### SUPPORTING INFORMATION

## **Supporting Information**

# SnS@C nanospheres coated with few-layer MoS₂ nanosheets and nitrogen, phosphorus-codoped carbon as robust sodium ion battery anodes

Yuyu Wang,<sup>a‡</sup> Wenpei Kang, <sup>b‡\*</sup> Ping Ma,<sup>a</sup> Dongxu Cao,<sup>a</sup> Dongwei Cao,<sup>a</sup> Zixi Kang,<sup>b</sup> Daofeng Sun <sup>ab\*</sup>

<sup>a</sup> College of Science, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China.

<sup>b</sup> School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China.

\*Email: wpkang@upc.edu.cn; dfsun@upc.edu.cn

The supporting information contains Fig. S1-S9 and Table S1-S3.

**‡** These authors contributed equally to this work.



Fig. S1 XRD patterns of SnS@C and SnS@C/MoS<sub>2</sub>.



Fig. S2 Comparison of the Raman spectra for SnS@C, SnS@C/MoS $_2$  and SnS@C/MoS $_2$ @N,P-C.



Fig. S3 Comparison of the TGA curves for SnS@C,  $SnS@C/MoS_2$  and  $SnS@C/MoS_2@N,P-C$ .



**Fig. S4** High-resolution XPS spectra of P 2p in SnS@C/MoS<sub>2</sub>@N,P-C composite.



Fig. S5 SEM images of (a) SnO<sub>2</sub>@C precursor, (b) SnS@C, (c) SnO<sub>2</sub>@C/PPy-PMo<sub>12</sub>, (d) SnS@C/MoS<sub>2</sub>.



**Fig. S6** CV curves at a scan rate of 0.1 mV s<sup>-1</sup> for SnS@C/MoS<sub>2</sub>@N,P-C composite.



Fig. S7 TEM images of (a) SnS@C electrode, (b) SnS@C/MoS<sub>2</sub>@N,P-C composite electrode after charge-discharge cycling.



**Fig. S8** b-value analyses of (a)SnS@C and (b) SnS@C/MoS<sub>2</sub> based on the relationship between the peak currents and the scan rates.



Fig. S9 (a) XRD pattern of the homemade NVP@C. (b) Galvanostatic charge and discharge curves. (c) Cycling performance of NVP@C half cells at 500 mA  $g^{-1}$ .

| Analyte | Conc.Units |  |
|---------|------------|--|
| Sn      | 3.026 mg/L |  |
| Мо      | 1.754 mg/L |  |

