Electronic Supplementary Material (ESI) for Materials Chemistry Frontiers. This journal is © the Partner Organisations 2020

Supporting Information

Facile Synthesis of Nickel-Copper Hollow Spheres as Efficient Bifunctional

Electrocatalysts for Overall Water Splitting

Lifeng Lin, Min Chen and Limin Wu*

Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers,

Fudan University, Shanghai 200433, China

Fig. S1. Elemental mapping images of Ni₄Cu₂-G obtained after solvothermal reaction for 6h.

Fig. S2. N₂ sorption isotherms of a) Ni@C, b) Ni₄Cu₁@C, c) Ni₄Cu₂@C and d) Ni₄Cu₃@C.

Fig. S3. High resolution XPS spectra of a) Ni 2p and b) Cu 2p of I) Ni@C, II) Ni₄Cu₁@C, III) Ni₄Cu₂@C and IV) Ni₄Cu₃@C.

Fig. S4. Raman spectra of Ni_xCu_y@C hollow spheres with different molar ratios for Ni/Cu.

Fig. S5. Cyclic voltammograms of a) Ni@C, b) Ni₄Cu₁@C, c) Ni₄Cu₂@C and d) Ni₄Cu₃@C in 1 M KOH as HER catalysts.

Fig. S6. a) Capacitive current at 0.2 V (*vs* RHE) as a function of scan rate obtained in 1 M KOH and b) normalized polarization curves by ECSA of $Ni_xCu_y@C$ electrocatalysts.

Fig. S7. a) Nyquist plots (at η =150 mV, -0.15 V vs. RHE) of Ni_xCu_y@C as HER electrocatalysts obtained in 1 M KOH and b) the corresponding zoom-in regions. R_s, R_p, R_{ct}, CPE1, and CPE2 represent the solution resistance, electrode texture and charge transfer resistances, and constant phase elements, respectively.

Fig. S8. Cyclic voltammograms of a) Ni@C, b) Ni₄Cu₁@C, c) Ni₄Cu₂@C and d) Ni₄Cu₃@C in 0.5 M H_2SO_4 as HER catalysts.

Fig. S9. a) Capacitive current at 0.13 V (*vs* RHE) as a function of scan rate obtained in 0.5 M H_2SO_4 and b) normalized polarization curves by ECSA of $Ni_xCu_v@C$ electrocatalysts.

Fig. S10. a) Nyquist plots (at η =150 mV, -0.15 V vs. RHE) of Ni_xCu_y@C as HER electrocatalysts obtained in 0.5 M H₂SO₄ and b) the corresponding zoom-in regions. R_s, R_p, R_{ct}, CPE1, and CPE2 represent the solution resistance, electrode texture and charge transfer resistances, and constant phase elements, respectively.

Fig. S11. The Faradaic efficiency of H_2 generation over Ni₄Cu₂@C electrode at a current of -6 mA in a) 1 M KOH and b) 0.5 M H_2SO_4 for 60 minutes, respectively. c) Gas collection device of water splitting.

Fig. S12. Chronopotentiometry response of $Ni_4Cu_2@C$ hollow spheres at the current density of 10 mA cm⁻² in 1 M KOH and 0.5 M H₂SO₄.

Fig. S13. Cyclic voltammograms of a) Ni@C, b) Ni₄Cu₁@C, c) Ni₄Cu₂@C and d) Ni₄Cu₃@C in 1 M KOH as OER catalysts.

Fig. S14. Capacitive current at 1.15 V (vs RHE) as a function of scan rate obtained in 1 M KOH.

Fig. S15. a) Nyquist plots (at η =350 mV, 1.58 V vs. RHE) of Ni_xCu_y@C as OER electrocatalysts obtained in 1 M KOH and b) the corresponding zoom-in regions. R_s, R_p, R_{ct}, CPE1, and CPE2 represent the solution resistance, electrode texture and charge transfer resistances, and constant phase elements, respectively.

Fig.S16. The Faradaic efficiency of O_2 generation over $Ni_4Cu_2@C$ electrode at a current of 6 mA in 1 M KOH for 60 minutes.

Fig. S17. a, b) TEM images, c) high-resolution TEM image, d) XRD pattern, XPS spectra of e) Ni 2p and f) Cu 2p of $Ni_4Cu_2@C$ hollow spheres after long term overall water splitting on the cathode.

