Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supplementary Information

High-selective hydrogenation of aldehydes promoted by palladium-based catalyst and its application in equilibrium displacement in one-enzyme procedure using ω-transaminase

1.	General information2
2.	General procedure for the cloning, protein expression and purification of transaminase2
3.	General procedure for chemo-selective hydrogenation of aldehydes2
4.	General procedure for the preparation of Pd-Ligands
5.	Relative activity of enzymes exposed to air, H ₂ , O ₂ , N ₂ or was sealed
6.	General procedure for screening of amino donor
7.	General procedure for the optimization of the loading of amino donor
8.	General procedure for one-enzyme cascades reactions using ω -TA
9.	Determination of product yields4
10.	Determination of enantiomeric excess of chiral amines4
11.	<i>General procedure for isolation of pure products</i> 4
12.	¹ H NMR and ¹³ C NMR spectrum of alcohols and chiral amines4
13.	¹ H NMR and ¹³ C NMR spectra of product alcohols and chiral amines6
14.	HPLC chromatogram25
15.	References

1. General information

All chemicals were commercially available and purchased Aladdin (Shanghai, China) and were used as received without further purification. All chemicals used are of analytical grade. ¹H- and ¹³C-NMR of products were recorded on a Bruker 400 MHz spectrometer at 400 MHz and 100 MHz. All chemical shifts (δ) were quoted in parts per million (ppm) and reported relative to an internal tetramethylsilane (TMS, δ 0.00) standard. The following abbreviations were used to define the multiplicities: br, broad; s, singlet; d, doublet; t, triplet; q, quartet; p, pentet and m, multiplet. The conversions of products were measured by HPLC analysis equipped with a C18 column, and the ee values of the desired chiral amines were measured by HPLC analysis equipped with a coating Silica-gel Crownpak CR(+) (0.4 cm x 15 cm) column, both the conversions and ees were recorded with a Shimadzu Essentia Prep LC-16P HPLC instrument.

2. General procedure for the cloning, protein expression and purification of transaminase

The gene for Chromobacterium violaceum ω -transaminase was inserted in the plasmid pET28a(+) with an N-terminal His6-tag. After digestion (Nhel, HindIII) and sequence verification the construct was transformed into *E. coli BL21 (DE)*. Expression was done by mixing a 2000 ml overnight culture with 180 ml of Luria-Bertoni (LB) medium with 50 mg/L Kanamycin and 0.4 mM IPTG and incubating for 24 h at 30°C (160 rpm, baffled flask). The cells were thereafter separated from the medium by centrifugation and resuspended in IMAC binding buffer (20 mM sodium phosphate, 500 mM sodium chloride, pH 8.2), disrupted by addition of BugBuster® 10X (Merck) and applied to a column with Chelating Sepharose FastFlow (GE Healthcare) resin treated with a saturated water solution of Cobalt(II) chloride. After washing with the binding buffer, the His6-tagged enzyme was eluted with IMAC elution buffer. An excess of cofactor (PLP) was added before desalting on a PD10 column (GE Healthcare). The simple procedure of adding PLP before buffer change ensures that the amount of cofactor is balanced with the enzyme concentration, assuming that a negligible amount of enzyme is in apo form during the desalting.

3. General procedure for chemo-selective hydrogenation of aldehydes

Ketone (2mM) and aldehyde (2mM), at equal equivalents were dissolved in 5mL H₂O, pH of the buffer (HEPES, 50mM) was made at 8.2, Pd-L8 (1.0 mmol %), were stirred at 30°C with H₂ filled in a balloon. The reaction conversions and yields were determined by HPLC analysis equipped with a C18 column. When the reaction was completed, the solution was extracted with saturated brine and ethyl acetate (3×10 ml). The organic phase was dried over anhydrous magnesium sulfate and concentrated in vacuo. The crude product was purified by column chromatography, and the pure products were characterized by NMR.

4. General procedure for the preparation of Pd-Ligands

The catalyst Pd-L1 - Pd-L9 were chemical synthesized referencing some recent publications^{1,2}.