**Table S1.** ICP result of the SnS@C/MoS<sub>2</sub>@N,P-C nanocomposite.

| Materials                            | Rate capacity                                                                                                                                                   | Initial Coulombic | References |
|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|------------|
|                                      | (mA h g <sup>-1</sup> )                                                                                                                                         | efficiency (%)    |            |
| SnS@C/MoS2@N,P-C                     | 577 mA h g <sup>-1</sup> at 0.1 A g <sup>-1</sup><br>250 mA h g <sup>-1</sup> at 10.0 A g <sup>-1</sup>                                                         | 74.9%             | This work  |
| SnS@C/MoS₂                           | 519 mA h g <sup>-1</sup> at 0.1 A g <sup>-1</sup><br>217 mA h g <sup>-1</sup> at 10.0 A g <sup>-1</sup>                                                         | 72.1%             | This work  |
| SnS@C                                | 539 mA h g <sup>-1</sup> at 0.1 A g <sup>-1</sup><br>192 mA h g <sup>-1</sup> at 10.0 A g <sup>-1</sup>                                                         | 67.8%             | This work  |
| SnS@C-rGO                            | 825 mA h g <sup>-1</sup> at 0.1 A g <sup>-1</sup><br>336 mA h g <sup>-1</sup> at 1.6 A g <sup>-1</sup>                                                          | 62.0%             | [S1]       |
| SnS HNFs                             | 615 mA h g <sup>-1</sup> at 0.1 A g <sup>-1</sup><br>228 mA h g <sup>-1</sup> at 2.0 A g <sup>-1</sup>                                                          | 48.3%             | [S2]       |
| SnS@SPC                              | 512 mA h g <sup>-1</sup> at 0.1 A g <sup>-1</sup><br>235 mA h g <sup>-1</sup> at 3.2 A g <sup>-1</sup>                                                          | 64.6%             | [\$3]      |
| C@SnS-rGO                            | 534.6 mA h g <sup>-1</sup> at 0.1 A g <sup>-1</sup><br>287.6 mA h g <sup>-1</sup> at 3.2 A g <sup>-1</sup>                                                      | 66.0%             | [S4]       |
| SnS/SnSb@C                           | 458 mA h g <sup>-1</sup> at 0.1 A g <sup>-1</sup><br>159 mA h g <sup>-1</sup> at 2.0 A g <sup>-1</sup>                                                          | 62.5%             | [\$5]      |
| 3D SnS/N-CNNs                        | 791 mA h g <sup>-1</sup> at 0.1 A g <sup>-1</sup><br>265 mA h g <sup>-1</sup> at 5.0 A g <sup>-1</sup>                                                          | 70.4%             | [S6]       |
| C@SnS/SnO₂@Gr                        | 520 mA h g <sup>-1</sup> at 0.81 A g <sup>-1</sup><br>430 mA h g <sup>-1</sup> at 2.43 A g <sup>-1</sup>                                                        | 74.6%             | [\$7]      |
| SnS@RGO                              | 457 mA h g <sup>-1</sup> at 0.02 A g <sup>-1</sup><br>240 mA h g <sup>-1</sup> at 0.4 A g <sup>-1</sup>                                                         | 60.0%             | [\$8]      |
| NBT/C@MoS <sub>2</sub> NFs           | 474.5 mA h g <sup>-1</sup> at 0. 1 A g <sup>-1</sup><br>258.3 mA h g <sup>-1</sup> at 2.0 A g <sup>-1</sup>                                                     | 50.3%             | [9]        |
| Ex-MoS <sub>2</sub> /RGO@C           | 466 mA h g <sup>-1</sup> at 0. 1 A g <sup>-1</sup><br>316 mA h g <sup>-1</sup> at 2.0 A g <sup>-1</sup><br>627 2 mA h g <sup>-1</sup> at 0. 1 A g <sup>-1</sup> | 66.3%             | [10]       |
| Fe <sub>1-x</sub> S/MoS <sub>2</sub> | $372.1 \text{ mA h g}^{-1} \text{ at } 3.0 \text{ A g}^{-1}$                                                                                                    | 60.0%             | [11]       |
| Co-doped 1T-MoS <sub>2</sub> /       | 459.4 mA n g <sup>-</sup> at 0. 2 A g <sup>-1</sup><br>235.9 mA h g <sup>-1</sup> at 25 A g <sup>-1</sup>                                                       | 67.5%             | [12]       |

**Table S2.** Electrochemical performance of the reported SnS-based nanostructures as anode materials for SIBs.

## SUPPORTING INFORMATION

|  | MoS <sub>2</sub> -C@C | 583 mA h g <sup>-1</sup> at 0. 1 A g <sup>-1</sup><br>164 mA h g <sup>-1</sup> at 20.0 A g <sup>-1</sup> | 52.0% | [13] |
|--|-----------------------|----------------------------------------------------------------------------------------------------------|-------|------|
|--|-----------------------|----------------------------------------------------------------------------------------------------------|-------|------|

**Table S3.** The Warburg impedance coefficient ( $\sigma_w$ ), the molar concentration of Na<sup>+</sup>(C) and diffusion coefficient of Na<sup>+</sup> ( $D_{Na}$ ) of the SnS@C/MoS<sub>2</sub>@N,P-C,SnS@C/MoS<sub>2</sub> and SnS@C electrodes.

| Cycle   | Potential | Electrodes | $σ_{ m w}$ (Ω s <sup>-1/2</sup> ) | <i>C</i> (mol cm <sup>-3</sup> ) | D <sub>Na</sub> (cm <sup>2</sup> s <sup>-1</sup> ) |
|---------|-----------|------------|-----------------------------------|----------------------------------|----------------------------------------------------|
| numbers | (∨)       |            |                                   |                                  |                                                    |
| 50      | Charge to | SnS@C/MoS₂ | 188.9                             | 1.94×10 <sup>-3</sup>            | 2.07×10 <sup>-13</sup>                             |
| Cycles  | 2.6 V     | @N,P-C     |                                   |                                  |                                                    |
|         |           | SnS@C/MoS₂ | 236.2                             | 1.91×10 <sup>-3</sup>            | 1.37×10 <sup>-13</sup>                             |
|         |           | SnS@C      | 415.3                             | 2.39×10 <sup>-3</sup>            | 2.81×10 <sup>-14</sup>                             |
|         |           |            |                                   |                                  |                                                    |