Fig. S18. a, b) TEM images, c) high-resolution TEM image, d) XRD pattern, XPS spectra of e) Ni 2p and f) Cu 2p of $Ni_4Cu_2@C$ hollow spheres after long term overall water splitting on the anode.

Table S1. Summary of the actual molar ratios of the $Ni_xCu_y@C$ products analyzed by ICP-OES.

Sample	Ni (%)	Cu (%)	C (%)
Ni@C	11.2	0	88.8
Ni ₄ Cu ₁ @C	8.1	1.6	90.3
Ni ₄ Cu ₂ @C	7.6	3.0	89.4
Ni ₄ Cu ₃ @C	7.9	3.9	88.2

Table S2. HER performances of $Ni_4Cu_2@C$ hollow spheres and the reported typical electrocatalysts inalkanine medium.

Catalyst	$\eta_{10}(\mathrm{mV})$	Medium	Loading (mg cm ⁻²)	Substrate	References
Ni ₄ Cu ₂ @C	55	1 М КОН	0.2	GCE	This work
Ni ₃ N-VN/NF	64	1 M KOH	-	Ni foam	Adv. Mater. 2019, 31, 1901174.
NiFeO _x @NiCu	66	1 M KOH	0.4	GCE	Adv. Mater. 2019, 31, 1806769.
Ni _{1.8} Cu _{0.2} -P	78	1 M KOH	-	Ni foam	Appl. Catal. B-Environ. 2019, 243, 537.
Ni ₂ P-Ni ₃ S ₂ HNAs/NF	80	1 M KOH	-	Ni foam	Nano Energy 2018 , 51, 26.
NiPS ₃ /Ni ₂ P	85	1 M KOH	0.56	GCE	ACS Nano 2019, 13, 7, 7975
Ni(OH)2@CuS	95	1 M KOH	0.286	GCE	Nano Energy 2018 , 44, 7.
NiCoN/C	103	1 M KOH	~0.2	GCE	Adv. Mater. 2019, 31, 1805541.
NG-NiFe@MoC ₂	150	1 M KOH	0.2	GCE	Nano Energy 2018 , 50, 212.
Ni _{0.9} Fe _{0.1} PS ₃ @MXene	196	1 М КОН	0.25	GCE	Adv. Energy Mater. 2018, 8, 1801127.

Sample	$R_{c}(\Omega)$	$R_r(\Omega)$	$R_{at}(\Omega)$
Ni@C	2.73	2.05	107.8
Ni ₄ Cu ₁ @C	2.90	2.47	73.97
Ni ₄ Cu ₂ @C	3.17	2.56	36.07
Ni ₄ Cu ₃ @C	2.93	3.62	45.46

Catalyst	$\eta_{10}(\mathrm{mV})$	Medium	Loading (mg cm ⁻²)	Substrate	References
Ni ₄ Cu ₂ @C	91	0.5 M H ₂ SO ₄	0.2	GCE	This work
WS_2/Ni_5P_4 - Ni_2P	94	$0.5 \text{ M H}_2\text{SO}_4$	30.82	Ni foam	Nano Energy 2019 , 55, 193.
Ni ₃ Cu ₁ @NG-NC	95	0.5 M H ₂ SO ₄	~0.05	GCE	Small 2019, 1901545.
CoMoNiS-NF	103	$0.5 \text{ M H}_2\text{SO}_4$	1.86	Ni foam	J. Am. Chem. Soc. 2019, 141, 10417.
Ni _{SA} -MoS ₂ /CC	110	$0.5 \text{ M H}_2\text{SO}_4$	-	Carbon Clothes	Nano Energy 2018, 53, 458.
MoPS/NC	120	$0.5 \text{ M H}_2\text{SO}_4$	0.56	GCE	Appl. Catal. B-Environ. 2019, 245, 656.
CuCo@NC	145	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	0.182	GCE	Adv. Energy Mater. 2017, 7, 1700193.
$Fe_{4.5}Ni_{4.5}S_8$	146	$0.5 \text{ M H}_2\text{SO}_4$	-	Bulk	ACS Catal. 2018, 8, 987.
NiMo ₃ S ₄ /CTs	156	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	2.3	Carbon Textiles	Nano Energy 2018 , 49, 460.
c-NiP ₂	267	$0.5 \text{ M H}_2\text{SO}_4$	0.3	GDEs	Chem. Mater. 2019, 31, 3407.

