Supporting information

One-step, rapid fluorescent sensing of fungal viability based on a bioprobe with aggregation-induced emission

characteristics

Xiaoxue Ge,^{†ab} Meng Gao,^{†c} Bo Situ,^{†ab} Weiwei Feng,^{ab} Bairong He,^{ab} Xiaojing He,^{ab} Shiwu Li,^d Zihao Ou,^{ab} Yiqi Zhong,^{ab} Yahui Lin,^{ab} Xinyi Ye,^{ab} Xiumei Hu,^{ab} Ben Zhong Tang^{*def} and Lei Zheng^{*ab}

^a Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China

^bGuangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China

^c National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China

^dCenter for Aggregation-Induced Emission, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China

^eDepartment of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China ^fHKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China

[†] These authors contributed equally to this work.

Corresponding authors: <u>nfyzhenglei@smu.edu.cn</u> (L.Z.), <u>tangbenz@ust.hk</u> (B.Z.T.)

Fig. S1 1 H NMR of compound 1 (500 MHz, CDCl₃).

Fig. S2 ¹³C NMR of compound 1 (125 MHz, CDCl₃).

Fig. S3 ¹H NMR of compound **2** (600 MHz, DMSO-*d*₆).

Fig. S4 13 C NMR of compound 2 (150 MHz, DMSO- d_6).

Fig. S7 High resolution mass spectra of DPASI.

Fig. S8 (A) UV-vis absorption spectra of DPASI (10 μ M) in solvents with different polarities. (B) PL spectra of DPASI (10 μ M) in solvents with different polarities. $\lambda_{ex} = 467$ nm.

Fig. S9 Particle size of aggregates of DPASI (10 μ M) formed in phosphate buffer.

Fig. S10 CLSM images of *C. glabrata* and *C. krusei* stained with 10 μ M DPASI. $\lambda_{ex} = 488$ nm; Scale bar = 10 μ m.

Fig. S11 CLSM images of live and dead (treated with 75% ethanol for 15 minutes) *E. coli* stained with 10 μ M DPASI. $\lambda_{ex} = 488$ nm; Scale bar = 5 μ m.

Fig. S12 Change in the PL intensity of DPASI in *C. albicans* suspensions *versus* different incubation time. [DPASI] = 10 μ M; λ_{ex} = 467 nm. Inset: Fluorescence photograph of DPASI in *C. albicans* suspensions taken under 365 nm UV irradiation. Error bars indicate the standard error of mean (± SEM).

Fig. S13 Fluorescence intensity of *Candidas* suspensions with different treatment followed by staining with DPASI (10 μ M); $\lambda_{ex} = 467$ nm. Error bars indicate the standard error of mean (± SEM).

Fig. S14 Viability of *C. glabrata* (A) and *C. krusei* (B) in the presence of different concentrations of DPASI determined by counting after 2-hours or 1-hour incubation, respectively. Error bars indicate the standard error of mean (\pm SEM).

Additional supporting movie

Movie S1. Representative 3D image of the boxed *Candida* cell in Fig. 5 stained by DAPI, Calcofluor White Staining, and DPASI under SIM excited by 405 nm and 488 nm laser.