Supporting information

Reactivity of epoxy-ynamides with metal halides: Nucleophile ($\mathrm{Br} / \mathrm{Cl} / \mathrm{OH}$) assisted tandem intramolecular 5-exo-dig and 6-endo-dig cyclisation and AgF_{2} promoted oxidation
 Mandala Anitha, Mallepalli Shankar and K. C. Kumara Swamy*
 School of Chemistry, University of Hyderabad, Hyderabad -500046, Telangana, India.
 E-mail: kckssc@uohyd.ac.in, kckssc@yahoo.com

	Contents	Page No.
1	General methods	S2
2	Synthesis of epoxy ynamides 1a-0	S2-S6
3	Synthesis of 1,3 oxazolidines 3-11 from epoxy ynamides	S6-S11
4	Synthesis of compound 12	S11-S12
5	Synthesis of chloromethyl-1,4-oxazines 13-20 from epoxy ynamides	S12-S17
6	Synthesis of hydroxymethyl-1,4-oxazines 21-26 from epoxy ynamides	S17-S20
7	Synthesis of 3,5-dimethylphenoxy-1,4-oxazine 27	S20-S21
8	Synthesis of 1,2-dioxo-amides 28-31 and 33	S21-S23
9	Synthesis of ynamide 34 and 1,2-dibromo enamide 35	S23-S24
10	X-ray data and crystal structures of 4, 8, 19, 22, 30, and 35	S25-S27
11	References	S28
12	${ }^{1} \mathrm{H} /{ }^{13} \mathrm{C}$ NMR spectra (Figures S7-S86)	S29-S68

(1) General methods: All chemicals were procured from Aldrich or local manufacturers and used further without any purification, unless noted otherwise. Chemicals and solvents were purified when required according to standard procedures. ${ }^{1}{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded using 5 mm tubes on 400 MHz and 500 NMR spectrometer [field strengths: 400, 100 and 376 MHz for 400 MHz NMR spectrometer and 500 , 125 and 470 MHz for 500 MHz NMR spectrometer respectively] in $\mathrm{CDCl}_{3}, \mathrm{DMSO}-\mathrm{D}_{6}$ solutions (unless specified otherwise) with shifts referenced to $\mathrm{SiMe}_{4}(=0)$. All J values are in Hz . Infrared spectra were recorded neat or by using KBr pellets on a $\mathrm{FT} / \mathrm{IR}$ spectrometer. Melting points were determined by using a local hot-stage melting point apparatus and are uncorrected. For TLC, glass micro slides were coated with silica-gel-GF254 (mesh size 75) and spots were identified using iodine or UV chamber as appropriate. For column chromatography, silica gel of $100-200$ mesh size was used. Microanalyses were performed using a CHNS analyzer. LC-MS equipment was used to record mass spectra for isolated compounds where appropriate. LC-MS data were obtained using electrospray ionization on a $\mathrm{C}-18$ column at a flow rate $0.2 \mathrm{~mL} /$ min using $\mathrm{MeOH} /$ water (90:10) as eluent. Mass spectra were recorded using HRMS (ESI-TOF analyzer) equipment. X-ray data were collected at 298 K using Mo- $\mathrm{K}_{\alpha}(\lambda=0.71073 \AA$) radiation. Structures were solved and refined using standard methods. ${ }^{2}$

(2) Synthesis of epoxy-ynamides 1a-0

Our research group reported the synthesis of epoxy ynamides 1a-f and 11 by a known protocol with slight modification. ${ }^{3}$ In addition, in the current work, the new compounds $\mathbf{1 h}-\mathrm{I}$ and $\mathbf{1 n} \mathbf{n} \mathbf{o}$ have been prepared (Scheme S1). The identities of all these substrates $\mathbf{1 a} \mathbf{a} \mathbf{o}$ were confirmed by IR and NMR spectra. IR spectra are particularly useful in identifying these compounds because the alkyne $C \equiv C$ group shows a strong band at $\sim 2200 \mathrm{~cm}^{-1}$. In the ${ }^{13} \mathrm{C}$ NMR spectra, two peaks at $\delta \sim 80$ and ~ 70 due to the presence of $-C \equiv C$ - group are observed.

Scheme S1: Synthesis of epoxy-ynamides 1a-o

N -((4-bromophenyl)ethynyl)-4-methyl-N-(oxiran-2-ylmethyl)benzenesulfonamide (1h)
Yield: $1.50 \mathrm{~g}\left(84 \%\right.$, gummy liquid, $\mathrm{R}_{\mathrm{f}}=0.60$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3064$, 2999, 2925, 2237, 1596, 1488, 1367, 1171, 940, 819, $711 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.87-7.86 (m, 2H), 7.46-7.43 (m, 2H), 7.39 (m, 2H), 7.25-7.22 (m, 2H), 3.62 (d, J = 5.0 Hz, 2H), 3.24-3.21 (m, 1H), 2.85-2.83 (m, 1H), 2.66-2.65 (m, 1H), 2.48 (s, 3H); ${ }^{13} \mathrm{CNMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta 145.1,134.3,132.8,131.6,129.9,127.8,122.1,121.6,83.4,69.8,53.9,49.3,45.5,21.7$; HRMS (ESI): Calcd for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrNO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right),\left(\mathrm{M}^{+}+\mathrm{H}+2\right) \mathrm{m} / \mathrm{z}$ 406.0112, 408.0092. Found: 406.0111, 408.0090.

