Electronic Supplementary Information (ESI[†])

A universal strategy to enhance the absolute sensitivity for temperature detection in bright Er³⁺/Yb³⁺ doped double perovskite Gd₂ZnTiO₆ phosphors

Youfusheng Wu^{a,b}, Shouliang Xu^{a,b}, Zhongliang Xiao^a, Fengqin Lai^a, Jianhui Huang^{a,b}, Junxiang

Fu^{a,b}, Xinyu Ye^{a,b}, Weixiong You^{a,b,*}

^a Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology,

Ganzhou 341000, P.R. China;

^b Key Laboratory of Rare Earth Luminescence Materials and Devices of Jiangxi Province,

Ganzhou 341000, P.R. China;

* Corresponding author. E-mail: <u>youweixiong@jxust.edu.cn</u> (W. X. You), Tel: +86-7978312422

Cell parameters	GZT host			
Space group	P21/n			
Symmetry	monoclinic			
<i>a</i> (Å)	5.3625(1)			
<i>b</i> (Å)	5.6561(5)			
<i>c</i> (Å)	7.6807(5)			
eta (°)	90.3601			
$V(\text{\AA}^3)$	232.962			
W_{Rp} (%)	7.71			
<i>Rp</i> (%)	5.70			
χ^2	1.359			

Table S1 Refinement parameters of the GZT host.

<i>S</i> (10 ⁻	Ratios	313K	333K	353K	373K	393K	413K	433K	453K	473K
⁴ /K)										
S _A	H/S	42.2	41.9	43.3	44.3	45.3	46.3	46.8	47.2	47.5
	H/F	24.5	24.2	23.6	23.2	22.7	22.4	21.8	21.3	20.6
	S/F	-29.1	-24.4	-20.5	-17.6	-15.2	-13.3	-11.6	-10.3	-9.1
	H/S	95.2	84.1	74.9	67.0	60.4	54.7	49.7	45.4	41.7
S_R	H/F	62.7	55.4	49.3	44.1	39.7	36.0	32.7	29.9	27.4
	S/F	-31.5	-27.8	-24.7	-22.2	-20.0	-18.1	-16.4	-15.0	-13.8
	S/H	218.8	164.0	125.5	98.6	78.1	62.7	51.3	42.5	35.5
S'_A	F/H	157.4	124.6	101.0	82.5	68.4	56.7	48.4	41.4	35.9
	F/S	34.4	32.1	30.2	28.2	26.5	24.8	23.5	22.2	21.2
S' _R	S/H	92.5	81.7	72.7	65.1	58.7	53.1	48.3	44.2	40.5
	F/H	61.6	54.4	48.4	43.4	39.1	35.4	32.2	29.4	27.0
	F/S	31.8	28.1	25.0	22.4	20.2	18.3	16.6	15.2	13.9

Table S2 Detail data of S_A and S_R in the conventional way and proposed method in the $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$ co-doped GZT phosphor.

Note: Simplification of ratios: ${}^{2}H_{11/2}/{}^{4}S_{3/2}$ (H/S), ${}^{2}H_{11/2}/{}^{4}F_{9/2}$ (H/F) and ${}^{4}S_{3/2}/{}^{4}F_{9/2}$ (S/F) (the conventional way); ${}^{4}S_{3/2}/{}^{2}H_{11/2}$ (S/H), ${}^{4}F_{9/2}/{}^{2}H_{11/2}$ (F/H) and ${}^{4}F_{9/2}/{}^{4}S_{3/2}$ (F/S) (the proposed method).

<i>S</i> (10 ⁻	Ratios	313K	333K	353K	373K	393K	413K	433K	453K	473K
⁴ /K)										
SA	H/S	25.2	27.0	28.5	29.4	30.4	31.2	31.2	31.8	32.3
	H/F	17.2	18.3	18.7	19.2	19.1	19.3	19.1	18.7	18.6
	S/F	12.9	11.3	9.8	8.7	7.5	6.7	6.1	5.3	4.8
	H/S	100.3	89.0	79.2	70.9	63.9	57.8	52.6	48.1	44.1
S _R	H/F	82.8	73.5	65.4	58.5	52.7	47.8	43.4	39.7	36.4
	S/F	15.6	13.8	12.3	11.0	9.9	9.0	8.2	7.5	6.9
	S/H	398.7	293.3	219.6	170.9	134.3	107.0	88.7	72.7	60.2
S'_A	F/H	413.9	306.2	237.4	185.0	150.6	122.6	102.4	87.2	73.9
	F/S	-19.6	-17.5	-16.1	-14.4	-13.5	-12.5	-11.4	-10.9	-10.2
S _R	S/H	100.3	88.9	79.1	70.9	63.9	57.8	52.6	48.1	44.1
	F/H	85.8	76.1	67.7	60.7	54.7	49.5	45.0	41.1	37.7
	F/S	16.2	14.3	12.8	11.4	10.3	9.3	8.5	7.7	7.1

Table S3 Detail data of S_A and S_R in the conventional way and proposed method in the $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$ co-doped NaYF₄ phosphor.

