# In-situ Formed Methyl-co-(bis-R) Silsesquioxane Based Polymer Networks with Solvent Controlled Pore Size Distributions and High Surface Areas

Nai-hsuan Hu,<sup>a</sup> Chamika U. Lenora,<sup>a</sup> Timothy A. May,<sup>a</sup> Nathan C. Hershberger,<sup>b</sup> Joseph C. Furgal<sup>a\*</sup>

<sup>a</sup>Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, <sup>b</sup>Bowling Green High School, Bowling Green, OH, USA.

\*Email: furgalj@bgsu.edu

| Page |                                                                                                                                                            |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S1   | Table of contents                                                                                                                                          |
| S5   | Surface area, texture, decomposition temperature, and ceramic yield<br>of materials synthesized at room temperature in different solvents<br>(pre-curing). |
| S5   | Surface area, decomposition temperature, and ceramic yield of materials synthesized in different solvents (post-curing).                                   |
| S6   | TGA of materials from reactions synthesized in different solvents (pre-curing).                                                                            |
| S6   | TGA of materials synthesized in different solvents (post-curing).                                                                                          |
| S7   | DFT pore size distribution graphs in micropore region of materials synthesized in different solvents (pre-curing and post-curing).                         |
| S9   | DFT pore size distribution graphs in mesopore and macropore region of materials synthesized in different solvents (pre-curing and post-curing).            |
| S11  | Cumulative volume of mesopore and micropores of materials synthesized in different solvents (pre-curing and post curing).                                  |
| S12  | Average and median pore width comparison of the materials synthesized in different solvents (pre-curing and post curing).                                  |

- S13 Surface area, decomposition temperature, and ceramic yield of materials synthesized in mixed solvents.
- S13 TGA of materials synthesized in mixed solvents.
- S14 DFT pore size distribution graphs in mesopore and macropore region of materials synthesized in mixed solvents.
- S15 Surface area, decomposition temperature, and ceramic yield of materials synthesized in different amounts of acetonitrile.
- S15 TGA graphs of samples from material synthesized in different amounts of acetonitrile.
- S16 DFT pore size distribution graphs of material synthesized in different amounts of acetonitrile.
- S17 Surface area, decomposition temperature, and ceramic yield of materials synthesized in dichloromethane with different amount of water.
- S17 TGA of materials synthesized in dichloromethane with different amounts of water.
- S18 DFT pore size distribution graphs of material synthesized in dichloromethane with different amounts of water.
- S19 Surface area, decomposition temperature, and ceramic yield of materials synthesized in acetonitrile with different amounts of water.
- S19 TGA graphs of materials synthesized in acetonitrile with different amounts of water.
- S20 DFT pore size distribution graphs of material synthesized in acetonitrile with different amounts of water.
- S21 Surface area, decomposition temperature, and ceramic yield of materials synthesized in dichloromethane at different temperatures.
- S21 TGA graphs of materials from material synthesized in dichloromethane at different temperatures.
- S22 DFT pore size distribution graphs of material synthesized in dichloromethane at different temperature.
- S23 Surface area, decomposition temperature, and ceramic yield of materials synthesized in acetonitrile at different temperature (25 mL  $H_2O$ ).

- S23 TGA graphs of samples from material synthesized in acetonitrile at different temperature. S24 TGA graphs from material synthesized in acetonitrile at different temperatures (gel washed by solvent) S24 TGA graphs from material synthesized in acetonitrile at different temperatures (gel washed by solvent and freeze dried). S25 DFT pore size distribution graphs of material synthesized in acetonitrile at different temperatures. S26 DFT pore size distribution graphs of material synthesized in acetonitrile at different temperatures (gel washed by solvent (left), washed by solvent then freeze dried (right)). S27 SEM images of particle gels synthesized in dichloromethane at room temperature (air dry method). S28 SEM images of particle gels synthesized in acetonitrile at room temperature (air dry method). S29 SEM images of light gel synthesized in acetonitrile at 70 °C with 25 mL of water (air dry method) ... S30 SEM images of condense gel synthesized in acetonitrile at 70 °C with 0.75 mL of water (air dry method).. S31 XRD spectra of material synthesized in dichloromethane at room temperature (air dry method). S31 XRD spectra of material synthesized in acetonitrile at room temperature (air dry method). S32 Drying and reabsorption behavior of material synthesized in acetonitrile at 70°C (% base on original weight). S32 Drying and reabsorption recycle test of material synthesized in acetonitrile at 70°C (% base on original weight). S32 Before (left) and after (right) drying of material synthesized in acetonitrile at 70°C. <sup>29</sup>Si MAS-NMR spectra of material synthesized in acetonitrile. S33 S33 <sup>29</sup>Si MAS-NMR spectra of material synthesized in dichloromethane. S34 Representative example of nitrogen adsorption and desorption isotherm for the BET surface area analysis of a material synthesized
  - **S**3