N-(oxiran-2-ylmethyl)-1-phenyl-N-(phenylethynyl)methanesulfonamide (1i)

Yield: $1.29 \mathrm{~g}\left(90 \%\right.$, gummy liquid, $\mathrm{R}_{\mathrm{f}}=0.58$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3062$, 2999, 2929, 2237, 1495, 1361, 1258, 1202, 1158, 1135, 1007, 937, 796, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.53(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~m}, 5 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 3 \mathrm{H}), 4.64$ (AB multiplet, 2 H), 3.40-3.30 $(\mathrm{m}, 2 \mathrm{H}), 3.10(\mathrm{~m}, 1 \mathrm{H}), 2.81(\mathrm{~m}, 1 \mathrm{H}), 2.63(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 131.7,131.0$, 129.4, 129.0, 128.4, 128.3, 127.7, 122.3, 81.8, 71.0, 57.5, 54.8, 49.4, 45.6; LC-MS: m/z 328 $[\mathrm{M}+1]^{+}$; Anal.Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 66.03 ; \mathrm{H}, 5.23 ; \mathrm{N}, 4.28$. Found: C, $66.15 ; \mathrm{H}, 5.18 ; \mathrm{N}, 4.32$.

4-chloro-2,5-dimethyl-N-(oxiran-2-ylmethyl)-N-(phenylethynyl)benzenesulfonamide (1j) Yield: $1.21 \mathrm{~g}\left(86 \%\right.$, gummy liquid, $\mathrm{R}_{\mathrm{f}}=0.62$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3059,2997$, 2926, 2858, 2236, 1599, 1543, 1479, 1370, 1169, 940, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.92(\mathrm{~s}, 1 \mathrm{H}), 7.36(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 5 \mathrm{H}), 3.72-3.68(\mathrm{~m}, 1 \mathrm{H}), 3.64-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.28(\mathrm{~m}$, $1 \mathrm{H}), 2.87(\mathrm{t}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{~d}, \mathrm{~J}=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 140.2,137.3,134.5,134.1,133.2,132.8,131.2,128.3,128.1,122.4,81.9,71.6,53.5$, 49.3, 45.7, 20.4, 19.6; HRMS (ESI): Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{ClNO}_{3} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, $\left(\mathrm{M}^{+}+\mathrm{Na}+2\right) \mathrm{m} / \mathrm{z} 398.0594$, 400.0564. Found: 398.0589, 400.0565.

4-methyl-N-(oxiran-2-ylmethyl)-N-((4-pentylphenyl)ethynyl)benzenesulfonamide (1k)
Yield: $1.71 \mathrm{~g}\left(90 \%\right.$, gummy liquid, $\mathrm{R}_{\mathrm{f}}=0.68$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max }$ 2955, 2927, 2857, 2236, 1597, 1366, 1170, 1114, 841, $745 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.89-$ $7.87(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.12(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.64(\mathrm{~m}, 1 \mathrm{H})$ and $3.58-$
$3.54(\mathrm{~m}, 1 \mathrm{H})$ [as AB system], 3.24-3.21(m,1H), 2.81(t, J=4.3 Hz, 1H), 2.66-2.64(m, 1H), 2.59(t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.38-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 144.9,143.3,134.4,131.6,129.8,128.4,127.8,119.6,81.6,70.7$, 54.0, 49.2, 45.6, 35.8, 31.4, 31.0, 22.5, 21.7, 14.0; LC-MS: m/z $398[\mathrm{M}+1]^{+}$; Anal.Calcd. for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 69.49 ; \mathrm{H}, 6.85 ; \mathrm{N}, 3.52$. Found: C, $69.36 ; \mathrm{H}, 6.81 ; \mathrm{N}, 3.58$.

N -(oxiran-2-ylmethyl)-N-(phenylethynyl)thiophene-2-sulfonamide (11)

Yield: $1.136 \mathrm{~g}\left(78 \%\right.$, gummy liquid, $\mathrm{R}_{\mathrm{f}}=0.55$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3099$, 3059, 3000, 2927, 2238, 1401, 1371, 1228, 1171, 1017, 856, $757 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 7.78-7.77(\mathrm{~m}, 1 \mathrm{H}), 7.72-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.43-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.30(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.15$ $(\mathrm{m}, 1 \mathrm{H}), 3.68-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.26-3.23(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd} \rightarrow \mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66-2.65(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 136.4,134.1,134.0,131.5,128.4,128.3,127.8,122.3,81.8,71.6$, 54.4, 49.2, 45.5; LC-MS: m/z $320[\mathrm{M}+1]^{+}$; Anal.Calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{NO}_{3} \mathrm{~S}_{2}$: C, 56.41; H, 4.10; N, 4.39. Found: C, 56.32; H, 4.15; N, 4.31.

