Supporting Information

Aggregation-Induced Emission Characteristics of *o*-Carborane-Functionalized Fluorene and Its Heteroanalogs: The Influence of Heteroatoms on Photoluminescence

Xueyan Wu,^a Jixi Guo,^{*a} Yan LV,^a Dianzeng Jia,^{*a} Jianzhang Zhao,^{a,b} Huici Shan,^a Xiaoping Jin,^a Yongdong Ma^a

^a Key Laboratory of Energy Materials Chemistry, Ministry of Education; Key Laboratory of Advanced Functional Materials, Autonomous Region; Institute of Applied Chemistry, Xinjiang University, Urumqi 830046, P. R. China. Email: jxguo1012@163.com; jdz@xju.edu.cn.
 ^b State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China.

Table of Contents

1. UV-Vis absorption and fluorescence emission spectra of the compounds	S2–S3
2. Time-resolved florescence measurements	S4
3. Crystal packing from X-ray crystallography of the compounds	S4–S5
4. Electrochemical studies of the compounds	S6
5. DFT calculations	S7–S11
6. NMR spectra analysis of all target compounds	S12–S15

1. UV-Vis absorption and fluorescence emission spectra of the compounds

Figure S1. UV-Vis absorption spectra of (a) **CDC**, (b) **CDN** (c) **CDO** and (d) **CDS** in various solvents, $c = 1.0 \times 10^{-5}$ M, 20 °C.

Figure S2. The emission spectra of (a) CDC, (b) CDN (c) CDO and (d) CDS in various solvents, $\lambda_{ex} = 300$ nm for CDC and CDO, $\lambda_{ex} = 330$ nm for CDN and CDS, $c = 1.0 \times 10^{-5}$ M, 20 °C.

Figure S3. The PL spectra of (a) **CDC**, (b) **CDN** (c) **CDO** and (d) **CDS** in 2-MeTHF at r.t. (black line) and 77 K (red line), $\lambda_{ex} = 300$ nm for **CDC** and **CDO**, $\lambda_{ex} = 330$ nm for **CDN** and **CDS**, $c = 2.0 \times 10^{-5}$ M.

Figure S4. The emission spectra of CDC, CDN, CDO and CDS in the solid state, $\lambda_{ex} = 300$ nm for CDC and CDO, $\lambda_{ex} = 330$ nm for CDN and CDS, 20 °C.

2. Time-resolved Florescence Measurements

Figure S5. Emission decay profiles of CDC, CDN, CDO and CDS in the mixture of THF and water, $f_w = 99\%$, $c = 5.0 \times 10^{-5}$ M, $\lambda_{ex} = 340$ nm, 20 °C.

3. Crystal Packing from X-ray Crystallography of the compounds

Figure S6. The unit cells of (a) **CDO** and (d) **CDS**, (b) $C-H \cdots O$ and (e) $B-H \cdots S$, $C-H \cdots Cl$ lengths, (c) $C-H \cdots O$ and (f) $B-H \cdots S$, $C-H \cdots S$, $C-H \cdots Cl$ angles.

Compounds	CDO CDS		
Empirical formula	$C_{26}H_{24}B_{10}O_2$	$C_{26}H_{24}B_{10}S_2{\cdot}CH_2Cl_2$	
CCDC	1838965	1843555	
Formula weight	476.55	593.60	
Temperature	296 K	173 K	
Wavelength	0.71073 Å	0.71073 Å	
Crystal system	Monoclinic	Triclinic	
Space group	$P2_1/c$	P-1	
	$a = 14.0788(12) \text{ Å} \alpha = 90 \text{ Å}.$	$a = 10.3775(5) \text{ Å} \alpha = 74.141(1) \text{ Å}.$	
Unit cell dimensions	$b = 11.9888(11) \text{ Å} \beta = 95.346(2) \text{ Å}.$	$b = 2.6725(6) \text{ Å} \beta = 69.041(1) \text{ Å}.$	
	$c = 15.4045(13) \text{ Å} \gamma = 90 \text{ Å}.$	$c = 12.9325(6) \text{ Å} \gamma = 67.234(1) \text{ Å}.$	
Volume	2588.8(4) Å ³	1446.41(12) Å ³	
Z	4	2	
Calculated density, mg/m ³	1.223	1.363	
Absorption coefficient, mm ⁻¹	0.069	0.389	
F(000)	984.0	608.0	
Crystal size, mm ³	$0.3 \times 0.25 \times 0.2$	0.2 imes 0.17 imes 0.13	
Theta range for data collection	4.312 to 55.228 °	2.385 to 25.500 °	
Index ranges	$-17 \leq h \leq 18, -15 \leq k \leq 15, -19 \leq l \leq 20$	$-12 \le h \le 12, -15 \le k \le 15, -15 \le l \le 15$	
Reflections collected	21015	24462	
Independent reflections	5992 [$R_{int} = 0.0269$, $R_{sigma} = 0.0271$] 5344 [$R_{int} = 0.0372$, $R_{sigma} = 0.0271$]		
Data / restraints / parameters	5992 / 0 / 343 5344 / 0 / 407		
Goodness-of-fit on F^2	1.028 1.033		
Final R indices [I>2sigma(I)]	$R_1 = 0.0467, wR_2 = 0.1372 \qquad \qquad R_1 = 0.0603, wR_2 = 0.1591$		
R indices (all data)	$R_1 = 0.0805, wR_2 = 0.1624$	$R_1 = 0.0645, wR_2 = 0.1632$	
Largest diff. peak and hole e.Å-3	0.188 and -0.198	0.942 and -1.631	