Note: Simplification of ratios: ${}^{2}H_{11/2}/{}^{4}S_{3/2}$ (H/S), ${}^{2}H_{11/2}/{}^{4}F_{9/2}$ (H/F) and ${}^{4}S_{3/2}/{}^{4}F_{9/2}$ (S/F) (the conventional way); ${}^{4}S_{3/2}/{}^{2}H_{11/2}$ (S/H), ${}^{4}F_{9/2}/{}^{2}H_{11/2}$ (F/H) and ${}^{4}F_{9/2}/{}^{4}S_{3/2}$ (F/S) (the proposed method).

Phosphors	S _A (10 ⁻⁴ K ⁻¹)	$I_1 > I_2$	$I_1 \sim I_2$	$I_1 \!\!<\!\! I_2$	Ref.
NaYF4:Er/Yb	41.9 (α)			\checkmark	[1]
	46.6 (^β)			\checkmark	
Yb ₃ Al ₅ O ₁₂ :Er/Yb	48		\checkmark		[2]
LiNbO3:Er/Yb	75	\checkmark			[3]
YNbO4:Er/Yb	72	\checkmark			[4]
β -NaLuF4: Yb/Er/Ca	19			\checkmark	[5]
NaErF4@ NaYF4@NaGdF4	41			\checkmark	[6]
NaLaMgWO ₆ : Er/Yb	229	\checkmark			[7]
Ba ₂ In ₂ O ₅ : Er/Yb	65	\checkmark			[8]
Lu ₂ TeO ₆ : Er/Yb	103	\checkmark			[9]
Ba ₃ Y ₄ O ₉ : Er/Yb	24.8			\checkmark	[10]
Gd ₆ O ₅ F ₈ : Er/Yb	57			\checkmark	[11]
$Yb_2WO_6+Yb_2W_3O_{12}$	1050	\checkmark			[12]
(mixture) : Er/Yb					
GZT: Er/Yb	218.8	\checkmark			This work
NaYF4: Er/Yb	398.7				

Table S4 The S_A in Er^{3+}/Yb^{3+} co-doped diverse phosphors.

Note: \square represents $I_1 < I_2$, but calculation on its S_A by FIR = I_2/I_1 .

Fig. S1 Diffuse reflection spectrum of the GZT:4% $Er^{3+}/5\%$ Yb³⁺ sample; the insert:

the plots of $[F(R_{\infty})hv]^{1/2}$ vursus the photon energy.

Fig. S2 (a) The morphology of GZT:4% Er³⁺/5% Yb³⁺ sample; (b) elemental mapping images of Gd, Zn, Ti, O, Er and Yb; (c) the EDS result of GZT:4% Er³⁺/5% Yb³⁺

sample.

Fig.S3 The CIE chromaticity coordinate of $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$ doped GZT samples as a

function the Er^{3+} or Yb^{3+} concentration.

Fig. S4 Real pictures of the GZT:4% $Er^{3+}/5\%$ Yb³⁺ sample under different excitation

power recorded by a Honor V10.

Fig.S5 The plots of ln[Intensity (a.u.)] versus ln[power (mW)] in

 $GZT:4\% Er^{3+}/5\% Yb^{3+}$ sample.

Fig. S6 The proposed UC mechanism in Er^{3+}/Yb^{3+} doped GZT system.

Fig. S7 The down-shifting spectrum of GZT:4% $Er^{3+}/5\%$ Yb³⁺ sample upon 490 nm

excitation.

Fig. S8 The slopes of FIRs versus the temperature for (a) ${}^{2}H_{11/2}/{}^{4}S_{3/2}$, (b) ${}^{2}H_{11/2}/{}^{4}F_{9/2}$

and (c) ${}^{4}S_{3/2}/{}^{4}F_{9/2}$ couples.

Fig. S9 variation of FIR value as a function of the absolute temperature.

Fig. S10 The slopes of FIRs versus the temperature for (a) ${}^{4}S_{3/2}/{}^{2}H_{11/2}$, (b) ${}^{4}F_{9/2}/{}^{2}H_{11/2}$

and (c) ${}^{4}F_{9/2}/{}^{4}S_{3/2}$ couples.

Fig. 11 The XRD pattern of the NaYF₄ sample.

Fig. S12 The plots of integral intensity of emissions versus the temperature in the

NaYF₄ sample.