4-nitro-N-(oxiran-2-ylmethyl)-N-(phenylethynyl)benzenesulfonamide (1n) Yield: 0.735 g (53\%, gummy liquid, $R_{f}=0.62$ ($9: 1$ hexane/ethyl acetate)); IR (neat) $v_{\max } 3103,2925,2239,1605,1528$, 1401, $1368,1345,1311,1172,1107,1088,1027,938,896,810,736,687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.43(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 8.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.32(\mathrm{~m}, 5 \mathrm{H}), 3.81-3.66(\mathrm{~m}$, $2 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{t}, \mathrm{J}=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.67(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 150.7, 142.7, 131.7, 129.2, 128.6, 128.5, 124.4, 121.7, 80.8, 71.4, 54.4, 49.1, 45.5; HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{Na}\right) \mathrm{m} / \mathrm{z} 381.0521$. Found: 381.0524.

4-methyl-N-(oxiran-2-ylmethyl)-N-((3-(trifluoromethyl)phenyl)ethynyl)benzenesulfonamide

(10) Yield: $1.47 \mathrm{~g}\left(85 \%\right.$, gummy liquid, $\mathrm{R}_{\mathrm{f}}=0.62$ ($9: 1$ hexane/ethyl acetate)); IR (neat) $v_{\max } 3163$, 3002, 2944, 2252, 1441, 1375, 1201, 1171, 1039, 918, $739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.87(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 3 \mathrm{H}), 3.69-3.59(\mathrm{~m}, 2 \mathrm{H})$, 3.26-3.23 (m, 1H), $2.85(\mathrm{t}, \mathrm{J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.67-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , CDCl_{3}): $\delta 145.3,134.3,130.9(\mathrm{q}, \mathrm{J}=65.0 \mathrm{~Hz}), 129.9,128.8,127.9(\mathrm{q} \rightarrow \mathrm{t}, \mathrm{J}=3.7 \mathrm{~Hz}), 127.8,124.4$ ($q, J=7.7 \mathrm{~Hz}$), $123.7\left(q, J=270.8 \mathrm{~Hz}\right.$), 123.6, 83.9, 69.6, 53.9, 49.3, 45.4, 21.7; ${ }^{19}$ F NMR (470 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) -62.9; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right): m / z$ 396.0881. Found: 396.0880.

(3) Synthesis of 1,3 oxazolidines 3-11 from epoxy ynamides

To an oven dried RBF (10 mL), 4-methyl- N-(oxiran-2-ylmethyl)- N (phenylethynyl)benzenesulfonamide (1a; $0.100 \mathrm{~g}, 0.3 \mathrm{mmol}$) in dry DMF (1 mL), CuBr (0.088 g , 0.6 mmol) was added. The mixture was heated with stirring at $80^{\circ} \mathrm{C}$ for $1-2 \mathrm{~h}$. After completion of the reaction as monitored by TLC, ethyl acetate (25 mL) was added and the solution was washed with water ($3 \times 30 \mathrm{~mL}$). The aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic portion was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded 1,3-oxazolidine 3. Compounds 4-11 were prepared following the same procedure and by using the same molar quantities.

(E)-2-(bromo(phenyl)methylene)-5-(bromomethyl)-3-tosyloxazolidine (3)

Yield: $0.131 \mathrm{~g}\left(88 \%\right.$ with $E: Z$ in $96: 4, \mathrm{R}_{\mathrm{f}}=0.78$ ($9: 1$ hexane/ethyl acetate)); IR (neat) $v_{\max } 3054$, 3030, 2959, 2923, 2852, 1649, 1596, 1490, 1443, 1367, 1346, 1165, 1088, 1052, 1018, 753 cm ${ }^{1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-D_{6}$): $\delta 7.91$ (d, J = $8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.54(\mathrm{~m}, 4 \mathrm{H}), 7.38(\mathrm{dd} \rightarrow \mathrm{t}, \mathrm{J} \sim 7.4 \mathrm{~Hz}$, $2 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J} \sim 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.20(\mathrm{~m}, 1 \mathrm{H}), 3.97(\mathrm{br} \mathrm{m}, 1 \mathrm{H}), 3.62-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.53-3.49(\mathrm{~m}$, 1H), 2.46 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}$): $\delta 146.4,145.8,136.6,134.8,130.7,130.2$, 129.8, 129.4, 128.6, 128.4, 128.2, 127.0, 93.6, 77.7, 51.8, 33.2, 21.6; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right),\left(\mathrm{M}^{+}+\mathrm{H}+2\right),\left(\mathrm{M}^{+}+\mathrm{H}+4\right) \mathrm{m} / \mathrm{z}$ 485.9374, 487.9354, 489.9334. Found: 485.9376, 487.9356, 489.9338.

