Supporting information

Zinc non-halide dopant strategy enables efficient perovskite CsPbI₃

quantum dot-based light-emitting diodes

Jinhang Li^{*a*}, Jiawei Chen^{*a*}, Leimeng Xu^{*a*}, Sinan Liu^{*a*, *c*}, Si Lan^{*a*, *c*}, Xiansheng Li^{*a*}, Jizhong Song^{* *a*, *b*, *d*}

^a School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

^b MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, Nanjing University of Science and Technology, Nanjing 210094, China

^c Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China

^d School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China

All correspondence to: songjizhong@njust.edu.cn

Figure S1. TEM images and corresponding log normal distributions of (a-b) pristine, (c-d) ZnAc doped, (e-f) ZnAcAc doped, (g-h) ZnSt doped CsPbI₃ QDs.

Figure S2. HRTEM images of CsPbI₃ QDs doped with different Zn^{2+} salts (a) pristine CsPbI₃, (b) ZnAc, (c) ZnAcAc, (d) ZnSt.

Pristine RMS=12.1 nm ZnAc RMS=10.0 nm

ZnAcAc RMS=8.34 nm

ZnSt RMS=8.64 nm

Figure S3. AFM images CsPbI₃ QDs doped with different Zn^{2+} salts (a) pristine CsPbI₃, (b) ZnAc, (c) ZnAcAc, (d) ZnSt, the scan area is 5 μ m × 5 μ m.

Figure S4. Film roughness of pristine and Zn^{2+} -doped CsPbI₃ QDs.

Figure S5. (a, b) XPS spectra of CsPbI₃ QDs synthesized with and without Zn^{2+} doping. (c, d) High-resolution XPS spectrum of Zn, (e, f) Pb (4f_{5/2} and 4f_{7/2}), and (g, h) I (3d_{3/2} and 3d_{5/2}) of CsPbI₃ QDs synthesized with and without Zn ion.

Figure S6. The pair distribution function G(r) of pristine CsPbI₃ QDs and Zn²⁺-doped CsPbI₃ QDs, respectively.

Figure S7. Schematic figure of Zn²⁺-doped CsPbI₃ QDs.

Figure S8. (a) Relationship of $ln(\alpha)$ versus energy for calculation of Urbach energy curves of CsPbI₃ QDs with different Zn²⁺ salts of ZnAc, ZnAcAc, and ZnSt.

Figure S9. Current-voltage characteristics of hole-only device of pristine and Zn^{2+} -doped CsPbI₃ QDs with different Zn^{2+} salts of ZnAc, ZnAcAc, and ZnSt.

Figure S10. Device energy-level diagrams for each functional layer in the LEDs.

Figure S11. CIE coordinates of $CsPbI_3$ and Zn^{2+} -doped $CsPbI_3$ QD films.

Figure S12. (a) Electrical transportation demonstrated by current density vs. voltage curves of pristine and ZnAc doped LEDs. (b) The luminance-voltage characteristics. (c) EQE of the devices as a function of current density. (d) Current $e \square$ ciency of pure and doped CsPbI₃ QLEDs as a function of luminance.

Figure S13. (a) Electrical transportation demonstrated by current density vs. voltage curves of pristine and ZnSt doped LEDs. (b) The luminance-voltage characteristics. (c) EQE of the devices as a function of current density. (d) Current $e \square$ ciency of pure and doped CsPbI₃ QLEDs as a function of luminance.

Figure S14. The EQE progress of CsPbI₃ QLEDs¹⁻⁸.