#### References

- [S1] S. Zhang, G. Wang, Z. Zhang, B. Wang, J. Bai and H. Wang, 3D graphene networks encapsulated with ultrathin SnS nanosheets@hollow mesoporous carbon spheres nanocomposite with pseudocapacitance-enhanced lithium and sodium storage kinetics, Small, 2019, 15, 1900565.
- [S2] H. Jia, M. Dirican, N. Sun, C. Chen, P. Zhu, C. Yan, X. Dong, Z. Du, J. Guo, Y. Karaduman, J. Wang, F. Tang, J. Tao and X. Zhang, SnS hollow nanofibers as anode materials for sodium-ion batteries with high capacity and ultra-long cycling stability, *Chem. Commun.*, 2019, 55, 505-508.
- [S3] Y. Wang, Y. Zhang, J. Shi, A. Pan, F. Jiang, S. Liang and G. Cao, S-doped porous carbon confined SnS nanospheres with enhanced electrochemical performance for sodium-ion batteries, J. Mater. Chem. A, 2018, 6, 18286-18292.
- [S4] J. Shi, Y. Wang, Q. Su, F. Cheng, X. Kong, J. Lin, T. Zhu, S. Liang and A. Pan, N-S co-doped C@SnS nanoflakes/graphene composite as advanced anode for sodium-ion batteries, *Chem. Eng. J.*, 2018, **353**, 606-614.
- [S5] J. Zhu, C. Shang, Z. Wang, J. Zhang, Y. Liu, S. Gu, L. Zhou, H. Cheng, Y. Gu and Z. Lu, SnS/SnSb@C nanofiber with enhanced cycling stability via vulcanization as anode for sodium ion batteries, *ChemElectroChem*, 2018, 5, 1098-1104.
- [S6] X. Hu, J. Chen, G. Zeng, J. Jia, P. Cai, G. Chai and Z. Wen, Robust 3D macroporous structures with SnS nanoparticles decorating nitrogen-doped carbon nanosheet networks for high performance sodium-ion batteries, J. Mater. Chem. A, 2017, 5, 23460-23470.
- [S7] Y. Zheng, T. Zhou, C. Zhang, J. Mao, H. Liu and Z. Guo, Boosted charge transfer in SnS/SnO<sub>2</sub> heterostructures: toward high rate capability for sodium-ion batteries, *Angew. Chem., Int. Ed.*, 2016, 55, 3408-3413.
- [S8] L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang and Y. Cao, Improved sodium-storage performance of stannous sulfide@reduced graphene oxide composite as high capacity anodes for sodium-ion batteries, J. Power Sources, 2015, 293, 784-789.
- [S9] L. Wang, G. Yang, J. Wang, S. Peng, W. Yan and S. Ramakrishna, Controllable design of MoS<sub>2</sub> nanosheets grown on nitrogen-doped branched TiO<sub>2</sub>/C nanofibers: toward enhanced sodium storage performance induced by pseudocapacitance behavior, *Small*, 2019, 1904589.
- [S10] M. Feng, M. Zhang, H. Zhang, X. Liu and H. Feng, Room-temperature carbon coating on MoS<sub>2</sub>/Graphene hybrids with carbon dioxide for enhanced sodium storage, *Carbon*, 2019, **153**, 217-224.
- [S11] S. Chen, S. Huang, J. Hu, S. Fan, Y. Shang, M. E. Pam, X. Li, Y. Wang, T. Xu, Y. Shi and H. Y. Yang, Boosting sodium storage of Fe<sub>1-x</sub>S/MoS<sub>2</sub> composite via heterointerface engineering, *Nano-Micro Lett.*, 2019, **11**, 80.
- [S12] P. Li, Y. Yang, S. Gong, F. Lv, W. Wang, Y. Li, M. Luo, Y. Xing, Q. Wang, and S. Guo, Co-doped 1T-MoS<sub>2</sub> nanosheets embedded in N, S-doped carbon nanobowls for high-rate and ultra-stable sodium-ion batteries, *Nano Res.*, 2019, 12, 2218-2223.

[S13] Z. Li, S. Liu, B. P. Vinayan, Z. Zhao-Karger, T. Diemant, K. Wang, R. J. Behm, C. Kübel, R. Klingeler and M. Fichtner, Hetero-layered MoS<sub>2</sub>/C composites enabling ultrafast and durable Na storage, *Energy Storage Mater.*, 2019, 21, 115-123.