(E)-2-(bromo(3-fluorophenyl)methylene)-5-(bromomethyl)-3-tosyloxazolidine (4)

Yield: $0.121 \mathrm{~g}\left(83 \%\right.$ with $E: Z$ in $78: 22, \mathrm{R}_{\mathrm{f}}=0.76$ (9:1 hexane/ethyl acetate)); Mp: 118-120 ${ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v_{\max } 3068,3033,2958,1648,1608,1582,1487,1434,1348,1265,1165,1088,1054,1019$, 953, $779,680 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, ~ D M S O-\mathrm{D}_{6}$): Major isomer: $\delta 7.90(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.53 (d, J = 8.4 Hz, 2H), 7.45-7.42 (m, 2H), 7.37-7.32 (m, 2H), 4.25-4.20 (m, 1H), 4.03-3.97 (m, 1H), 3.66-3.62 (m, 2H), 3.56-3.53 (m, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13}$ C NMR (100 MHz , DMSO-D): Major isomer: $\delta 162.0(\mathrm{~d}, \mathrm{~J}=241.4 \mathrm{~Hz}), 147.3,145.9,138.8(\mathrm{~d}, \mathrm{~J}=8.3 \mathrm{~Hz}), 134.7,130.7_{4}, 130.6_{8}, 128.2,127.8$, 126.9 (d, J = 3.3 Hz), 125.6 (d, J = 2.8 Hz), 115.9 ($\mathrm{d}, J=23.3 \mathrm{~Hz}$), 115.1 ($\mathrm{d}, \mathrm{J}=20.8 \mathrm{~Hz}$), 91.8, 78.1, 51.8, 33.2, 21.6; ${ }^{19}$ F NMR: -113.30 (major isomer); -114.06 (minor isomer); HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{FNO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right),\left(\mathrm{M}^{+}+\mathrm{H}+2\right),\left(\mathrm{M}^{+}+\mathrm{H}+4\right): m / z 503.9280$, 505.9260, 507.9240. Found:
503.9281, 505.9263, 507.9250; This compound was crystallized from hexane/ethyl acetate (2:1) mixture at $25^{\circ} \mathrm{C}$. X-ray structure was determined for the E-isomer.

(E)-2-(bromo(phenyl)methylene)-5-(bromomethyl)-3-(phenylsulfonyl)oxazolidine (5)

Yield: $0.121 \mathrm{~g}\left(80 \%\right.$ with $E: Z$ in $88: 12, R_{f}=0.66$ ($9: 1$ hexane/ethyl acetate)); IR (neat) $v_{\max } 3061$, 2955, 2926, 2854, 1651, 1446, 1367, 1348, 1168, 1088, 1053, 1023, 754, 726, $689 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D $_{6}$): Major isomer: $\delta 8.04-8.02(\mathrm{~m}, 2 \mathrm{H}), 7.86-7.82(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.72(\mathrm{~m}, 2 \mathrm{H})$, 7.56-7.54 (m, 2H), 7.39-7.36 (m, 2H), 7.31-7.27 (m, 1H), 4.26-4.22 (m, 1H), 4.01-3.96 (m, 1H), 3.64-3.58 (m, 2H), 3.52-3.49 (m, 1H); ${ }^{13}$ C NMR (100 MHz, DMSO-D $_{6}$): Major isomer: δ 146.3, 137.8, 136.6, 135.0, 130.3, 129.4, 128.6, 128.4, 128.2, 127.7, 93.6, 77.8, 51.9, 33.1; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right),\left(\mathrm{M}^{+}+\mathrm{H}+2\right),\left(\mathrm{M}^{+}+\mathrm{H}+4\right): \mathrm{m} / \mathrm{z}$ 471.9217, 473.9197, 475.9177. Found: 471.9218, 473.9195, 475.9178.

(E)-2-(bromo(phenyl)methylene)-5-(bromomethyl)-3-((4-(tert-

butyl)phenyl)sulfonyl)oxazolidine (6)

Yield: 0.117 g (82% with $E: Z$ in $92: 8, \mathrm{R}_{\mathrm{f}}=0.72$ ($9: 1$ hexane/ethyl acetate)); IR (neat) $v_{\max } 2925$, 2870, 2854, 1752, 1596, 1496, 1399, 1331, 1267, 1164, 1113, 1088, 1027, 837, 753, $629 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D): Major isomer: $\delta 7.95$ (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}$), $7.55(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd} \rightarrow \mathrm{t}, \mathrm{J} \sim 7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, \mathrm{J} \sim 7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.17(\mathrm{~m}, 1 \mathrm{H})$, 4.03-3.98 (m, 1H), 3.61-3.55 (m, 2H), 3.49-3.45 (m, 1H), 1.34 (s, 9H); ${ }^{13}$ C NMR (100 MHz, DMSO-
$\left.D_{6}\right):$ Major isomer: δ 158.4, 146.4, 136.6, 134.7, 129.5, 128.6, 128.4, 128.2, 127.1, 93.6, 78.0, 51.8, 35.6, 33.1, 31.2; HRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{24} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right)$, $\left(\mathrm{M}^{+}+\mathrm{H}+2\right)$, $\left(\mathrm{M}^{+}+\mathrm{H}+4\right): m / z$ 527.9843, 529.9823, 531.9803. Found: 527.9842, 529.9824, 531.9801.