Fig. S13 CIE chromaticity corrdinate in the $NaYF_4$ sample.

Fig. S14 The plots of FIR value of (a) ${}^{2}H_{11/2}/{}^{4}F_{9/2}$ and (b) ${}^{4}S_{3/2}/{}^{4}F_{9/2}$ couples versus the temperature; Calculated sensitivities of (c) ${}^{2}H_{11/2}/{}^{4}F_{9/2}$ and (d) ${}^{4}S_{3/2}/{}^{4}F_{9/2}$ couples at

diverse temperature.

Fig. S15 The plots of FIR value of (a) ${}^{4}F_{9/2}/{}^{2}H_{11/2}$ and (b) ${}^{4}F_{9/2}/{}^{4}S_{3/2}$ couples versus the temperature; Calculated sensitivities of (c) ${}^{4}F_{9/2}/{}^{2}H_{11/2}$ and (d) ${}^{4}F_{9/2}/{}^{4}S_{3/2}$ couples at

diverse temperature.

References

- [1] Y. Cui, Q. Meng, S. Lü, W. Sun, Temperature sensing properties base on upconversion luminescence for NaYF4: Er³⁺/Yb³⁺ phosphor, ChemistrySelect, 2019, 4, 4316.
- [2] B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, Z. Feng, Temperature sensing and In Vivo imaging by molybdenum sensitized visible upconversion luminescence of rareearth oxides, Adv. Mater., 2012, 24, 1987.
- [3] M. Quintanilla, E. Cantela, F. Cusso´, M. Villegas, A. Caballero, Temperature sensing with up-converting submicron-sized LiNbO₃:Er³⁺/Yb³⁺ particles, Appli. Phys. Express, 2011, 4, 022601.
- [4] Y. Tian, Y. Tian, P. Huang, L. Wang, Q. Shi, C. Cui, Effect of Yb³⁺ concentration on upconversion luminescence and temperature sensing behavior in Yb³⁺/Er³⁺ codoped YNbO₄ nanoparticles prepared via molten salt route, Chem. Eng. J., 2016, 297, 26.
- [5] A. Zhou, F. Song, Y. Han, F. Song, D. Ju, X. Wang, Simultaneous size adjustment and upconversion luminescence enhancement of β-NaLuF₄:Yb³⁺/ Er³⁺,Er³⁺/Tm³⁺ microcrystals by introducing Ca²⁺ for temperature sensing, CrystEngComm, 2018, 20, 2029.
- [6] D. Chen, M. Xu, M. Ma, P. Huang, Effects of Er³⁺ spatial distribution on luminescence properties and temperature sensing of upconverting core–shell nanocrystals with high Er³⁺ content, Dalton Trans., 2017, 46, 15373.
- [7] W. Ran, H. Noh, S. Park, B. Choi, J. Kim, J. Jeong, J. Shi, Infrared excited

 $\mathrm{Er}^{3+}/\mathrm{Yb}^{3+}$ codoped NaLaMgWO₆ phosphors with intense green up-conversion luminescence and excellent temperature sensing performance, Dalton Trans., 2019, 48, 11382.

- [8] Z. Wang, H. Jiao, Z. Fu, Investigating the luminescence behaviors and temperature sensing properties of rare-earth-doped Ba₂In₂O₅ phosphors, Inorg. chem., 2018, 57, 8841.
- [9] Z. Ma, J. Gou, Y. Zhang, Y. Man, G. Li, C. Li, J. Tang, Yb³⁺/Er³⁺ co-doped Lu₂TeO₆ nanophosphors: Hydrothermal synthesis, upconversion luminescence and highly sensitive temperature sensing performance, J. Alloys Compd., 2019, 772, 525.
- [10]H. Wu, Z. Hao, L. Zhang, X. Zhang, Y. Xiao, G. Pan, H. Wu, Y. Luo, L. Zhang, J Zhang, Er³⁺/Yb³⁺ codoped phosphor Ba₃Y₄O₉ with intense red upconversion emission and optical temperature sensing behavior, J. Mater. Chem. C, 2018, 6, 3459.
- [11]S. Du, X. Ma, Q. Qiang, G. Zhang, Y. Wang, Emission in Gd₆O₅F₈:Yb³⁺,Er³⁺ micro-particles for multimodal luminescence and temperature sensing upon 980 nm excitation, Phys. Chem. Chem. Phys., 2016, 18, 26894.
- [12]H. Zou, X. Yang, B. Chen, Y. Du, B. Ren, X. Sun, X. Qiao, Q. Zhang. F. Wang, Thermal enhancing of upconversion by negative lattice expansion in orthorhombic Yb₂W₃O₁₂, Angew. Chem. Int. Ed., 2019, 58, 17255.