in dichloromethane.

| S35 | IR spectra of materials synthesized in different solvent (pre-curing).                  |  |  |  |  |  |
|-----|-----------------------------------------------------------------------------------------|--|--|--|--|--|
| S36 | IR spectra of materials synthesized in different solvent (post-curing).                 |  |  |  |  |  |
| S38 | IR spectra of materials synthesized in in mixed solvents.                               |  |  |  |  |  |
| S39 | IR spectra of materials synthesized in different amounts of acetonitrile.               |  |  |  |  |  |
| S40 | IR spectra of materials synthesized in dichloromethane with different amounts of water. |  |  |  |  |  |
| S41 | IR spectra of materials synthesized in acetonitrile with different amounts of water.    |  |  |  |  |  |
| S43 | IR spectra of material synthesized in dichloromethane at different temperatures.        |  |  |  |  |  |
| S44 | IR spectra of material synthesized in acetonitrile at different temperatures.           |  |  |  |  |  |

| Solvent            | Texture<br>GP = gel particles | Surface area (m <sup>2</sup> g- <sup>1</sup> ) | Decomposition<br>5% (°C) | Ceramic yield (%) |
|--------------------|-------------------------------|------------------------------------------------|--------------------------|-------------------|
|                    | NG = no gel                   |                                                |                          |                   |
| Acetonitrile       | GP                            | 1022                                           | 451.6                    | 89.2              |
| Dichloromethane    | GP                            | 1076                                           | 483.7                    | 89.7              |
| Benzonitrile       | GP                            | 844                                            | 513.7                    | 87.8              |
| Tetrahydrofuran*   | GP                            | 716                                            | 286.8                    | 84.5              |
| Acetone            | GP                            | 423                                            | 209.0                    | 83.1              |
| Ethyl Acetate      | GP                            | 287                                            | 155.3                    | 75.2              |
| Dioxane            | GP                            | 58                                             | 147.0                    | 71.3              |
| Ethyl Ether        | GP                            | 13                                             | 155.7                    | 66.9              |
| Toluene            | GP                            | 4                                              | 111.0                    | 43.4              |
| Dimethylacetamide* | NG                            | 2                                              | 165.0                    | 60.8              |
| Methanol           | NG                            | 181                                            | 145.9                    | 57.8              |
| 2-Propanol         | NG                            | 1                                              | 94.1                     | 47.4              |

**Table S2:** Surface area, texture, decomposition temperature, and ceramic yield of materials synthesized at room temperature in different solvents (pre-curing).

\*distilled and dried with 3 Å molecular sieves. Other solvents are anhydrous

**Table S3:** Surface area, decomposition temperature, and ceramic yield of materials synthesized in different solvents (post-curing).

| Solvent          | Surface area                      | a Decomposition | Ceramic yield |
|------------------|-----------------------------------|-----------------|---------------|
|                  | (m <sup>2</sup> g- <sup>1</sup> ) | 5% (°C)         | (%)           |
| Acetonitrile     | 1045                              | 440.6           | 88.8          |
| Dichloromethane  | 1080                              | 435.7           | 88.1          |
| Benzonitrile     | 877                               | 565.5           | 89.6          |
| Tetrahydrofuran* | 805                               | 489.3           | 88.4          |
| Acetone          | 614                               | 471.4           | 88.6          |
| Ethyl Acetate    | 492                               | 446.0           | 88.8          |
| Dioxane          | 405                               | 473.1           | 89.0          |

| Ethyl Ether        | 429 | 502.6 | 88.5 |
|--------------------|-----|-------|------|
| Toluene            | 385 | 486.5 | 88.8 |
| Dimethylacetamide* | 535 | 472.9 | 88.5 |
| Methanol           | 275 | 616.0 | 90.0 |
| 2-Propanol         | 194 | 332.8 | 72.6 |

\*distilled and dried with 3 Å molecular sieves. Other solvents are anhydrous



Figure S1. TGA graphs of materials from reactions synthesized in different solvents (pre-curing).



