Supporting Information for:

Perylene Monoimide and Naphthalene-Annulated [3,3,3]propellanes: Synthesis and Device applications

Lingling Lv, ^a Wenda Sun, ^b Zhenmei Jia, ^a Guowei Zhang, ^a Fuzhi Wang, ^b Zhanao Tan*^{a,b} and Lei Zhang*^a

Table of contents

1.	Characterization of the compounds	S2
2.	Thermal stability of the compounds	S2
3.	Computational details	S2
4.	OFET fabrication and characterization	S7
5.	OLED fabrication and characterization	. . S9
6.	References	
7.	¹ H NMR, ¹³ C NMR and HRMS spectra of compounds	S10

1. Characterization of the compounds

¹H NMR and ¹³C NMR spectra were recorded in deuterated solvents on Bruker ADVANCE 400 NMR Spectrometer and Bruker FOURIER 100 NMR Spectrometer. ¹H NMR chemical shifts were reported in ppm downfieldfrom tetramethylsilane (TMS) reference using the residual protonated solvent as aninternal standard. High resolution mass spectra (HR- MALDI-TOF-MS) were determined on a Bruker BIFLEX III Mass Spectrometer.

2. Thermal stability of the compounds

Figure S1. TGA curves of P-1, P-2 and P-3.

3. Computational Methology

The density functional theory (DFT) calculations were performed with the Gaussian 09 Rev. E.01 employing the 6-31G(d, p) basis set. For all of the molecules we present at least the 60 lowest-energy roots determined by the TD-DFT calculations. Considering the alkyl chains on the imide positions has negligible effect on the final structural and electronic properties of these compounds, we chose methyl substituents instead of 2-decyltetradecyl on the imide positions for better view of their structures. TD-DFT singlet excitation energies E, excitation wavelengths λ , oscillator strengths f > 0.01, and orbital contributions at the optimized S₀ ground state geometry in chloroform at B3LYP/6-31G(d, p) level.

LUMO=-2.71 eV	LUMO+1=-1.41 eV	LUMO+2=-1.16 eV	LUMO+3=-1.02 eV	LUMO+4=-0.88 eV
HOMO=-5.32 eV	HOMO-1=-5.84 eV	HOMO-2=-6.12 eV	HOMO-3=-6.77eV	HOMO-4=-6.85 eV
		+ AFTER A		
LUMO=-2.95 eV	LUMO+1=-2.78 eV	LUMO+2=-1.49 eV	LUMO+3=-1.25eV	LUMO+4=-1.20 eV
			24	
HOMO=-5.42 eV	HOMO-1=-5.66 eV	HOMO-2=-6.20 eV	HOMO-3=-6.99eV	HOMO-4=-6.99 eV

Table S1. Pictorial representations of selected frontier molecular orbitals of **P-1**, and **P-2** as determined at the B3LYP/6-31G(d, p) level of theory.

1) compound P-1

Excited State	1:	Singlet-A	2.4224 eV	511.83 nm	f=0.6500	<s**2>=0.000</s**2>
157 ->159		-0.15510				
158 ->159		0.68874				
Excited State	2:	Singlet-A	2.7798 eV	446.01 nm	f=0.1181	<s**2>=0.000</s**2>
157 ->159		0.68709				
158 ->159		0.15404				
Excited State	3:	Singlet-A	2.9906 eV	414.58 nm	f=0.0111	<s**2>=0.000</s**2>
156 ->159		0.70418				
Excited State	5:	Singlet-A	3.4750 eV	356.78 nm	f=0.0309	$=0.000$
			3 / 22			