Table S1.	Summary	of PL delay	y time for	CsPbI ₃ and Zn	²⁺ -doped CsPbI ₃	QD films.
-----------	---------	-------------	------------	---------------------------	---	-----------

	τ ₁ (ns)	τ ₂ (ns)	τ ₃ (ns)	$ au_{avg}$ (ns)
Pristine CsPbl ₃	1.36(0.219)	5.38(0.5684)	18.17(0.2127)	7.22
ZnAC doped	1.56(0.1832)	6.05(0.5517)	19.35(0.2651)	8.75
ZnACAC doped	1.99(0.1839)	8.17(0.5403)	25.14(0.2759)	11.71
ZnST doped	1.57(0.1889)	6.60(0.5439)	22.70(0.2672)	9.95

Luminescent	Employed strategy	FOF	Publishin
materials	Employed strategy	LQL	g date
CsPbI ₃ QD		0.21%	20171
CsPbI ₃ QD	Bidentate ligand passivation	5.02%	2018 ²
CsPbI ₃ QD		8.2%	2019 ³
CsPbI ₃ QD	Silver doping & surface passivation	11.2%	20184
CsPbI ₃ QD	PbS surface passivation & device designing	11.8%	20185
CsPbI ₃ QD	Sr doping & Cl surface passivation	13.5%	20186
CsPbI ₃ QD	PEAI surface ligand passivation	14.04%	20187
CsPbI ₃ QD	Zn alloying treatment	15.1%	20198
CsPbI ₃ QD	Zinc non-halide dopant strategy	146%	Our work

Table S2. Reported EQE of CsPbI₃ QLEDs and EQE in our work.

References

- 1. C. Zou, C. Y. Huang, E. M. Sanehira, J. M. Luther and L. Y. Lin, Highly stable cesium lead iodide perovskite quantum dot light-emitting diodes, *Nanotechnology*, 2017, **28**, 455201.
- J. Pan, Y. Shang, J. Yin, M. De Bastiani, W. Peng, I. Dursun, L. Sinatra, A. M. El-Zohry, M. N. Hedhili, A.-H. Emwas, O. F. Mohammed, Z. Ning and O. M. Bakr, Bidentate ligand-passivated CsPbI₃ perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes, *J. Am. Chem. Soc.*, 2018, 140, 562-565.
- 3. M. Lu, H. Wu, X. Zhang, H. Wang, Y. Hu, V. L. Colvin, Y. Zhang and W. W. Yu, Highly flexible CsPbI₃ perovskite nanocrystal light-emitting diodes, *ChemNanoMat*, 2019, **5**, 313-317.
- M. Lu, X. Y. Zhang, X. Bai, H. Wu, X. Y. Shen, Y. Zhang, W. Zhang, W. T. Zheng, H. W. Song, W. W. Yu and A. L. Rogach, Spontaneous silver doping and surface passivation of CsPbl₃ perovskite active layer enable light-emitting devices with an external quantum efficiency of 11.2%, *ACS Energy Lett.*, 2018, **3**, 1571-1577.
- 5. X. Zhang, M. Lu, Y. Zhang, H. Wu, X. Shen, W. Zhang, W. Zheng, V. L. Colvin and W. W. Yu, PbS capped CsPbI₃ nanocrystals for efficient and stable light-emitting devices using p-i-n structures, *ACS Central Sci.*, 2018, **4**, 1352-1359.
- M. Lu, X. Y. Zhang, Y. Zhang, J. Guo, X. Y. Shen, W. W. Yu and A. L. Rogach, Simultaneous strontium doping and chlorine surface passivation improve luminescence intensity and stability of CsPbI₃ nanocrystals enabling efficient light-emitting devices, *Adv. Mater.*, 2018, **30**, 1804691.
- 7. G. P. Li, J. S. Huang, H. W. Zhu, Y. Q. Li, J. Tang and Y. Jiang, Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs, *Chem. Mater.*, 2018, **30**, 6099-6107.
- X. Shen, Y. Zhang, S. V. Kershaw, T. Li, C. Wang, X. Zhang, W. Wang, D. Li, Y. Wang, M. Lu, L. Zhang, C. Sun, D. Zhao, G. Qin, X. Bai, W. W. Yu and A. L. Rogach, Zn-alloyed CsPbI₃ nanocrystals for highly efficient perovskite light-emitting devices, *Nano Lett.*, 2019, **19**, 1552-1559.