Figure S2. TGA graphs of materials synthesized in different solvents (post-curing).



**S**8



**Figure S3**. DFT pore size distribution graphs in micropore region of materials synthesized in different solvents (pre-curing and post-curing).



S10





**Figure S4**. DFT pore size distribution graphs in mesopore and macropore region of materials synthesized in different solvents (pre-curing and post-curing).

**Table S4.** Cumulative volume of mesopore, micropores of materials synthesized in different solvents (pre-curing and post curing).

| Solvent         | Cumulative                    | Cumulative                     | Micropore   |  |  |  |  |
|-----------------|-------------------------------|--------------------------------|-------------|--|--|--|--|
|                 | mesopore volume               | micropore volume               | content (%) |  |  |  |  |
|                 | (0-100nm, cm <sup>3</sup> /g) | (0-1.37nm, cm <sup>3</sup> /g) |             |  |  |  |  |
| Acetonitrile    |                               |                                |             |  |  |  |  |
| Pre-curing      | 0.86                          | 0.17                           | 19.8        |  |  |  |  |
| Post curing     | 0.99                          | 0.17                           | 16.8        |  |  |  |  |
| Dichloromethane |                               |                                |             |  |  |  |  |
| Pre-curing      | 0.48                          | 0.2                            | 41.7        |  |  |  |  |
| Post curing     | 0.42                          | 0.2                            | 48.7        |  |  |  |  |
| Benzonitrile    |                               |                                |             |  |  |  |  |
| Pre-curing      | 0.46                          | 0.16                           | 35.4        |  |  |  |  |
| Post curing     | 0.47                          | 0.17                           | 36.7        |  |  |  |  |
| Tetrahydrofuran |                               |                                |             |  |  |  |  |
| Pre-curing      | 0.52                          | 0.11                           | 21.3        |  |  |  |  |
| Post curing     | 0.58                          | 0.16                           | 27.8        |  |  |  |  |
| Acetone         |                               |                                |             |  |  |  |  |
| Pre-curing      | 0.23                          | 0.09                           | 36.5        |  |  |  |  |
| Post curing     | 0.33                          | 0.12                           | 37.1        |  |  |  |  |
| Ethyl Acetate   |                               |                                |             |  |  |  |  |
| Pre-curing      | 0.14                          | 0.03                           | 20.4        |  |  |  |  |
| Post curing     | 0.23                          | 0.15                           | 65.2        |  |  |  |  |
| Dioxane         |                               |                                |             |  |  |  |  |
| Pre-curing      | 0.00*                         | 0.00*                          | 9.3         |  |  |  |  |
| Post curing     | 0.19                          | 0.14                           | 73.1        |  |  |  |  |
| Ethyl Ether     |                               |                                |             |  |  |  |  |
| Pre-curing      | 0.01                          | 0.00*                          | 10.6        |  |  |  |  |
| Post curing     | 0.23                          | 0.11                           | 47.3        |  |  |  |  |
| Toluene         |                               |                                |             |  |  |  |  |
| Pre-curing      | 0.01                          | 0.00*                          | 9.7         |  |  |  |  |
| Post curing     | 0.46                          | 0.10                           | 21.4        |  |  |  |  |

| Dimethylacetamide                     |       |       |      |  |  |
|---------------------------------------|-------|-------|------|--|--|
| , , , , , , , , , , , , , , , , , , , | 1     | 1     | 1    |  |  |
| Pre-curing                            | 0.00* | 0.00* | 66.7 |  |  |
| Post curing                           | 0.42  | 0.11  | 25.9 |  |  |
| Methanol                              |       |       |      |  |  |
| Post curing                           | 0.21  | 0.09  | 42.8 |  |  |
| 2-Propanol                            |       |       |      |  |  |
| Post curing                           | 0.12  | 0.08  | 66.7 |  |  |

\*Values for micropore percent calculated from original long form data.