158 ->160		0.70424				
Excited State	12:	Singlet-A	3.8019 eV	326.11 nm	f=0.0121	<s**2>=0.000</s**2>
150 ->159		0.53309				
152 ->159		-0.21479				
158 ->163		0.28033				
158 ->166		0.18782				
158 ->167		0.12638				
Excited State	14:	Singlet-A	3.9502 eV	313.87 nm	f=0.1239	<s**2>=0.000</s**2>
157 ->160		0.69728				
Excited State	15:	Singlet-A	3.9626 eV	312.89 nm	f=0.0156	<s**2>=0.000</s**2>
148 ->159		0.43686				
149 ->159		-0.19747				
152 ->159		0.30476				
158 ->163		-0.28685				
158 ->164		-0.10800				
158 ->166		0.20265				
158 ->167		0.10462				
Excited State	17:	Singlet-A	4.1525 eV	298.58 nm	f=0.0127	<s**2>=0.000</s**2>
149 ->159		0.17281				
156 ->160		0.51661				
157 ->161		0.40506				
158 ->164		-0.14780				
Excited State	22:	Singlet-A	4.3632 eV	284.16 nm	f=0.0590	<s**2>=0.000</s**2>
149 ->159		-0.15899				
156 ->160		0.45384				
157 ->161		-0.43989				
158 ->164		0.19967				
Excited State	23:	Singlet-A	4.4361 eV	279.49 nm	f=0.0100	<s**2>=0.000</s**2>
148 ->159		0.18657				
154 ->160		0.26576				
155 ->161		-0.12381				
156 ->165		-0.18193				
157 ->162		0.41043				
157 ->163		0.14155				
157 ->166		0.13364				
157 ->167		-0.10845				
158 ->163		0.10899				
158 ->166		-0.24470				

158 ->167	0.1551	7			
Excited State 2 156 ->161	24: Singlet 0.6907	-A 4.4608 eV 6	/ 277.94 nm	f=0.0542	<s**2>=0.000</s**2>
Excited State 148 ->159 154 ->160 156 ->165 157 ->163 157 ->167 158 ->166	29: Singlet -0.2382 0.2704 -0.2650 -0.1463 -0.1627 0.4314	-A 4.6004 eV 1 -6 7 2 9 -9	7 269.51 nm	f=0.0633	<s**2>=0.000</s**2>
Excited State 148 ->159 150 ->159 156 ->165 157 ->166 158 ->167	 33: Singlet -0.1153 -0.1189 0.2162 -0.1049 0.5908 	A 4.7541 eV 6 4 94 0 33	7 260.79 nm	f=0.0598	<s**2>=0.000</s**2>
Excited State 154 ->160 155 ->161 155 ->164 157 ->166	38: Singlet 0.4150 0.5329 0.1333 -0.1130	-A 5.0323 eV 19 12 19 6	7 246.38 nm	f=0.0132	<s**2>=0.000</s**2>

2) compound P-2

1:	Singlet-A	2.2029 eV	562.82 nm	f=0.6804	<s**2>=0.000</s**2>
	0.70262				
2:	Singlet-A	2.3342 eV	531.17 nm	f=0.0105	$=0.000$
2	-0.42237				
	0.56474				
3:	Singlet-A	2.5963 eV	477.55 nm	f=0.3513	$=0.000$
2	0.56197				
	0.41766				
4:	Singlet-A	2.5985 eV	477.14 nm	f=0.5123	$=0.000$
5	0.70029				
5:	Singlet-A	2.8270 eV	438.57 nm	f=0.0443	<S**2>=0.000
2	0.70263				
	1: 2: 3: 4: 5:	1: Singlet-A 0.70262 2: Singlet-A -0.42237 0.56474 3: Singlet-A 0.56197 0.41766 4: Singlet-A 0.70029 5: Singlet-A 0.70263	1: Singlet-A 2.2029 eV 0.70262 2: Singlet-A 2.3342 eV -0.42237 0.56474 2.5963 eV 3: Singlet-A 2.5963 eV 0.56197 0.41766 2.5985 eV 4: Singlet-A 2.5985 eV 0.70029 5: Singlet-A 2.8270 eV	1: Singlet-A 2.2029 eV 562.82 nm 0.70262 2: Singlet-A 2.3342 eV 531.17 nm -0.42237 0.56474 2.5963 eV 477.55 nm 3: Singlet-A 2.5963 eV 477.55 nm 0.56197 0.41766 2.5985 eV 477.14 nm 4: Singlet-A 2.5985 eV 477.14 nm 5: Singlet-A 2.8270 eV 438.57 nm	1:Singlet-A 0.70262 2.2029 eV562.82 nmf=0.6804 0.70262 2:Singlet-A -0.42237 0.56474 2.3342 eV531.17 nmf=0.01053:Singlet-A 0.56197 0.41766 2.5963 eV477.55 nmf=0.35134:Singlet-A 0.70029 2.5985 eV477.14 nmf=0.51235:Singlet-A 0.700263 2.8270 eV438.57 nmf=0.0443