5. Relative activity of enzymes exposed to air, H_2 , O_2 , N_2 or was sealed

2 mL of enzyme in HEPES buffer were filled in a reaction kit, air, molecular oxygen, molecular hydrogenation, or nitrogen filled in respective balloon were connected with the reaction kit and was well sealed, before this, each balloon and reaction kit were carefully tested to verify the airtightness. After incubated for 12h, the enzyme was combined with the well-prepared components ((S)-1-phenylethylamine, and pyruvate) to a final concentration of 2mM for (S)-1-phenylethylamine and 6mM for pyruvate. The initial reaction rates were measured spectrophotometrically. By detecting the consumption (reducing) of (S)-1-phenylethylamine at the wavelength of 270 nm. All continuous measurements were done on a dual beam spectrophotometer (Cary 300 UV-Vis, Varian Inc.) with appropriate blank correction.

6. General procedure for screening of amino donor

All components were dissolved separately in the buffer and the pH was corrected. These solutions were then combined to final concentration of 2 mM for acetophenone, and for 4-methylbenzylamine, benzylamine, 4-chlorobenzylamine, 3-chlorobenzylamine, 4-fluorobenzylamine was 10mM, the solutions were incubated in shaker for 24h at 30°C. ω -Transaminase of wild-type from *Chromobacterium violaceum* (Cv- ω -TA WT) was used as the model biocatalyst at the loading of 0.8U, pH of the reaction medium was set at 8.2 in HEPES buffer at 50mM on a 5 ml scale. After reactions were completed, samples were taken, treated and subject to HPLC to determine the yields of products (the desired chiral amines)

7. General procedure for the optimization of the loading of amino donor

Similar to the screening of amino donors, all the components were dissolved separately in the buffer and the pH was corrected. These solutions were then combined to final concentration of 2 mM for acetophenone, varied concentrations of amino donor from 1 to 10 equivalents were emloyed, Pd-L8 (1.0 mol %), were reacted in 30°C shaker for 24 h, Cv- ω -TA WT was used at 0.8U, after reacted for 24h, samples were taken and the yields of chiral amine were measured on a HPLC to determine the suitable loading of amino donors.

8. General procedure for one-enzyme cascades reactions using ω -TA

The reactions were performed in 50 mM HEPES buffer solution on a 5 ml scale, the pH of the buffer was 8.2 for ω -transaminases. All components were dissolved separately in the buffer and the pH was corrected. These solutions were then combined to final concentration of 2 mM acetophenone or other substituted-acetophenones (4-fluoroacetophenone, 3-

fluoroacetophenone, 4-methylacetophenone, 3-methylacetophenone), benzylamine and pmethylbenzylamine, 6mM, Pd-L8, 1.0 mol%, and transaminase (purified ω -transaminases, [E] _{Cv- ω -TA W60C = 25.0 μ M, ATA-117, and ω -TA-001 from Codexis, 0.8 U), were reacted in 30°C shaker for 24 h.}

9. Determination of product yields

The reactions were performed as described in the text enzyme reactions. When reactions were completed, perchloric acid of 10 uL at the concentration of 70% was added into the reaction solution, and the mixed solution was centrifuged at 3000 r/min for 5 min. After that, 300 uL solution of the supernatant fluid was taken and the yield was measured using High Performance Liquid Chromatography (HPLC) equipped with a C18 column.