**Table S5.** Average and median pore width comparison of the materials synthesized in different solvents (pre-curing and post curing).

| Solvent           | Avg. width (Å)<br>Pre-curing | Avg. width(Å)<br>Post curing | Med. width (Å)<br>Pre-curing | Med. width (Å)<br>Post curing |
|-------------------|------------------------------|------------------------------|------------------------------|-------------------------------|
| Acetonitrile      | 39.3                         | 40.1                         | 29.4                         | 29.4                          |
| Dichloromethane   | 33.5                         | 35.9                         | 21.6                         | 17.1                          |
| Benzonitrile      | 26.4                         | 23.4                         | 38.4                         | 34.3                          |
| Tetrahydrofuran   | 30.5                         | 32.5                         | 27.3                         | 29.4                          |
| Acetone           | 29.6                         | 30.8                         | 23.4                         | 23.4                          |
| Ethyl Acetate     | 32.3                         | 34.5                         | 21.6                         | 23.4                          |
| Dioxane           | 46.2                         | 32.1                         | 18.5                         | 20.0                          |
| Ethyl Ether       | 70.4                         | 28.0                         | 25.1                         | 23.4                          |
| Toluene           | 91.3                         | 85.6                         | 27.3                         | 46.6                          |
| Dimethylacetamide | 71.6                         | 31.8                         | 36.9                         | 29.4                          |
| Methanol          | 33.6                         | 33.6                         | 31.8                         | 31.8                          |
| 2-Propanol        | 93.3                         | 35.5                         | 31.8                         | 23.4                          |

\*See supporting information 2 for equations.

| Solvent                                 | Surface area                      | Decomposition | Ceramic yield |
|-----------------------------------------|-----------------------------------|---------------|---------------|
|                                         | (m <sup>2</sup> g- <sup>1</sup> ) | 5% (°C)       | (%)           |
| Dichloromethane + acetonitrile (1:1)    | 524                               | 210.4         | 82.5          |
| Dichloromethane + tetrahydrofuran (1:1) | 516                               | 216.5         | 83.3          |
| Dichloromethane + acetone(1:1)          | 685                               | 239.3         | 84.8          |
| Dichloromethane + methanol(3:1)         | 16                                | 166.3         | 68.6          |
| Dichloromethane + ethanol(3:1)          | 4                                 | 164.1         | 68.5          |
| Dichloromethane + isoporpanol(3:1)      | 498                               | 332.0         | 82.0          |
| Dichloromethane + pyridine(3:1)         | 403                               | 172.2         | 81.6          |

**Table S6.** Surface area, decomposition temperature, and ceramic yield of materials

 synthesized in mixed solvents.



Figure S5. TGA graphs of materials synthesized in mixed solvents.

Figure S6. DFT pore size distribution graphs in mesopore and macropore region of materials synthesized in mixed solvents.



|              |    | - ,           |                                 |                  |                   |
|--------------|----|---------------|---------------------------------|------------------|-------------------|
| Amount o     | of | Concentration | Surface area (m <sup>2</sup> g- | Decomposition 5% | Ceramic yield (%) |
| acetonitrile |    | of ethoxy     | 1)                              | (°C)             |                   |
| (mL)         |    | group (M)     |                                 |                  |                   |
| 50 mL        |    | 0.90          | 608                             | 153.2            | 76.7              |
| 100 mL       |    | 0.45          | 897                             | 186.3            | 82.7              |
| 200 mL       |    | 0.23          | 866                             | 214.9            | 85.0              |
| 300 mL       |    | 0.15          | 892                             | 199.7            | 84.1              |
| 400 mL       |    | 0.11          | 426                             | 170.5            | 76.8              |

**Table S7.** Surface area, decomposition temperature, and ceramic yield of materials synthesized in different amounts of acetonitrile.



Figure S7. TGA graphs of samples from material synthesized in different amounts of acetonitrile.