Table S4. HER performances of $Ni_4Cu_2@C$ hollow spheres and the reported typical electrocatalysts in acidic medium.

Table S5. The resultant EIS parameters recorded during HER in 0.5 M H₂SO₄.

Sample	$R_s(\Omega)$	$R_p(\Omega)$	$R_{ct}(\Omega)$
Ni@C	6.74	1.35	195
Ni ₄ Cu ₁ @C	6.72	1.56	105.1
Ni ₄ Cu ₂ @C	6.75	1.00	28.64
Ni ₄ Cu ₃ @C	6.74	1.64	55.22

Acidic Catalyst Alkanine Loading Substrate References η_{10} (mV) $(mg cm^{-2})$ $\eta_{10}\,({\rm mV})$ GCE Ni₄Cu₂@C This work 55 91 0.2 Co₂P@CP 70 120 3.2 Carbon paper ACS Energy Lett. 2018, 3, 1360. MoP/CNT 86 83 0.5 Carbon paper Adv. Funct. Mater. 2018, 28, 1706523. GCE Co-Fe-P 86 66 0.285 Nano Energy 2019, 56, 225. Ni-doped FeP/C 95 0.4 Carbon paper 72 Sci. Adv. 2019, 5: eaav6009. 98 Carbon clothes Ni_{SA} -MoS₂ 110 Nano Energy 2018, 53, 458. - $(Fe_xNi_{1-x})_2P$ 103 81 1 Ni foam Nano Energy 2019, 56, 813. Co@N-CNTs@rGO 108 87 0.5 GCE Adv. Mater. 2018, 30, 1802011. CoMoNiS-NF 113 103 1.86 Ni foam J. Am. Chem. Soc. 2019, 141, 10417. FePSe₃/NC 118.5 70 0.212 GCE Nano Energy 2019, 57, 222. Ni₃Cu₁@NG-NC 122 95 ~0.05 GCE Small 2019, 1901545.

alkanine and acidic media.

Catalyst	$\eta_{10} (\mathrm{mV})$	Medium	Loading (mg cm ⁻²)	Substrate	References
Ni ₄ Cu ₂ @C	283	1 M KOH	0.2	GCE	This work
NiPS ₃ -G	294	0.1 M KOH	0.2	GCE	ACS Nano 2018, 12, 5297.
NiCoP@Cu ₃ P	309	1 M KOH	-	Cu foam	J. Mater. Chem. A 2018, 6, 2100.
PA-NiO	310	1 M KOH	-	Ni foam	ACS Energy Lett. 2018, 3, 892.
Co-Cu-W oxide	313	0.1 M KOH	1.25	Cu foam	Angew. Chem. Int. Ed. 2019, 58, 4644.
$Ni_{14}Cu_{55}P_1$	319	1 M KOH	-	Cu foil	Appl. Catal. B-Environ. 2018, 237, 409.
NG-NiFe@MoC ₂	320	1 M KOH	0.2	GCE	Nano Energy 2018 , 50, 212.
Co ₃ O ₄ -N-C	324	0.1 M KOH	0.4	GCE	Nano Energy 2018 , 48, 600.
Co(OH) ₂ -Au-Ni(OH) ₂	340	1 M NaOH	-	GCE	Adv. Funct. Mater. 2018, 28, 1804361.
MoS ₂ -NiS ₂ /NGF	370	1 M KOH	-	Graphene foam	Appl. Catal. B-Environ. 2019, 254, 15.

Table S7. OER performances of $Ni_4Cu_2@C$ hollow spheres and the reported typical electrocatalysts in alkanine medium.

Table S8. The resultant EIS parameters recorded during OER in 1 M KOH.

