Supporting Information for

Microwave-assisted synthesis of nitrogen-rich carbon dots as effective fluorescent probe for sensitive detection of Ag⁺

Jie Feng^a, Xiaoran Zhao^a, Wei Bian^b, Xinjing Tang^{1a}

^a State Key Laboratory of Natural and Biomimetic Drugs, Department of Medicinal Chemistry, the

School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

^b School of Basic Medical Science, Shanxi Medical University, Taiyuan 030001, China

^{*}Corresponding author at: State Key Laboratory of Natural and Biomimetic Drugs, the School of Pharmaceutical Sciences, Peking University, Beijing 100191, Phone/fax: 86-10-82805635, E-mail address: <u>xinjingt@bjmu.edu.cn</u>

Fig. S1. The UV-vis spectra (A) and fluorescence emission spectra (B) of the nitrogen-rich CDs (N-dots) synthesized with different hydroxyl compounds as additives.

Fig. S2. The UV-vis spectra (A) and fluorescence emission spectra (B) of the N-dots synthesized at different concentrations of glycerol.

Fig. S3. The UV-vis spectra (A) and fluorescence emission spectra (B) of the N-dots synthesized at different reaction temperatures with glycerol.

Fig. S4. The UV-vis spectra (A) and fluorescence emission spectra (B) of the N-dots synthesized at different reaction time with glycerol

Fig. S5. The fluorescence lifetime spectrum of the N-dots (The concentration of the N-dots was $100 \ \mu g/mL$).

Fig. S6. pH Effect on Ag⁺ detection based on the fluorescence quenching efficiency (F_0/F) (The concentrations of the N-dots and Ag⁺ were 100 µg/mL and 2 µM, respectively).

Fig. S7. Fluorescence changes of the probe towards Ag^+ , the mixture of Ag^+ and EDTA, the mixture of Cu^{2+} and EDTA, the mixture of Hg^{2+} and EDTA. (The concentration of the N-dots was 100 µg/mL. The concentration of the Ag^+ was 2 µM. The concentrations of Cu^{2+} and Hg^{2+} were 20 µM. The concentration of EDTA was 100 µM.)

Fig. S8. The UV-vis absorption spectra of the N-dots before and after the addition of $10 \ \mu M Ag^+$.

Fig. S9. (A) Fluorescence recovery of the N-dots/Ag⁺ system in the presence of different concentrations of Cys. Inset showed the photographs of the N-dots/Ag⁺ system in the absence and presence of 7 μ M Cys under UV light (365 nm). (B) Relationship between fluorescence restoration of the N-dots versus concentration of Cys, where F_0 was fluorescence intensity of the N-dots/Ag⁺ complex and F was the fluorescence intensity of N-dots/Ag⁺ complex with the addition of Cys. (The concentrations of the N-dots and Ag⁺ were 100 µg/mL and 6 µM, respectively)

Fig. S10. Selectivity of the N-dots/Ag⁺ complex toward Cys. (The concentrations of the N-dots and Ag⁺ were 100 μ g/mL and 2 μ M, respectively. 4 μ M for Cys, Hcy and GSH. 100 μ M for other cations)

Fig. S11. The NMR spectra of the 2-azidoimidazole.

¹H NMR (400 MHz, DMSO-*d*₆) δ 12.05 (s, 1H), 6.89 (s, 2H).

¹³C NMR (101 MHz, DMSO) δ 139.89, 127.44, 116.40.

Table S1. The QYs of the N-dots synthesized using different hydroxyl compounds as additives with 50% water in volume (Other reaction conditions: 120 $^{\circ}$ C, 30 min, 50 W).

Additive	propanol	1,2-propanediol	glycerol
QY (%)	10.9	22.2	27.9

Table S2. The QYs of the N-dots synthesized at different concentrations of glycerol (Other microwave reaction conditions: 120 °C, 30 min, 50 W).

V(glycerol):V(H ₂ O)	1:0	4:1	2:1	1:1	1:2	1:4	0:1
QY (%)	10.8	25.7	27.6	27.9	24.5	24.3	8.7

Table S3. The QYs of the N-dots synthesized at different reaction temperatures (Other reaction conditions: 50% glycerol/water (v/v), 30 min, 50 W)

$T(^{\circ}C)$	50	70	100	120	140
QY (%)	-	18	22	27.9	27.4

Table S4. The QYs of the N-dots synthesized at different reaction time (Other reaction conditions: 50% glycerol/water (v/v), 120 $^{\circ}$ C, 50 W)

Reaction time	15	30	60	120
(min)	15	30	00	120
QY (%)	25	27.9	27	23

Table S5. Fluorescence lifetime value and relative content of the N-dots in the absence and presence of Ag^+ (The concentrations of the N-dots and Ag^+ were 100 μ g/mL and 10 μ M, respectively).

	Param	Value/ns	Rel.%
CDs	τ1	3.41	16.39
	τ2	9.33	83.61
$CDs + Ag^+$	τ1	3.91	23.49
	τ2	9.87	76.61

Sensing	Mathad	Lincor rongo	IOD	Reference in	
material	Method	Linear range	LOD	main text	
BSA@AuNCs	Colorimetry	0.5-10 µM	0.204 µM	[48]	
AuNPs	Colorimetry	0.13-1.12 μM	62.0 nM	[49]	
Peptide-AuNPs	Colorimetry	10-1000 nM	7.4 nM	[50]	
S-GQDs	Fluorometry	0.1-130.0 µM	30 nM	[51]	
N-doped CDs	Fluorometry	1-7 µM	0.20 µM	[47]	
N-CDs	Fluorometry	30-90 µM	0.45 µM	[46]	
N-dots	Fluorometry	0-20 µM	0.48 µM	[15]	
N-doped CDs	Fluorometry	1-1000 µM	10 nM	[45]	
N-dots	Fluorometry	20 nM-6 µM	6.3 nM	This work	

Table S6. Comparison of the present approach with other reported methods for the Ag^+ sensing.