Figure S8. DFT pore size distribution graphs of material synthesized in different amounts of acetonitrile.

| Amount of     | Ratio                      | Surface area (m <sup>2</sup> g- | Decomposition 5% | Ceramic yield (%) |
|---------------|----------------------------|---------------------------------|------------------|-------------------|
| water<br>(mL) | (ethoxy: H <sub>2</sub> O) | 1)                              | (°C)             |                   |
| 0.188mL       | 1:0.2                      | 947                             | 411.7            | 87.7              |
| 0.375 mL      | 1:0.5                      | 803                             | 338.9            | 85.4              |
| 0.75 mL       | 1:1                        | 1076                            | 483.7            | 89.7              |
| 1.5 mL        | 1:1.8                      | 629                             | 374.5            | 84.5              |
| 2.25 mL       | 1:2.8                      | 339                             | 195.1            | 82.5              |
| 3 mL          | 1:3.7                      | 84                              | 227.3            | 81.1              |

**Table S8.** Surface area, decomposition temperature, and ceramic yield of materials synthesized in dichloromethane with different amounts of water.



Figure S9. TGA graphs of materials synthesized in dichloromethane with different amounts of water.



**Figure S10**. DFT pore size distribution graphs of material synthesized in dichloromethane with different amounts of water.

| Amount of | Ratio                      | Surface area (m <sup>2</sup> g- | Decomposition 5% | Ceramic yield (%) |
|-----------|----------------------------|---------------------------------|------------------|-------------------|
| water     | (ethoxy: H <sub>2</sub> O) | 1)                              | (°C)             |                   |
| (mL)      |                            |                                 |                  |                   |
| 0.75 mL   | 1:1                        | 686                             | 210              | 83.7              |
| 1.5 mL    | 1:2                        | 642                             | 239.3            | 83.4              |
| 3 mL      | 1:4                        | 812                             | 379.7            | 86.9              |
| 6 mL      | 1:7                        | 825                             | 392.7            | 87.4              |
| 12 mL     | 1 : 15                     | 886                             | 424              | 88.1              |
| 25 mL     | 1 : 31                     | 925                             | 385.2            | 87.2              |
| 50 mL     | 1 : 61                     | 753                             | 426.3            | 87.8              |

**Table S9.** Surface area, decomposition temperature, and ceramic yield of materials

 synthesized in acetonitrile with different amounts of water.



Figure S11. TGA graphs of materials synthesized in acetonitrile with different amounts of water.



Figure S12. DFT pore size distribution graphs of material synthesized in acetonitrile with different amounts of water.

**Table S10.** Surface area, decomposition temperature, and ceramic yield of materials synthesized in dichloromethane at different temperatures.

| Temperature | Texture           | Surface area                      | Decomposition 5% | Ceramic yield (%) |
|-------------|-------------------|-----------------------------------|------------------|-------------------|
| (°C)        | GP = gel particle | (m <sup>2</sup> g- <sup>1</sup> ) | (°C)             |                   |
|             | NG = no gel       |                                   |                  |                   |
| 0           | NG                | (No                               | -                | -                 |
|             |                   | precipitation)                    |                  |                   |
| 5           | GP                | 214                               | 167.5            | 78.2              |
| 12.5        | GP                | 537                               | 186.5            | 83.7              |
| RT          | GP                | 1076                              | 483.7            | 89.7              |
| 30          | GP                | 808                               | 381.7            | 86.5              |
| 39          | GP                | 892                               | 339.6            | 85.6              |



Figure S13. TGA graphs of materials synthesized in dichloromethane at different temperatures.



Figure S14. DFT pore size distribution graphs of materials synthesized in dichloromethane at different temperatures.

| Temperature | Drving method       | Surface area                      | Decomposition | Ceramic   |
|-------------|---------------------|-----------------------------------|---------------|-----------|
| (°C)        |                     | (m <sup>2</sup> g- <sup>1</sup> ) | 5% (°C)       | yield (%) |
| RT          | Air dry             | 102                               | 151.3         | 70.3      |
| 35          | Air dry             | 283                               | 182.8         | 78.3      |
| 45          | Air dry             | 336                               | 167.4         | 76.8      |
| 55          | Air dry             | 279                               | 171.1         | 76.4      |
| 65          | Air dry             | 156                               | 143.1         | 69.9      |
| 70          | Air dry             | 239                               | 134.0         | 66.9      |
| 35          | Air dry             | 998                               | 398.3         | 87.4      |
| 35          | Freeze dry (rinsed) | 830                               | 344.4         | 85.6      |
| 55          | Air dry (rinsed)    | 780                               | 358.1         | 85.9      |
| 55          | Freeze dry (rinsed) | 790                               | 374.1         | 86.8      |
| 70          | Air dry (rinsed)    | 785                               | 467.8         | 89.8      |
| 70          | Freeze dry (rinsed) | 633                               | 418.4         | 87.0      |

**Table S11.** Surface area, decomposition temperature, and ceramic yield of materials synthesized in acetonitrile at different temperatures (25 mL H<sub>2</sub>O).