$R_s(\Omega)$	$R_p(\Omega)$	$R_{ct}(\Omega)$
2.87	3.32	21.04
2.82	2.95	26.49
3.01	3.67	7.78
3.14	4.78	17.41
	$ \frac{R_{s}(\Omega)}{2.87} 2.82 3.01 3.14 $	$R_s(\Omega)$ $R_p(\Omega)$ 2.87 3.32 2.82 2.95 3.01 3.67 3.14 4.78

Catalyst	HER n_{10} (mV)	OER n_{10} (mV)	Loading (mg cm ⁻²)	Substrate	References
Ni ₄ Cu ₂ @C	55	283	0.2	GCE	This work
NiS/G	70	300	2.4	Carbon cloth	Appl. Catal. B-Environ. 2019, 254, 471.
$Fe_{0.09}Co_{0.13}$ -NiSe ₂	92	251	-	Carbon cloth	Adv. Mater. 2018, 30, 1802121.
NC-NiCu-NiCuN	93	232	-	Ni foam	Adv. Funct. Mater. 2018, 28, 1803278.
Co-NC@Mo ₂ C	99	347	0.83	GCE	Nano Energy 2019 , 57, 746.
Cu ₃ N/NF	118	286	3	Ni foam	ACS Energy Lett. 2019, 4, 747.
Ni/Mo ₂ C-NCNFs	143	288	1.4	GCE	Adv. Energy Mater. 2019, 9, 1803185
NiCoP/SCW	178	220	4.01	Cu mesh	Adv. Energy Mater. 2018, 8, 1802615
Cr-doped FeNi–P/NCN	190	240	0.48	GCE	Adv. Mater. 2019, 31, 1900178.
Ni _{0.9} Fe _{0.1} PS ₃ @MXene	196	282	0.25	GCE	Adv. Energy Mater. 2018, 8, 1801127.
Fe-Ni@NC-CNT	202	274	0.5	GCE	Angew. Chem. Int. Ed. 2018, 57, 8921

Table S9. HER and OER performances of $Ni_4Cu_2@C$ hollow spheres and the reported typicalbifunctional electrocatalysts in alkanine medium.

Table S10. Overall water splitting performances of Ni₄Cu₂@C hollow spheres and the reported typical

electrocatalysts.

Catalyst	Cell Voltage	j (mA cm ⁻²)	Loading $(mq \ cm^{-2})$	Substrate	Stability	References
Ni ₄ Cu ₂ @C	1.49	15	1.5	Carbon paper	50 h @ 40 mA cm ⁻²	This work
Ni ₃ N-VN/NF	1.51	10	-	Ni foam	100 h @ 1.51 V	Adv. Mater. 2019, 31, 1901174.
NC–NiCu–NiCuN	1.56	10	-	Ni foam	50 h @ 1.56 V	Adv. Funct. Mater. 2018, 28, 1803278.
$Co_3S_4@MoS_2$	1.58	10	0.6	Carbon paper	10 h @ 10 mA cm ⁻²	Nano Energy, 2018 , 47, 494.
NiCo ₂ S4	1.58	10	-	Ni foam	72 h @ 1.64 V	Adv. Funct. Mater. 2019, 29, 1807031.
NiCoP/SCW	1.59	10	4.01	Cu mesh	24 h @ 1.59 V	Adv. Energy Mater. 2018, 8, 1802615.
Cu ₃ N/NF	1.60	10	3	Ni foam	10 d @ 10 mA cm ⁻²	ACS Energy Lett. 2019, 4, 747.
NCO/G NSs	1.61	10	0.31	Ti mesh	10 h @ 1.61 V	Nano Energy 2018 , 48, 284.
Ni/Mo ₂ C-NCNFs	1.64	10	2	Ni foam	100 h @ 10 mA cm ⁻²	Adv. Energy Mater. 2019, 9, 1803185.
Ni _{0.9} Fe _{0.1} PS ₃ @MXene	1.65	10	2	Ni foam	50 h @ 1.65 V	Adv. Energy Mater. 2018, 8, 1801127.
$(Co_{1-x}Ni_x)(S_{1-y}P_y)_2/G$	1.65	10	3.0	Carbon paper	50 h @ 20 mA cm ⁻²	Adv. Energy Mater. 2018, 8, 1802319.
Co-NC@ Mo ₂ C	1.685	10	0.83	GCE	20 h @ 1.69 V	Nano Energy 2019 , 57, 746.
PO-Ni/Ni-N-CNFs	1.69	10	8	Ni foam	40 h @ 10 mA cm ⁻²	Nano Energy 2018 , 51, 286.