Hz}), 4.06(\mathrm{q}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}), 6.93(\mathrm{t}, 3 \mathrm{H}, J=$ $7.6 \mathrm{~Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.9 \mathrm{~Hz}), 7.36(\mathrm{dd}, 2 \mathrm{H}, J=10.7,7.9 \mathrm{~Hz}), 8.61(\mathrm{~s}$, $1 \mathrm{H}), 13.44(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 14.85,63.78,115.17,117.17,118.99,119.43$, 122.30, 131.95, 132.66, 141.22, 158.25, 160.33, 161.01. ESI-MS spectrometry: m / z calcd for $[\mathrm{M}+$ $\mathrm{H}]^{+}: 242.11$; found: 242.10 . Melting point: $97^{\circ} \mathrm{C}$.

Salicylaldehyde 4-propoxyaniline Schiff base (SPA): Schistose yellow crystalline, yield is $70 \% .^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 1.05(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.78-1.88(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{t}, 2 \mathrm{H}, J=6.6$ Hz), $6.93(\mathrm{t}, 3 \mathrm{H}, J=8.7 \mathrm{~Hz}), 7.03(\mathrm{~d}, 1 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.36(\mathrm{dd}, 2 \mathrm{H}, J$ $=11.9,7.5 \mathrm{~Hz}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 13.45(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 10.54,22.60,69.85$, $115.20,117.17,118.99,119.42,122.28,131.94,132.65,141.15,158.47,160.28,161.01$. ESI-MS spectrometry: m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}: 256.13$; found: 256.10 . Melting point: $78^{\circ} \mathrm{C}$.

Salicylaldehyde 4-butoxyaniline Schiff base (SBA): Schistose crystalline, yield is $72 \% .{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta(\mathrm{ppm}): 0.99(\mathrm{t}, 3 \mathrm{H}, J=7.4 \mathrm{~Hz}), 1.45-1.556(\mathrm{~m}, 3 \mathrm{H}), 1.74-1.83(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{t}$,
$702 \mathrm{H}, J=1.0 \mathrm{~Hz}), 6.93(\mathrm{t}, 3 \mathrm{H}, J=8.2 \mathrm{~Hz}), 7.02(\mathrm{~d}, 1 \mathrm{H}, J=8.0 \mathrm{~Hz}), 7.27(\mathrm{~d}, 2 \mathrm{H}, J=9.0 \mathrm{~Hz}), 7.36$
$71(\mathrm{dd}, 2 \mathrm{H}, J=12.0,7.5 \mathrm{~Hz}), 8.61(\mathrm{~s}, 1 \mathrm{H}), 13.46(\mathrm{~s}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm}): 13.86,19.24$, $7231.30,68.03,115.19,117.18,119.00,119.32,122.25,131.97,132.75,140.93,158.50,160.23$, 73 161.03. ESI-MS spectrometry: m / z calcd for $[\mathrm{M}+\mathrm{H}]^{+}: 270.14$; found: 270.10 . Melting point: 74 $74{ }^{\circ} \mathrm{C}$.

5. Computational Methods

The DFT calculations were performed using the Gaussian 09 program. ${ }^{[1]}$ The geometries were fully optimized using m062x method. ${ }^{[2,3]}$ Basis set $6-31+\mathrm{G}(\mathrm{d}, \mathrm{p})$ was employed for all atoms. Frequency calculations at the same level of theory were carried out to identify all of the stationary points as minima that have zero imaginary frequency.

Reference:

[1] M. J. Frisch, G. W. Trucks, H. B. Schlegel, et. al. Gaussian09, Revision C.01, 2010.
[2] Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215-241.
[3] Y. Zhao and D. G. Truhlar, Acc. Chem. Res., 2008, 41, 157-167.

6. Caption of video

Video 1. SBA was ground and kept in $25^{\circ} \mathrm{C}$. The video was taken under the irradiation of 365 nm UV light.

