Supplementary Information for

Surface precleaning strategy intensifies interface coupling of Bi_2O_3/TiO_2 heterostructure for enhanced photoelectrochemical detection properties

Yajun Pang^{a, b, #}, Qiang Feng^{a, #}, Zongkui Kou^{b, *}, Guangqing Xu^{a, c, *}, Feng Gao^a, bo Wang^a, Zhenghui Pan^b, Jun Lv^{a, c}, Yong Zhang^{a, c}, Yucheng Wu^{a, c}

^a School of Materials Science and Engineering, and Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, China.

^b Department of Materials Science and Engineering, National University of Singapore, Singapore 117574, Singapore.

^cChina International S&T Cooperation Base for Advanced Energy and Environmental Materials, Hefei 230009, China.

*Corresponding authors. E-mail: msekz@nus.edu.sg (Z. Kou); gqxu1979@hfut.edu.cn (G. Xu).

Figure S1. SEM images of (a) TiO_2 , (b) *c*- TiO_2 , (c) Bi_2O_3/c - TiO_2 for 1 cycle, and (d) EDS spectrum from TEM image of Bi_2O_3/c - TiO_2 .

Figure S2. TEM image of a single TiO₂ nanotube.

Figure S3. Raman spectra (a) and XPS Survey patterns (b) of TiO₂, *c*-TiO₂, and Bi₂O₃/*c*-TiO₂ NTAs.

Figure S4. Photocurrents and current response of Bi_2O_3/c -TiO₂ NTAs with different cycles: (a) current-time curves, (b) plots of photocurrent and current response *vs.* deposition cycle.

Figure S5. High resolution XPS spectrum of Ti 2p and Bi 4f spectrum for the tested Bi_2O_3/TiO_2 and Bi_2O_3/c -TiO₂ respectively.

Composite	Current	Sensitivity µA/(µM)	Linear	Limit of
	noise		range	Detection *
	μΑ		μΜ	μΜ
TiO ₂	0.812	0.088	985.8	27.68
<i>c</i> -TiO ₂	0.431	0.142	888.1	8.37
Bi ₂ O ₃ /TiO ₂	0.669	0.162	1088.03	12.39
Bi ₂ O ₃ / <i>c</i> -TiO ₂	0.372	0.214	1185.5	5.21

Table S1. Detection parameters of TiO₂, *c*-TiO₂, Bi₂O₃/TiO₂, and Bi₂O₃/*c*-TiO₂ NTAs.

Figure S6. Transformed Kubelka–Munk function versus photon energy curves of TiO₂, *c*-TiO₂, Bi₂O₃/TiO₂, and Bi₂O₃/*c*-TiO₂ NTAs, respectively.

Transformed Kubelka–Munk function versus photon energy curves were applied to investigate the band gap of as-obtained four samples (**Figure S6**). Thereby, on the one hand, compared with TiO₂, the Eg of c-TiO₂ is reduced with the low temperature hydrogen thermal treatment; on the other hand, the Eg of Bi₂O₃/c-TiO₂ is obviously changed when compared with c-TiO₂, while there is no much difference between the Bi₂O₃/TiO₂ and TiO₂, which further proves that such an surface precleaning strategy can greatly facilitate the strong coupling in Bi₂O₃/c-TiO₂ NTAs.