Excited State 9:	Singlet-A	3.5166 eV	352.57 nm	f=0.0119	<s**2>=0.000</s**2>
211 -> 214	0.69644				
Excited State 20:	Singlet-A	3.7905 eV	327.09 nm	f=0.0133	<s**2>=0.000</s**2>
199 -> 212	0.39111				
200 -> 213	0.22653				
202 -> 212	0.12907				
203 -> 213	0.16037				
204 -> 212	-0.17222				
206 -> 213	-0.27475				
210 -> 218	-0.18048				
210 -> 222	-0.10611				
211 -> 219	-0.24931				
211 -> 223	-0.11221				
Excited State 23:	Singlet-A	3.8646 eV	320.82 nm	f=0.0209	$=0.000$
194 -> 213	-0.24969				
195 -> 212	-0.30703				
196 -> 212	0.34295				
197 -> 213	-0.25388				
199 -> 212	-0.19294				
206 -> 213	-0.19598				
210 -> 222	0.12219				
211 -> 223	0.10625				
Excited State 47:	Singlet-A	4.3363 eV	285.92 nm	f=0.1037	<s**2>=0.000</s**2>
198 -> 212	-0.13572				
201 -> 213	-0.11179				
209 -> 214	0.63504				
211 -> 220	0.16399				
Excited State 49:	Singlet-A	4.3730 eV	283.52 nm	f=0.0196	<s**2>=0.000</s**2>
195 -> 212	-0.11157				
197 -> 213	0.37524				
199 -> 212	-0.12414				
200 -> 213	-0.22572				
206 -> 214	-0.15682				
210 -> 215	-0.10496				
210 -> 218	-0.16969				
211 -> 219	-0.16468				
211 -> 221	-0.35388				
Excited State 54:	Singlet-A	4.5232 eV	274.11 nm	f=0.0140	<s**2>=0.000</s**2>

193 -> 212	-0.20635				
206 -> 214	-0.30762				
209 -> 215	-0.20038				
209 -> 217	-0.18704				
209 -> 219	0.32980				
209 -> 221	-0.25011				
211 -> 221	0.26847				
Excited State 60:	Singlet-A	4.6704 eV	265.47 nm	f=0.0373	<s**2>=0.000</s**2>
193 -> 213	0.56928				
209 -> 217	-0.17017				
209 -> 219	-0.16788				
211 -> 223	-0.28778				

4. OFET fabrication and characterization

Thin film fabrication: Thin films of the semiconductors were spin-coated from $CHCl_3$ solution (10 mg/mL, 3000 r/min, 40-60 nm) onto SiO_2/Si wafers modified with octadecyltrichlorosilane (OTS). All the devices were annealed in a vacuum drying oven to eliminate air and moisture and obtain optimized morphology.

Devices fabrication: The SiO₂/Si wafers used here were cleaned with deionized water, piranha solution (H₂SO₄/H₂O₂=2:1), deionized water, isopropyl alcohol, and finally were blown dry with high-purity nitrogen gas. Treatment of the SiO₂/Si wafers with octadecyltrichlorosilane (OTS) was conducted by the vapor-deposition method. The clean wafers were dried under vacuum at 90 °C for 2 h to eliminate the moisture. When the temperature is reduced to approximately room temperature, a small drop of OTS was dropped onto the wafers. Subsequently, this system was heated to 120 °C for 2 h under vacuum, after which the vacuum is maintained at approximately room temperature.

The traditional bottom-gate bottom-contact (BGBC) devices based on the thin films were spin-coated on the OTS/SiO₂/Si wafers containing lithographic Au as source and drain electrodes. All electrical characteristics of the devices were measured at room temperature using a semiconductor parameter analyser (Keithley 4200 SCS) and Micromanipulator 6150 probe station. The mobility of the devices were calculated in the saturation regime. The equation is listed as follows:

$$I_{DS} = (W/2L)C_i \mu (V_{GS} - V_T)^2$$

where W/L is the channel width/length, C_i is the insulator capacitance per unit area, and V_{GS} and V_T are the gate voltage and threshold voltage, respectively.

Figure S2. AFM images of thin films annealed at different temperatures. A) **P-1** at 120 $^{\circ}$ C, B) **P-2** at 160 $^{\circ}$ C and C) **P-3** at 160 $^{\circ}$ C.

Figure S3. Transfer curves of the thin film transistors annealed at different temperatures: A) **P-1** at 120 °C, B) **P-2** at 160 °C.