(E)-2-(bromo(phenyl)methylene)-5-(bromomethyl)-3-(naphthalen-2-ylsulfonyl)oxazolidine (7)

Yield: 0.112 g (78% with $E: Z$ in $96: 4, \mathrm{R}_{\mathrm{f}}=0.70$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3058$, $2923,2853,1748,1591,1504,1455,1444,1336,1260,1157,1131,1073,1027,900,814,749$, $659 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}^{2}$) : Major isomer: $\delta 8.75(\mathrm{~s}, 1 \mathrm{H}), 8.28-8.24(\mathrm{~m}, 2 \mathrm{H}), 8.12(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 8.02-8.00 (m, 1H), 7.81-7.72 (m, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.37 (dd $\rightarrow \mathrm{t}, \mathrm{J} \sim 7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.28(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.30(\mathrm{~m}, 1 \mathrm{H}), 4.01-3.97(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.59-$ $3.56(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.50(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{\mathrm{D}}$): Major isomer: $\delta 146.4,136.6$, $135.4,134.8,132.1,130.4,130.2,130.1,130.0,129.5,128.6,128.5_{3}, 128.4_{6}, 128.4,122.8,93.6$, 77.8, 52.0, 33.2; HRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right),\left(\mathrm{M}^{+}+\mathrm{Na}+2\right),\left(\mathrm{M}^{+}+\mathrm{Na}+4\right): m / z$ 543.9194, 545.9174, 547.9154. Found: 543.9193, 545.9180, 547.9155.

(E)-2-(bromo(phenyl)methylene)-5-(bromomethyl)-3-((4-bromophenyl)sulfonyl)oxazolidine (8) Yield: 0.113 g (81% with $E: Z$ in $89: 11, \mathrm{R}_{\mathrm{f}}=0.73$ (9:1 hexane/ethyl acetate)); Mp: 138-140 ${ }^{\circ} \mathrm{C}$; IR $(K B r) v_{\max } 3105,3035,2959,2922,2852,1678,1606,1531,1350,1311,1169,856,772,739 \mathrm{~cm}^{-}$ ${ }^{1}$; ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO-D ${ }_{6}$): Major isomer: $\delta 7.97-7.91(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.37(\mathrm{t}, \mathrm{J}$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.23(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 1 \mathrm{H}), 3.66-3.62(\mathrm{~m}, 2 \mathrm{H})$, 3.56-3.53 ($\mathrm{m}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO-D $)_{\text {}}$: Major isomer: δ 146.1, 137.1, 136.5, 133.4, 130.1, 130.0, 129.4, 129.2, 128.6, 128.5, 93.7, 77.9, 51.9, 33.2; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{Br}_{3} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right),\left(\mathrm{M}^{+}+\mathrm{H}+2\right),\left(\mathrm{M}^{+}+\mathrm{H}+4\right),\left(\mathrm{M}^{+}+\mathrm{H}+6\right): m / z 549.8323,551.8303,553.8283$,
555.8263. Found: $549.8321,551.8305,553.8284,555.8258$. This compound was crystallized from hexane/ethyl acetate (2:1) mixture at $25^{\circ} \mathrm{C}$. X-ray structure was determined for this sample.

(E)-2-(bromo(p-tolyl)methylene)-5-(bromomethyl)-3-tosyloxazolidine (9)

Yield: 0.126 g (86% with $E: Z$ in $86: 14, \mathrm{R}_{\mathrm{f}}=0.74$ ($9: 1$ hexane/ethyl acetate)); IR (neat) $v_{\max }$ 2960, 2923, 2855, 1747, 1597, 1513, 1422, 1330, 1260, 1159, 1090, 1018, 811, $752 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-D $)_{6}$: Major isomer: $\delta 7.88(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.21-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 2 \mathrm{H}), 3.50-$ $3.47(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H}), 2.30(1 \mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{D}_{6}$): Major isomer: δ 146.0, 145.7, 137.9, 134.8, 133.8, 130.7, 129.3, 129.1, 128.2, 127.7, 93.9, 77.6, 51.8, 33.2, 21.6, 21.2; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right),\left(\mathrm{M}^{+}+\mathrm{H}+2\right),\left(\mathrm{M}^{+}+\mathrm{H}+4\right): \mathrm{m} / \mathrm{z}$ 499.9530, 501.9500, 503.9480. Found: 499.9523, 501.9504, 503.9484.

(E/Z)-2-(bromo(4-bromophenyl)methylene)-5-(bromomethyl)-3-tosyloxazolidine (10) (two isomers)

Yield: 0.108 g (78% with $E: Z$ in $54: 46, \mathrm{R}_{\mathrm{f}}=0.76$ ($9: 1$ hexane/ethyl acetate)); IR (near) $v_{\max }$ 2956, $2925,2854,1748,1657,1596,1488,1338,1163,1090,1011,814,756,669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500