7. Selected spectra and data referred in the paper

A

B] "head-to-head" "tail-to-tail"

C

Figure S2. Crystal structure of SEA viewed from different directions.

Figure S3. Crystal structure of SPA viewed from different directions.
Energy

Figure S4. The calculate binding energy of SBA.

Figure S5. The ${ }^{1} \mathrm{H}$ NMR spectrum of SEA.

112 Figure S6. The ${ }^{13} \mathrm{C}$ NMR spectrum of SEA.

$\stackrel{\%}{\%}$

Figure S7. The ${ }^{1} \mathrm{H}$ NMR spectrum of SPA.

$\stackrel{\sim}{\sim}$	
$\bar{\circ}$	
1'	¢

!
0
1
1

Figure S9. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{S B A}$.

$\stackrel{8}{\circ}$
ণ ল্লে N্N
ع0'89-

124 Figure S10. The ${ }^{13} \mathrm{C}$ NMR spectrum of SBA.

Figure S11. The mass spectrometry of SEA.

Figure S13. The mass spectrometry of SBA.

135 Table S1. The calculated k and $t_{1 / 2}$ from $15^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$.

Temperature $\left({ }^{\circ} \mathrm{C}\right)$	15	16	17	18	19	20
$k\left(10^{-4} \mathrm{~s}^{-1}\right)$	5.12	7.07	8.64	13.33	15.82	23.75
$t_{1 / 2}(\mathrm{~s})$	1353	979	802	520	438	292

136
137 Table S2. Crystallographic data and structure refinement details for SEA.

Complex	SEA
Formula	$\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{NO}_{2}$
CCDC	1941969
$F_{\text {w }}$	241.28
Temp.(K)	273.15
Wavelength (\AA)	0.71073
Crystal system	Triclinic
Space group	$P-1$
$\mathrm{a}(\AA)$	6.2682(5)
$\mathrm{b}(\AA)$	7.1504(5)
$c(\AA)$	28.857(2)
$\alpha\left(^{\circ}\right)$	94.165(2)
$\beta\left({ }^{\circ}\right)$	90.331(3)
$\gamma\left({ }^{\circ}\right)$	90.002(3)
$V\left(\AA^{3}\right)$	1289.92(17)
Z	4
$\mathrm{Dc}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.242
$\mu\left(\mathrm{mm}^{-1}\right)$	0.083
$F(000)$	512.0
GOF on F^{2}	1.040
$R_{1}{ }^{\text {a }}(\mathrm{I}>2 \sigma(\mathrm{I}))$	0.0591
$w R_{2}{ }^{\text {b }}(\mathrm{I}>2 \sigma(\mathrm{I}))$	0.1616

$138{ }^{\mathrm{a}} R_{1}=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| \Sigma\left|\mathrm{F}_{\mathrm{o}}\right| \cdot{ }^{\mathrm{b}} w R_{2}=\left\{\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$.

139 Table S3. Crystallographic data and structure refinement details for SPA.

Complex	SPA
Formula	$\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{NO}_{2}$
CCDC	1941970
$F_{\text {w }}$	255.30
Temp.(K)	293(2)
Wavelength (\AA)	1.54184
Crystal system	Triclinic
Space group	$P-1$
$\mathrm{a}(\AA)$	6.2328(2)
$\mathrm{b}(\AA)$	7.21290(10)
$\mathrm{c}(\AA)$	31.0245(7)
$\alpha\left(^{\circ}\right)$	92.777(2)
$\beta\left({ }^{\circ}\right)$	94.558(2)
$\gamma\left({ }^{\circ}\right)$	90.014(2)
$V\left(\AA^{3}\right)$	1388.70(6)
Z	4
$\mathrm{Dc}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.221
$\mu\left(\mathrm{mm}^{-1}\right)$	0.642
$F(000)$	544
GOF on F^{2}	1.000
$R_{1}{ }^{\text {a }}$ [$\left.{ }^{\text {P }} 2 \sigma(\mathrm{I})\right]$	0.0468
$w R_{2}{ }^{\mathrm{b}}[\mathrm{I}>2 \sigma(\mathrm{I})]$	0.1319

140
${ }^{\mathrm{a}} R_{1}=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| / \Sigma\left|\mathrm{F}_{\mathrm{o}}\right| \cdot{ }^{\mathrm{b}} w R_{2}=\left\{\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$.