10. Determination of enantiomeric excess of chiral amines

The samples were subjected to High Performance Liquid Chromatography (HPLC) with a CrownpakCR(+) column (Daicel), after filtration (0.22 μ m) and acidification by perchloric acid. High Performance Liquid Chromatography using ultrapure water with pH=1.0 and acetonitrile as mobile phase at the flow rate of 0.5 ml/min.

$$ee_{S} = \frac{[S] - [R]}{[S] + [R]}$$
 or $ee_{R} = \frac{[R] - [S]}{[R] + [S]}$ (Equ.1)

11. General procedure for isolation of pure products

To obtain the desired pure chiral amines, reactions were performed on a 5 mL scale, reaction parameters were identical with which described in the main text of the manuscript. When reactions were completed, 100 uL perchloric (70%) was added into the reaction solution to acidate the solution, and the reaction solution was centrifuged for 5 min to remove the precipitate. The supernatant was added into with 5 mL ethyl acetate, mixed and extracted three times. The organic solution was isolated and combined together. The combined organic solution was then distilled under evacuation to remove the organic solvent, and the residue is subjected to thin layer chromatography to afford pure products. (Due to the small scales of the reactions, we combined the products of several runs to get higher concentration samples.)

12. ¹H NMR and ¹³C NMR spectrum of alcohols and chiral amines

1.1 phenylmethanol

¹H NMR (400MHz, DMSO-d6): δ (ppm) 7.35-7.20(m, 5H); 5.24(t, J = 4.0Hz 1H); 4.52(d, J = 4.0Hz, 2H); ¹³C NMR (100MHz, DMSO-d6): δ (ppm) 143.01, 128.52, 127.11, 126.92, 63.47.

1.2 p-tolylmethanol

¹H NMR (400MHz, DMSO-d6): δ (ppm) 7.20 (d, J = 8.0Hz, 2H); 7.12 (d, J = 8.0Hz, 2H); 5.10 (q, J = 4.0Hz, 1H); 4.46 (d, J = 4.0Hz, 2H); 2.27 (s, 3H); ¹³C NMR (100MHz, DMSO-d6): δ (ppm) 139.98, 136.05, 129.05, 126.96, 63.26, 21.17.

1.3 *m*-tolylmethanol

¹H NMR (400MHz, CDCl₃): δ (ppm) 7.22-7.05 (m, 4H); 4.53 (s, 2H); 2.85 (brs, 1H); 2.31 (s, 3H); ¹³C NMR (100MHz, CDCl₃): δ (ppm) 140.92, 138.18, 128.46, 128.32, 127.81, 124.10, 65.08, 21.41.

1.4 (*p*-fluorophenyl)methanol

¹H NMR (400MHz, DMSO-d6): δ (ppm) 7.39-7.36 (m, 2H); 7.16-7.11 (m, 2H); 5.25 (brs, 1H); 4.52 (s, 2H); ¹³C NMR (100MHz, DMSO-d6): δ (ppm) 162.63, 139.10, 128.79, 115.14, 62.73.

1.5 *p*-cyanobenzyl alcohol

¹H NMR (400 MHz, DMSO-d6) δ 7.79 (d, J=8.0Hz, 2H), 7.53 (d, J=8.0Hz, 2H) 5.49 (t, J=4.0Hz, 1H), 4.61 (d, J=4.0Hz, 2H); ¹³C NMR (100MHz, DMSO-d6) δ 148.97, 132.50, 127.37, 119.50, 109.78, 62.67.

1.6 (p-methoxyphenyl)methanol

¹H NMR (400MHz, DMSO-d6): δ (ppm) 7.25 (d, J = 8.0Hz, 2H); 6.88 (d, J = 8.0Hz, 2H); 5.09 (t, J = 4.0Hz, 1H); 4.44 (d, J = 4.0Hz, 2H); 3.72(s, 3H); ¹³C NMR (100MHz, DMSO-d6): δ (ppm) 158.67, 134.99, 128.41, 113.90, 63.11, 55.40.

1.7 *m*-hydroxybenzyl alcohol

¹H NMR (400MHz, DMSO-d6): δ (ppm) 9.28 (brs, 1H); 7.10 (t, J = 8.0Hz, 1H); 6.76-6.61 (m, 3H); 5.11 (brs, 1H); 4.42 (s, 2H); ¹³C NMR (100MHz, DMSO-d6): δ (ppm) 157.72, 144.54, 129.45, 117.39, 113.99, 113.72, 63.33.