 Table S1. Crystal data and structure refinement for CDO and CDS.

Table S2. Selected bond length [Å] and torsion angles [°] for CDO and CDS.

Bond lengths [Å]		Bond angles[°]		Torsion angles[°]			
	C(1)-C(2)	1.727(2)					
	C(6)-O(1)	1.384(2)	C(3)-C(1)-C(2) C(15)-C(2)-C(1) C(6)-O(1)-C(7)	117.20(12) 119.10(12) 105.22(14)			
	C(7)-O(1)	1.390(2)			C(3)-C(1)-C(2)-C(15) C(1)-C(2)-C(15)-C(16) C(1)-C(2)-C(15)-C(26)	-3.40(3)	
CDO	C(18)-O(2)	1.3803(18)				89.9(3)	
	C(19)-O(2)	1.386(2)				-97.0(2)	
	C(1)-C(3)	1.504(2)	C(10)-O(2)-C(17)	105.10(12)			
	C(2)-C(15)	1.4972(19)					
	C(13)-C(14)	1.743(3)					
CDS	C(1)-S(1)	1.744(3)	C(11)-C(13)-C(14) C(15)-C(14)-C(13) C(1)-S(1)-C(8) C(18)-S(2)-C(22)	120.16(18) 119.68(18) 91.29(12) 91.19(13)			
	C(8)-S(1)	1.745(2)			C(11)-C(13)-C(14)-C(15) C(13)-C(14)-C(15)-C(20) C(13)-C(14)-C(15)-C(16)	-1.3(3)	
	C(18)-S(2)	1.743(3)				75.9(3)	
	C(22)-S(2)	1.749(3)				-108.4(2)	
	C(11)-C(13)	1.501(3)					
	C(14)-C(15)	1.501(3)					

4. Electrochemical (CV) studies of the compounds

Electrochemical methods cyclic voltammetry (CV) was performed using a three-electrode cell linked to a model CHI760E electrochemical workstation (CH Instruments, Shanghai). The solution was purged with N₂ before measurement. A three-electrode cell system was used. including an Ag/AgNO₃ couple as the reference electrode. $c_{[Ag^+]} = 0.10$ M, A platinum wire as a counter electrode and a modified glassy carbon electrode as a working electrode. Before each measurement, the working electrode (WE) was polished on a felt pad with 0.05 μ m alumina (Tianjin Aida, Ltd.), wash with DI water. The potential values were calibrated with respect to the F_C/F_C⁺ (F_C = Ferrocene) redox couple. Freshly distilled, degassed acetonitrile was used as the solvent, with 0.1 M Bu₄NPF₆ as the supporting electrolyte.

Figure S7. Cyclic voltammogram of **CDC**, **CDN**, **CDO** and **CDS**, $c = 1.0 \times 10^{-3}$ M. In the deaerated acetonitrile solution containing the compounds, 0.10 M Bu₄NPF₆ as supporting electrode, Ag/AgNO₃ as reference electrode, Scan rates: 100 mV/s. For all compounds Ferrocene (Fc) ($c = 1.0 \times 10^{-3}$ M) was used as internal reference, 20 °C.

5. DFT calculations

Figure S8. The theoretical calculated ground-state frontier orbitals contributions of **CDC** in gas sate using B3LYP/6-31G (d, p) level by Gaussian 09.

Figure S9. The theoretical calculated ground-state frontier orbitals contributions of **CDN** in gas sate using B3LYP/6-31G (d, p) level by Gaussian 09.

Figure S10. The theoretical calculated ground-state frontier orbitals contributions of **CDO** in gas sate using B3LYP/6-31G (d, p) level by Gaussian 09.

Figure S11. The theoretical calculated ground-state frontier orbitals contributions of **CDS** in gas sate using B3LYP/6-31G (d, p) level by Gaussian 09.