142 Table S4. Crystallographic data and structure refinement details for SBA.

Complex	SBA
Formula	$\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{2}$
CCDC	1941971
$F_{\text {w }}$	269.33
Temp.(K)	100 K
Wavelength (\AA)	1.54184
Crystal system	Triclinic
Space group	$P-1$
$\mathrm{a}(\AA)$	$6.1745(2)$
$b(\AA)$	7.0411(2)
$c(\AA)$	$33.2296(10)$
$\alpha\left(^{\circ}\right)$	86.545(2)
$\beta\left({ }^{\circ}\right)$	84.929(2)
$\gamma\left({ }^{\circ}\right)$	89.992(2)
$V\left(\AA^{3}\right)$	1436.38(8)
Z	4
$\mathrm{Dc}\left(\mathrm{g} \cdot \mathrm{cm}^{-3}\right)$	1.245
$\mu\left(\mathrm{mm}^{-1}\right)$	0.647
$F(000)$	576.0
GOF on F^{2}	1.119
$R_{1}{ }^{\text {a }}(\mathrm{I}>2 \sigma(\mathrm{I}))$	0.0490
$w R_{2}{ }^{\mathrm{b}}(\mathrm{I}>2 \sigma(\mathrm{I})$)	0.1306

$143{ }^{\mathrm{a}} R_{1}=\Sigma| | \mathrm{F}_{\mathrm{o}}\left|-\left|\mathrm{F}_{\mathrm{c}}\right|\right| \Sigma\left|\mathrm{F}_{\mathrm{o}}\right| \cdot{ }^{\mathrm{b}} w R_{2}=\left\{\Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}-\mathrm{F}_{\mathrm{c}}{ }^{2}\right)^{2}\right] / \Sigma\left[\mathrm{w}\left(\mathrm{F}_{\mathrm{o}}{ }^{2}\right)^{2}\right]\right\}^{1 / 2}$.

Table S5. Geometrical coordinates of the compound showed in Figure S4 left.

O	3.71346	0.74608	-0.2713
O	-4.12224	1.76363	0.56807
H	-3.14468	1.64682	0.45548
N	-1.83913	0.56832	0.04311
C	2.36707	0.61441	-0.15806
C	-3.96239	-0.53897	-0.11989
C	1.61019	1.72769	-0.54568
H	2.13557	2.60681	-0.90231
C	-0.43027	0.54491	-0.01263
C	-4.70587	0.59986	0.27061
C	0.23139	1.69598	-0.46082
H	-0.36145	2.55642	-0.75357
C	1.72131	-0.52505	0.32302
H	2.28466	-1.38751	0.65734
C	-4.6404	-1.72917	-0.4227
H	-4.0559	-2.59583	-0.72248
C	0.32975	-0.55155	0.39337
H	-0.16426	-1.42675	0.80458
C	-6.10149	0.51133	0.34912
H	-6.65125	1.39603	0.65034
C	4.5237	-0.34618	0.12472
H	4.26497	-1.23919	-0.46348
H	4.34703	-0.57964	1.18526
C	-2.51164	-0.4944	-0.21313
H	-2.01037	-1.41962	-0.52847
C	5.97196	0.03991	-0.10169
H	6.18902	0.94629	0.47519
H	6.10677	0.29558	-1.15901
C	-6.01861	-1.81115	-0.34342
H	-6.53062	-2.73699	-0.57881
C	-6.74279	-0.6781	0.04607
H	-7.82535	-0.72821	0.11266
C	6.93166	-1.07952	0.29566
H	6.77532	-1.33616	1.35088
H	6.69596	-1.98326	-0.28009
C	8.3915	-0.69544	0.07228
H	8.65539	0.18994	0.65841
H	8.57644	-0.46371	-0.98093
H	9.06652	-1.50431	0.36217