1.8 (3,4,5-trimethoxyphenyl)methanol

¹H NMR (400MHz, DMSO-d6): δ (ppm) 6.65 (s, 2H); 5.20 (t, J = 4.0Hz, 1H); 4.46 (d, J = 4.0Hz, 2H); 3.78 (s, 6H); 3.66 (s, 3H); ¹³C NMR (100MHz DMSO-d6): δ (ppm) 153.20, 138.78, 136.56, 103.86, 63.50, 60.39, 56.10.

1.9 (S)- or (R)- 1-phenylethanamine

¹H NMR (400 MHz, CDCl₃) δ (ppm) 7.29-7.21 (m, 4H), 7.20-7.16 (m, 1H), 4.04 (q, J = 8.0 Hz, 1H), 1.66 (brs, 2H), 1.33 (d, J = 4 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ(ppm) 147.79, 128.49, 126.81, 125.71, 51.31, 25.70.

1.10 (S)- or (R)- 1-(4-flurophenyl)ethylamine

¹H NMR (400MHz, CDCl₃) δ (ppm) 7.37-6.99 (m, 4H), 4.02 (q, *J* = 8.0 Hz, 1H), 1.92 (brs, 2H), 1.26 (d, *J* = 4.0 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ(ppm) 161.69, 143.36, 127.25, 127.18, 115.23, 115.02, 50.65, 25.81.

1.11 (S)- or (R)- 1-(3-flurophenyl)ethylamine

¹H NMR (400MHz, DMSO-d6) δ (ppm) 7.33-7.28 (m, 2H), 7.02-6.96 (m, 2H), 4.10 (q, *J* = 8.0 Hz, 1H), 1.63 (brs, 2H), 1.34 (d, *J* = 4 Hz, 3H). ¹³C NMR (100 MHz, DMSO-d6) δ(ppm) 162.76, 152.63, 130.28, 122.34, 113.21, 112.85, 50.73, 26.51.

1.12 (S)- or (R)- 1-(4-methylphenyl)ethylamine

¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.23-7.21 (d, 2H), 7.14-7.12 (d, 2H), 4.06 (q, J = 8.0 Hz, 1H), 2.32 (s, 3H), 1.77 (brs, 2H), 1.36 (d, J = 8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ(ppm) 144.76, 136.37, 129.17, 125.61, 51.04, 25.63, 21.03 .

1.13 (S)- or (R)- 1-(3-methylphenyl)ethylamine

¹H NMR (400 MHz, CDCl₃) δ(ppm) 7.26-7.04 (m, 4H), 4.07 (q, *J* = 8.0 Hz, 1H), 2.35 (s, 3H), 1.82 (brs, 2H), 1.38 (d, *J* = 8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ(ppm) 147.61, 138.11, 128.42, 127.59, 126.44, 122.73, 51.30, 25.55, 21.47.

13. ¹H NMR and ¹³C NMR spectra of product alcohols and chiral amines

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 f1 (ppm)

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	4223481	S	8.229	
1		R	11103	R	12.367	99.5

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	6791623	S	8.268	
2	F	R	7399	R	13.907	99.8

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH2	S	6620197	S	8.913	
3	F	R	27469	R	11.332	99.2

	NH ₂	S	8898793	S	13.454	
4	H ₃ C	R	15544	R	21.236	99.7

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	6514110	S	15.108	
5	H ₃ C	R	65823	R	18.380	99.8

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	3672638	S	8.295	
6		R	601	R	12.691	99.9

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	6413724	S	8.085	
7	F	R	7927	R	13.833	99.8

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	6760692	S	8.627	
8	F	R	27929	R	11.216	99.2

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	8616401	S	13.653	
9	H ₃ C	R	32816	R	21.474	99.2

Entry	Product	Area		Retention time (min)		ee (%)
	NH ₂	S	6980418	S	15.410	
10	H ₃ C	R	9665	R	18.576	99.7

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	4054619	S	7.872	
11		R	15937	R	11.743	99.2