Figure S15. TGA graphs of samples from materials synthesized in acetonitrile at different temperatures.



**Figure S16.** TGA graphs from materials synthesized in acetonitrile at different temperatures (gel washed by solvent).



**Figure S17.** TGA graphs from materials synthesized in acetonitrile at different temperatures (gel washed by solvent and freeze dried).



Figure S18. DFT pore size distribution graphs of materials synthesized in acetonitrile at different temperatures.



**Figure S19**. DFT pore size distribution graphs of materials synthesized in acetonitrile at different temperatures (gel washed by solvent (left), washed by solvent then freeze dried(right)).

<u>SEM images</u>



Figure S20. SEM images of particle gels synthesized in dichloromethane at room temperature (air dry method).



Figure S21. SEM images of particle gels synthesized in acetonitrile at room temperature (air dry method).



Figure S22. SEM images of light gel synthesized in acetonitrile at 70 °C with 25 mL of water (air dry method).



**Figure S23**. SEM images of condensed gel synthesized in acetonitrile at 70 °C with 0.75 mL of water (air dry method).

## XRD spectra



Figure S24. XRD spectra of material synthesized in dichloromethane at room temperature (air dry method).



Figure S25. XRD spectra of material synthesized in acetonitrile. at room temperature (air dry method).

# Solvent Uptake

**Table S12**. Drying and reabsorption behavior of materials synthesized in acetonitrile at $70^{\circ}$ C (% base on original weight).

| Drying<br>time | Original weight | Dried to<br>Weight | Weight After<br>Reabsorption |
|----------------|-----------------|--------------------|------------------------------|
| 1hr            | 4.426g          | 2.919g (66%)       | 3.794g (85.7%)               |
| 2hr            | 4.383g          | 1.191g (27%)       | 1.989g (45.4%)               |
| 3hr            | 4.532g          | 0.601g (13.3%)     | 1.279g (28.2%)               |
| 4hr            | 4.682g          | 0.177g (3.8%)      | 1.26 (26.9%)                 |

 Table S13. Drying and reabsorption recycle test of materials synthesized in acetonitrile at 70°C (% base on original weight).

| Recycle times | Original<br>weight | Dried to<br>Weight | Weight After<br>Reabsorption |
|---------------|--------------------|--------------------|------------------------------|
| 0             | 4.426g             | 2.919g (66.0%)     | 3.794g<br>(85.7%)            |
| 1             | 3.794g<br>(85.7%)  | 1.793g (40.5%)     | 3.154g<br>(71.3%)            |
| 2             | 3.154g<br>(71.3%)  | 1.189g (26.9%)     | 2.811g<br>(63.5%)            |



**Figure S26**. Before (left) and after (right) drying of material synthesized in acetonitrile at 70°C.

#### <sup>29</sup>Si MAS-NMR



Figure S27. Si SSNMR spectra of material synthesized in acetonitrile.



Figure S28. Si SSNMR spectra of material synthesized in dichloromethane.

## Adsorption/Desorption Isotherm



**Figure S29**. Representative example of nitrogen adsorption and desorption isotherm for the BET surface area analysis of material synthesized in dichloromethane under standard conditions.





Figure S30. FTIR spectra of materials synthesized in different solvents (pre-curing).





Figure S31. FTIR spectra of materials synthesized in different solvent (post-curing)





Figure S32. FTIR spectra of materials synthesized in in mixed solvents.





Figure S33. FTIR spectra of materials synthesized in different amounts of acetonitrile.





**Figure S34.** FTIR spectra of materials synthesized in dichloromethane with different amounts of water.





**Figure S35.** FTIR spectra of materials synthesized acetonitrile with different amounts of water.



**Figure S36.** FTIR spectra of materials synthesized in dichloromethane at different temperatures.



**Figure S37.** FTIR spectra of materials synthesized in acetonitrile at different temperatures.