MHz, DMSO-D ${ }_{6}$): Isomer 1: $\delta 7.89(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 6 \mathrm{H}), 4.23-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.00-$ $3.94(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 1 \mathrm{H}), 2.44(\mathrm{~s}, 3 \mathrm{H})$. Isomer 2: $\delta 7.59-7.57(\mathrm{~m}, 2 \mathrm{H})$, 7.45-7.41 (m, 4H), 7.38-7.36 (m, 2H), 4.34-4.30 (m, 1H); 4.00-3.94 (m, 1H), 3.82-3.78 (m, 1H); 3.64-3.60 (m, 2H), $2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{DMSO}_{6}$): Isomer 1: $\delta 146.9,145.8,135.9$, 134.8, 132.0, 131.4, 130.7, 130.3, 128.2, 121.3, 92.1, 77.9, 51.9, 33.1, 21.6. Isomer 2: 146.5, 145.7, 137.2, 134.3, 131.5, 131.3, 130.6, 127.7, 121.0, 88.9, 76.9, 52.9, 32.8, 21.6; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{Br}_{3} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right),\left(\mathrm{M}^{+}+\mathrm{H}+2\right),\left(\mathrm{M}^{+}+\mathrm{H}+4\right),\left(\mathrm{M}^{+}+\mathrm{H}+6\right): \mathrm{m} / \mathrm{z} 563.8479,565.8459$, 567.8439, 569.8419. Found: 563.8470, 565.8450, 567.8432, 569.8412.

(E)-3-(benzylsulfonyl)-2-(bromo(phenyl)methylene)-5-(bromomethyl)oxazolidine (11)

Yield: 0.126 g (85% with $E: Z$ in $94: 6, \mathrm{R}_{\mathrm{f}}=0.80$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 2929$, 1745, 1495, 1455, 1327, 1212, 1127, 1029, 830, 751, $695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : δ 7.68-7.65 (m, 2H), 7.59-7.57 (m, 2H), 7.48-7.46 (m, 3H), 7.38-7.34 (m, 2H), 7.29-7.25 (m, 1H), 4.77 (AB pattern, 2H), 4.49-4.42 (m, 1H), 3.43-3.33 (m, 3H), 3.27-3.23 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 146.2,135.9,131.4,129.3,128.9,128.1,128.0,127.9,92.1,78.1,60.7,52.5$, 30.0; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{Br}_{2} \mathrm{NO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right),\left(\mathrm{M}^{+}+\mathrm{H}+2\right),\left(\mathrm{M}^{+}+\mathrm{H}+4\right): \mathrm{m} / \mathrm{z}$ 485.9374, 487.9354, 489.9334. Found: 485.9368, 487.9353, 489.9331.

(4) Synthesis of compound 12

To an oven dried 10 mL RBF, 4-methyl- N-(oxiran-2-ylmethyl)- N-phenylbenzenesulfonamide (0.1 g, 0.3 mmol) in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(0.9+0.1 \mathrm{~mL})$, and $\mathrm{CuBr}(0.94 \mathrm{~g}, 0.6 \mathrm{mmol})$ were added. The mixture was heated with stirring at $80^{\circ} \mathrm{C}$ for 2 h . After completion of the reaction as monitored by TLC, ethyl acetate (25 mL) was added and the solution was washed with water ($3 \times 30 \mathrm{~mL}$); the aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic portion was
dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded compound 12.

N-(3-bromo-2-hydroxypropyl)-4-methyl-N-phenylbenzenesulfonamide (12)
Yield: 0.117 g ($93 \%, \mathrm{R}_{\mathrm{f}}=0.46$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3495,3063,2924,1595$, 1490, 1344, 1160, 1088, 1023, $814 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.46(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, 7.34-7.31 (m, 3H), 7.26 (d, J = 8.0 Hz, 2H), 7.09-7.07 (m, 2H), 3.92-3.87 (m, 1H), 3.76-3.65 (m, $2 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.45(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.0,139.8,134.5,129.6,129.3,128.7,128.4,127.8,69.0,55.0,36.4,21.6 ;$ HRMS (ESI): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{BrNO}_{3} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right),\left(\mathrm{M}^{+}+\mathrm{Na}+2\right)$: $\mathrm{m} / \mathrm{z} 406.0089,408.0069$. Found: 406.0089, 408.0070.

(5) Synthesis of chloromethyl-1,4-oxazines 13-20 from epoxy ynamides

To an oven dried 10 mL RBF, 4-methyl- N-(oxiran-2-ylmethyl)- N (phenylethynyl)benzenesulfonamide (1a; $0.1 \mathrm{~g}, 0.3 \mathrm{mmol}$) in $\mathrm{DMF} / \mathrm{H}_{2} \mathrm{O}(0.9+0.1 \mathrm{~mL})$, anhy. LiCl $(0.024 \mathrm{~g}, 0.6 \mathrm{mmol})$ was added. The mixture was heated with stirring at $80^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction as monitored by TLC, ethyl acetate (25 mL) was added and the solution was washed with water ($3 \times 30 \mathrm{~mL}$); the aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic portion was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded compound 1,4-oxazine $\mathbf{1 3}$. Compounds $\mathbf{1 3}$ ' and $\mathbf{1 4 - 2 0}$ were prepared following the same procedure and by using the same molar quantities.