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	6606374	S	8.3216	
12	F	R	17943	R	14.0635	99.5

Entry	Product	Area		Rete	ention time (min)	ee (%)
	NH ₂	S	6610887	S	8.906	
13	F	R	29905	R	11.531	99.1

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	8330987	S	13.126	
14	H ₃ C	R	37004	R	20.981	99.1

Entry	Product	Area		Rete	ention time (min)	ee (%)
	NH ₂	S	6812394	S	14.896	
15	H ₃ C	R	9354	R	17.923	99.7

Entry	Product		Area	Rete	ention time (min)	ee (%)
	<u>N</u> H₂	S	15937	S	8.31	
16		R	3984205	R	12.65	99.2

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	6614	S	7.962	
17	F	R	7009854	R	13.767	99.8

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH2	S	8360	S	8.831	
18	F	R	6653613	R	11.244	99.7

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH_2	S	24076	S	13.289	
19	H ₃ C	R	8689637	R	21.333	99.4

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH2	S	36906	S	14.726	
20	H ₃ C	R	8541265	R	18.017	99.1

Entry	Product	Area		Rete	ention time (min)	ee (%)
	NH ₂	S	5739527	S	8.723	
21		R	22897	R	12.87	99.2

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	6077843	S	7.989	
22	F	R	21141	R	13.501	99.3

Entry	Product	Area		Rete	ention time (min)	ee (%)
NH ₂	S	6816269	S	8.904		
23	F	R	15516	R	11.756	99.5

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	9644929	S	13.436	
24	H ₃ C	R	38429	R	21.433	99.2

Entry	Product	Area		Rete	ention time (min)	ee (%)
	NH ₂	S	6546329	S	15.383	
25	H ₃ C	R	9076	R	18.508	99.7

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	5862781	S	8.032	
26		R	26297	R	12.065	99.1

Entry	Product	Area		Rete	ention time (min)	ee (%)
	NH ₂	S	6174564	S	8.124	
27	F	R	7928	R	13.486	99.7

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	6820783	S	8.831	
28	F	R	12695	R	11.282	99.6

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	8904406	S	13.708	
29	H ₃ C	R	10233	R	21.692	99.8

Entry	Product		Area	Rete	ention time (min)	ee (%)
N	NH ₂	S	6604877	S	15.643	
30	H ₃ C	R	6340	R	18.891	99.8

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	5232965	S	8.106	
31		R	26032	R	12.236	99.0

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	6621965	S	8.256	
32	F	R	32610	R	13.887	99.0

Entry	Product		Area	Rete	ention time (min)	ee (%)
NH	NH ₂	S	6984412	S	8.521	
33	F	R	28212	R	11.054	99.2

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	9617726	S	13.071	
34	H ₃ C	R	4750	R	21.106	99.9

Entry	Product		Area	Rete	ention time (min)	ee (%)
	NH ₂	S	6518267	S	15.027	
35	H ₃ C	R	30833	R	18.148	99.1

Entry	Product	Area		Retention time (min)		ee (%)
36	NH2	S	5329	S	8.748	
		R	2902719	R	12.907	99.6

Entry	Product	Area		Retention time (min)		ee (%)
	NH ₂	S	14079	S	8.597	
37	F	R	6371842	R	14.188	99.5

Entry	Product	Area		Retention time (min)		ee (%)
38	F	S	18189	S	8.947	
		R	6735651	R	11.438	99.5

Entry	Product	Area		Retention time (min)		ee (%)
	NH2	S	41750	S	13.732	
39	H ₃ C	R	8686853	R	21.803	99.0

Entry	Product	Area		Retention time (min)		ee (%)
40	H ₃ C	S	40640	S	15.299	
		R	8812030	R	17.836	99.1

15. References

- 1. S. S. Kotha, N. Sharma. G. Sekar, Adv. Synth. Catal. 2016, 358, 1695.
- 2. D. Ganapathy, G. Sekar, Catal. Commun. 2013, 39, 50.