146

147 Table S6. Geometrical coordinates of the compound showed in Figure S4 right.

O	-2.63471	-3.16768	0.23242	O	-4.68050	1.54203	0.55709
O	5.27336	-2.51128	0.54823	O	2.99569	0.38409	1.88329
H	4.28847	-2.61561	0.49091	H	2.03532	0.59150	1.76931
N	2.80870	-2.12462	-0.28068	N	0.85980	1.67135	1.04581
C	-1.32476	-2.83294	0.09295	C	-0.53502	1.71354	0.86144
C	4.68476	-0.89576	-1.13617	C	3.08840	2.36705	0.51165
C	-0.40082	-3.87908	0.20871	C	-2.52366	1.92672	-0.51669
H	-0.77556	-4.87856	0.40054	H	-2.95934	2.11160	-1.49091
C	1.41854	-2.33096	-0.17123	C	-1.13664	1.98073	-0.36820
C	5.63026	-1.56808	-0.32672	H	-0.51887	2.18551	-1.23806
C	0.95439	-3.62659	0.09181	C	-3.32434	1.61271	0.58309
H	1.67809	-4.42922	0.19049	C	3.70000	1.32988	1.25600
C	-0.87345	-1.53331	-0.13676	C	1.64295	2.47262	0.41693
H	-1.56357	-0.69973	-0.19459	H	1.24347	3.27686	-0.2171
C	5.12233	0.10656	-2.01200	C	-2.72397	1.32933	1.81797
H	4.38091	0.63056	-2.61083	H	-3.36514	1.07183	2.65423
C	0.49127	-1.29412	-0.26916	C	-1.34900	1.36359	1.94836
H	0.83798	-0.27559	-0.40533	H	-0.87514	1.12161	2.89391
C	6.98500	-1.22992	-0.43305	C	-5.33863	1.77491	-0.67719
H	7.69280	-1.76155	0.19345	H	-5.05829	0.99105	-1.39841
C	-3.58320	-2.11891	0.15233	H	-5.02649	2.74275	-1.09487
H	-3.50284	-1.61088	-0.82197	C	5.09834	1.27421	1.33492
H	-3.38344	-1.36705	0.93051	H	5.54231	0.46127	1.89930
C	3.26551	-1.20272	-1.04695	C	5.27738	3.24648	-0.06527
H	2.59776	-0.60442	-1.68185	H	5.89272	3.97847	-0.57585
C	-4.96724	-2.71066	0.32513	C	3.90051	3.31069	-0.14204
H	-5.02744	-3.19764	1.30537	H	3.41782	4.10288	-0.70997
H	-5.11950	-3.49066	-0.42967	C	-6.83402	1.77027	-0.42421
C	6.46200	0.43888	-2.11243	H	-7.08917	2.62468	0.21314
H	6.78648	1.21948	-2.79126	H	-7.09571	0.86695	0.13774
C	7.38985	-0.24179	-1.31672	C	5.86952	2.21669	0.68072
H	8.44489	0.00655	-1.38688	H	6.95128	2.14580	0.73890
C	-6.04190	-1.63364	0.20416	C	-7.63423	1.81906	-1.72363
H	-5.82759	-0.83035	0.92074	H	-7.34067	2.70145	-2.30613
H	-5.98051	-1.17499	-0.79318	H	-7.37867	0.94468	-2.33582
C	-7.45052	-2.17558	0.42652	C	-9.13894	1.84614	-1.47177
H	-7.55023	-2.60581	1.42744	H	-9.45472	0.96011	-0.91209
H	-7.68531	-2.96101	-0.29837	H	-9.70093	1.86982	-2.40831
H	-8.20425	-1.38910	0.32316	H	-9.42109	2.72648	-0.88670