2-(chloromethyl)-6-phenyl-4-tosyl-3,4-dihydro-2H-1,4-oxazine (13)

Yield: $0.086 \mathrm{~g}\left(78 \%, \mathrm{R}_{\mathrm{f}}=0.80\right.$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3112,3059,3028,2960$, 2924, 2872, 1651, 1597, 1494, 1353, 1306, 1164, 1005, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.72(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 4.03-4.00(\mathrm{~m}, 1 \mathrm{H})$, 3.70-3.64 (m, 2H), 3.53-3.48(m, 1H), 3.26-3.21 (m, 1H), $2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): ס 1.44.4, 139.8, 133.1, 130.1, 128.4, 128.2, 127.4, 123.8, 101.8, 71.9, 45.1, 42.4, 21.6; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClNO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right),\left(\mathrm{M}^{+}+\mathrm{H}+2\right): m / z$ 364.0774, 366.0744. Found: 364.0772, 366.0747.

2-(chloromethyl)-5-deutero-6-phenyl-4-tosyl-3,4-dihydro-2H-1,4-oxazine (13')
Yield: $0.061 \mathrm{~g}\left(55 \%, \mathrm{R}_{\mathrm{f}}=0.79\right.$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 2957,2925,2855,1725$, 1637, 1598, 1494, 1356, 1167, 1089, $760 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.72(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.50-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.30(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~s}, 0.1 \mathrm{H}), 4.02-4.00(\mathrm{~m}, 1 \mathrm{H})$, 3.70-3.64 ($\mathrm{m}, 2 \mathrm{H}$), 3.52-3.49 ($\mathrm{m}, 1 \mathrm{H}$), 3.26-3.22 ($\mathrm{m}, 1 \mathrm{H}$), $2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.3,139.7,133.7,133.2,130.0,128.4,128.2,127.4,123.8,101.8,101.4$ ($d, J=28.4 \mathrm{~Hz}$), 72.0, 45.0, 42.4, 21.6; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{DCINO}_{3} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right),\left(\mathrm{M}^{+}+\mathrm{Na}+2\right): \mathrm{m} / \mathrm{z}$ 387.0657, 389.0627. Found: 387.0654, 389.0628.

2-(chloromethyl)-6-phenyl-4-(phenylsulfonyl)-3,4-dihydro-2H-1,4-oxazine (14)

Yield: $0.082 \mathrm{~g}\left(74 \%, R_{f}=0.78\right.$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3027,2960,2925,2873$, 1652, 1446, 1354, 1309, 1166, 1088, 1007, 749, $688 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.85$ (d, J $=7.6 \mathrm{~Hz}, 2 \mathrm{H}$), $7.65(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{dd} \rightarrow \mathrm{t}, \mathrm{J} \sim 7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.39-$ $7.30(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 4.03(\mathrm{~d}, \mathrm{~J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.63(\mathrm{~m}, 2 \mathrm{H}), 3.52-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.29-$ $3.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): δ 139.9, 136.5, 133.5, 133.1, 129.5, 128.5, 128.3, 127.3, 123.8, 101.6, 72.0, 45.1, 42.4; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClNO}_{3} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right)$, $\left(\mathrm{M}^{+}+\mathrm{H}+2\right)$: m / z 350.0617, 352.0587 . Found: 350.0616, 352.0584 .

2-(chloromethyl)-4-(naphthalen-2-ylsulfonyl)-6-phenyl-3,4-dihydro-2H-1,4-oxazine (15)

Yield: $0.076 \mathrm{~g}\left(69 \%, \mathrm{R}_{\mathrm{f}}=0.74\right.$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3027,2959,2926,1653$, $1498,1448,1350,1308,1164,1133,1074,1007,858,751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : δ $8.43(\mathrm{~s}, 1 \mathrm{H}), 8.02-7.99(\mathrm{~m}, 2 \mathrm{H}), 7.94(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 1 \mathrm{H}), 7.71-7.63(\mathrm{~m}, 2 \mathrm{H})$, 7.50-7.48 (m, 2H), 7.37-7.30 (m, 3H), 6.84 (s, 1H), 4.12-4.09 (m, 1H), 3.68-3.62 (m, 2H), 3.50$3.46(\mathrm{~m}, 1 \mathrm{H}), 3.33-3.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 139.9,135.1,133.6,133.1,132.2$, 129.8, 129.4, 129.3, 128.9, 128.5, 128.3, 128.0, 127.9, 123.9, 122.3, 101.7, 72.0, 45.1, 42.4; HRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{ClNO}_{3} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right),\left(\mathrm{M}^{+}+\mathrm{Na}+2\right)$: $\mathrm{m} / \mathrm{z} 422.0594,424.0564$. Found: 422.0595, 424.0559.

4-((4-chloro-2,5-dimethylphenyl)sulfonyl)-2-(chloromethyl)-6-phenyl-3,4-dihydro-2H-1,4oxazine (16)

Yield: 0.068 g (65\%, $\mathrm{R}_{\mathrm{f}}=0.79$ (9:1 hexane/ethyl acetate)); IR (near) $\boldsymbol{v}_{\max }$ 2961, 2926, 2870, 2857, 1724, 1658, 1599, 1448, 1365, 1341, 1165, 1087, 1016, $758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $7.84(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.30(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 3.95-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.73(\mathrm{~m}$, $1 \mathrm{H}), 3.60-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.25(\mathrm{~m}, 1 \mathrm{H}), 2.62$ and $2.42(2 \mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $139.8,139.1,136.7,134.8,133.8,133.4,133.1,132.4,128.5,128.2,123.8,101.6,72.4,44.6$, 42.3, 20.5, 19.6; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{19} \mathrm{Cl}_{2} \mathrm{NO}_{3} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, $\left(\mathrm{M}^{+}+\mathrm{Na}+2\right)$: $\mathrm{m} / \mathrm{z} 434.0361$, 436.0331. Found: 434.0363, 436.0329.