Comps.	W/L (µm)	Temp. (°C)	μ _{ave} (cm² V ⁻¹ s ⁻¹)	μ _{max} (cm² V ⁻¹ s ⁻¹)	<i>V</i> _t (V)	On/off Ratio
P-1	1400/20	120	2.2×10 ⁻⁴	4.3×10 ⁻⁴	-6.6	8.3×10 ⁵
P-2	1400/20	160	3.5×10 ⁻⁴	6.3×10 ⁻⁴	-21.7	6.9×10 ⁵
P-3	1400/50	160	2.5×10 ⁻⁵	3.5×10 ⁻⁵	-7.8	1.0×10 ⁴

Table S2. OFET Device Parameters.

5. OLED fabrication and characterization

The substrates were ultrasonic cleaned with deionized water and anhydrous ethanol consecutively, and then dried with nitrogen gas. Then the substrates were treated with ultraviolet ozone for 15 minutes to remove surface contaminants. Then PEDOT: PSS aqueous solution (Clevios P VP AI 4083) was spin-coated on the substrates at 3000 rpm for 30 s to form a ~25 nm film, followed by annealing at 150 °C for 15 min. After that, the substrates were transferred to the nitrogen glove box for subsequent operation. PVK and emission materials were mixed (16:1, w/w) and dissolved in chlorobenzene. The mixed solutions were then spin-coated on the substrates at 3000 rpm for 30 s and baked at 150 °C for 10min. After that, the devices were transferred into the vacuum chamber for depositing 40 nm TPBI, 20 nm Ca and 80 nm Al cathode.

Figure S4. The PL spectra of the blend emission layer on quartz

6. References.

 L. Lv, J. Roberts, C. Xiao, Z. Jia, W. Jiang, G. Zhang, C. Risko and L. Zhang, *Chem. Sci.*, 2019, 10, 4951–4958.

7. ¹H NMR, ¹³C NMR and HRMS Spectra of compounds

Figure S5. ¹H NMR (top) and ¹³C NMR (bottom) of 2. (¹H NMR and ¹³C NMR in CDCl₃ at 300 K)

Figure S6. ¹H NMR (top) and ¹³C NMR (bottom) of 3. (¹H NMR and ¹³C NMR in CDCl₃ at 300 K).

Figure S7. ¹H NMR (top) and ¹³C NMR (bottom) of 4. (¹H NMR and ¹³C NMR in C₂D₂Cl₄ at 373 K)

Figure S8. ¹H NMR (top) and ¹³C NMR (bottom) of 5. (¹H NMR and ¹³C NMR in C₂D₂Cl₄ at 373 K)

Figure S9. ¹H NMR (top) and ¹³C NMR (bottom) of P-1 (¹H NMR and ¹³C NMR in C₂D₂Cl₄ at 373 K).

Figure S10. ¹H NMR (top) and ¹³C NMR (bottom) of **P-2** (¹H NMR and ¹³C NMR in $C_2D_2Cl_4$ at 373 K).

Figure S11. ¹H NMR (top) and ¹³C NMR (bottom) of P-3 (¹H NMR and ¹³C NMR in CDCl₃ at 300 K).

Meas. m/z # Ion Formula Score m/z err [ppm] Mean err [ppm] mSigma rdb e Conf N-Rule 480.051043 1 C32H17Br 100.00 480.050814 0.5 -0.0 10.7 2.4.0 odd ok

Figure S12. HR-MALDI-TOF spectra of 2.

Meas. m/z # Ion Formula Score m/z err [ppm] Mean err [ppm] mSigma rdb e Conf N-Rule 557.961655 1 C32H16Br2 100.00 557.961326 0.6 -0.0 19.9 24.0 odd ok

Figure S13. HR-MALDI-TOF spectra of 3.

 Meas.m/z
 #
 Ion Formula
 Score
 m/z
 err [ppm]
 Mean err [ppm]
 mSigma
 rdb
 e^- Conf
 N-Rule

 528.225227
 1
 C38H29BO2
 100.00
 528.226167
 1.8
 1.4
 7.5
 25.0
 odd
 ok

Figure S14. HR-MALDI-TOF spectra of 4.

Figure S15. HR-MALDI-TOF spectra of 5.

Figure S16. HR-MALDI-TOF spectra of 6.

Figure S17. HR-MALDI-TOF spectra of 7.

Figure S18. HR-MALDI-TOF spectra of 8.

Figure S19. HR-MALDI-TOF spectra of 9.

Figure S20. HR-MALDI-TOF spectra of P-1.

Figure S21. HR-MALDI-TOF spectra of P-2.

Figure S22. HR-MALDI-TOF spectra of P-3.