Table S3. Selected parameters for the UV-Vis absorption and Singlet state (Fluorescence) energy of the compounds. Electronic excitation energies (eV), oscillator strengths (*f*), and configurations of the low-lying excited states of **CDC** were calculated using TDDFT//B3LYP/6-31G(d, p), based on the optimized ground state geometries.

a	Electronic transition ^a		TDDFT/B3LYP/6-31G(d,p)			
Comp			Excitation energy	f^{b}	Composition ^c	
CDC	UV-Vis	$S_0 \rightarrow S_1$	4.23 eV (293 nm)	0.0323	H→L	
		$S_0 \rightarrow S_2$	4.48 eV (277 nm)	0.1267	$H-1\rightarrow L+1$	
	Fluorescence	$S_0 \rightarrow S_1$	2.46 eV (504 nm)	0.0531	H→L	
CDN	UV-Vis	$S_0 \rightarrow S_1$	3.94 eV (315 nm)	0.0282	H→L	
		$S_0 \rightarrow S_2$	4.40 eV (282 nm)	0.3456	$H-1 \rightarrow L$	
	Fluorescence	$S_0 \rightarrow S_1$	2.17 eV (572 nm)	0.1540	H→L	
		$S_0 \rightarrow S_1$	4.33 eV (286 nm)	0.0779	H→L	
CDO	0 v-vis	$S_0 \rightarrow S_2$	4.71 eV (263 nm)	0.1626	$H \rightarrow L+1$	
	Fluorescence	$S_0 \rightarrow S_1$	2.56 eV (485 nm)	0.2490	H→L	
CDS	UV-Vis	$S_0 \rightarrow S_1$	4.09 eV (303 nm)	0.0137	H→L	
		$S_0 \rightarrow S_2$	4.52 eV (274 nm)	0.1978	$H \rightarrow L+1$	
	Fluorescence	$S_0 \rightarrow S_1$	2.38 eV (520 nm)	0.1764	H→L	

^{*a*} Only selected excited states were considered. Numbers in parentheses are the excitation energy in wavelength. ^{*b*} Oscillator strength. ^{*c*} H stands for the HOMO and L stands for the LUMO. Only the main configurations are presented. ^{*d*} Coefficient of the wave function for each excitation. CI coefficients are given in absolute values.

Figure S12. Frontier molecular orbitals for (a) **CDC** and (b) Simulated absorption spectra of **CDC** in ground state (S_0) optimized geometries in gas state and the lowest-energy electronic transition from TD-DFT calculation at the B3LYP/6-31G (d, p) level by Gaussian 09.

Figure S13. Frontier molecular orbitals for (a) **CDN** and (b) Simulated absorption spectra of **CDN** in ground state (S_0) optimized geometries in gas state and the lowest-energy electronic transition from TD-DFT calculation at the B3LYP/6-31G (d, p) level by Gaussian 09.

Figure S14. Frontier molecular orbitals for (a) **CDO** and (b) Simulated absorption spectra of **CDO** in ground state (S_0) optimized geometries in gas state and the lowest-energy electronic transition from TD-DFT calculation at the B3LYP/6-31G (d, p) level by Gaussian 09.

Figure S15. Frontier molecular orbitals for (a) **CDS** and (b) Simulated absorption spectra of **CDS** in ground state (S_0) optimized geometries in gas state and the lowest-energy electronic transition from TD-DFT calculation at the B3LYP/6-31G (d, p) level by Gaussian 09.

Table S4. The ground (μ_G) and excited (μ_E at the Franck–Condon geometry) dipole moments calculated with (TD-) DFT (B3LYP/6–31G (d, p)).

Compound	μ_G (Debye)	μ_E (Debye)	$\Delta \mu \left(\mu_E - \mu_G \right)$ (Debye)
CDC	8.05	22.17	14.12
CDN	10.16	21.93	11.77
CDO	6.56	21.74	15.81
CDS	6.06	19.27	13.21

6. NMR Spectra analysis of all target compounds

Figure S16. ¹H NMR spectroscopies of CDC in CDCl₃.

Figure S17. ¹³C NMR spectroscopies of CDC in CDCl₃.

Figure S18. ¹¹B NMR spectroscopies of CDC in CDCl₃.

Figure S19. ¹H NMR spectroscopies of CDN in CDCl₃.

Figure S20. ¹³C NMR spectroscopies of CDN in CDCl₃.

Figure S22. ¹H NMR spectroscopies of CDO in CDCl₃.

Figure S23. ¹³C NMR spectroscopies of CDO in CDCl₃.

Figure S24. ¹¹B NMR spectroscopies of CDO in CDCl₃.

Figure S25. ¹H NMR spectroscopies of CDS in CDCl₃.

Figure S26. ¹³C NMR spectroscopies of CDS in CDCl₃.

Figure S27. ¹¹B NMR spectroscopies of CDS in CDCl₃.