6-(4-bromophenyl)-2-(chloromethyl)-4-tosyl-3,4-dihydro-2H-1,4-oxazine (17)

Yield: 0.067 g ($62 \%, \mathrm{R}_{\mathrm{f}}=0.80$ (9:1 hexane/ethyl acetate)); IR (neat) $\boldsymbol{v}_{\max } 3110,3028,2960,2924$, 1651, 1596, 1490, 1355, 1308, 1166, 1088, 1006, $752 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.72-$ $7.70(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.34(\mathrm{~m}, 4 \mathrm{H}), 6.75(\mathrm{~s}, 1 \mathrm{H}), 4.01-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.64(\mathrm{~m}$, $2 \mathrm{H}), 3.52-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.25-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 143.5$, 137.7, 132.7, 131.1, 130.5, 129.1, 126.3, 124.2, 121.0, 101.2, 71.0, 44.0, 41.3, 20.6; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{17} \mathrm{BrClNO}_{3} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right),\left(\mathrm{M}^{+}+\mathrm{Na}+2\right),\left(\mathrm{M}^{+}+\mathrm{Na}+4\right): \mathrm{m} / \mathrm{z}$ 463.9699, 465.9679, 467.9659. Found: 463.9702, 465.9681, 467.9657.

2-(chloromethyl)-6-(4-pentylphenyl)-4-tosyl-3,4-dihydro-2H-1,4-oxazine (18)

Yield: $0.081 \mathrm{~g}\left(74 \%, R_{f}=0.81\right.$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3112,3029,2956,2927$, $2856,1658,1597,1356,1310,1261,1218,1167,1124,1055,1009,813,770 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (500
$\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.16$ (d, $J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.01-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.20(\mathrm{~m}$, $1 \mathrm{H}), 2.61(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.30(\mathrm{~m}, 4 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}$, 3 H); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.3,143.3,140.0,133.7,130.6,130.0,128.5,127.4,123.8$, 101.1, 71.9, 45.1, 42.4, 35.6, 31.4, 31.0, 22.5, 21.6, 14.0; HRMS (ESI): Calcd. for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{ClNO}_{3} \mathrm{SNa}$ $\left(\mathrm{M}^{+}+\mathrm{Na}\right),\left(\mathrm{M}^{+}+\mathrm{Na}+2\right): m / z 456.1376,458.1346$. Found: 456.1375, 458.1350.

2-(chloromethyl)-6-(p-tolyl)-4-tosyl-3,4-dihydro-2H-1,4-oxazine (19)

Yield: $0.085 \mathrm{~g}\left(77 \%, \mathrm{R}_{\mathrm{f}}=0.78\right.$ (9:1 hexane/ethyl acetate)); Mp: $124-126{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v_{\max } 3111$, 3031, 2957, 2922, 2871, 1655, 1597, 1514, 1354, 1308, 1165, 1089, 1007, 818, $758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.71(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H})$, $7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 4.02-4.00(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.48(\mathrm{~m}, 1 \mathrm{H})$, 3.25-3.20 (m, 1H), 2.45 and $2.40(2 \mathrm{~s}, 6 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.3,140.0,138.2$, 133.7, 130.4, 130.0, 129.1, 127.4, 123.8, 101.1, 72.0, 45.1, 42.4, 21.6, 21.2; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{3} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right)$, $\left(\mathrm{M}^{+}+\mathrm{Na}+2\right)$: $\mathrm{m} / \mathrm{z} 400.0750,402.0720$. Found: 400.0743, 402.0714. This compound was crystallized from hexane/ethyl acetate (2:1) mixture at $25{ }^{\circ} \mathrm{C}$. X-ray structure was determined for this sample.

2-(chloromethyl)-6-phenyl-4-(thiophen-2-ylsulfonyl)-3,4-dihydro-2H-1,4-oxazine (20)

Yield: 0.076 g ($69 \%, \mathrm{R}_{\mathrm{f}}=0.70$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3110,3028,2958,2926$, 1652, 1448, 1403, 1360, 1310, 1226, 1165, 1092, 1014, 757, $724 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 7.66-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.64-7.63(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.18-7.16$
($\mathrm{m}, 1 \mathrm{H}$), $6.71(\mathrm{~s}, 1 \mathrm{H}), 4.08-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.74-3.67(\mathrm{~m}, 2 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 1 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (125 MHz, CDCl_{3}): $\delta 140.7,136.6,133.0,132.8_{4}, 132.8_{0}, 128.5,128.4,127.9,123.9$, 101.1, 72.0, 45.2, 42.4; HRMS (ESI): Calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNO}_{3} \mathrm{~S}_{2}\left(\mathrm{M}^{+}+\mathrm{H}\right),\left(\mathrm{M}^{+}+\mathrm{H}+2\right): \mathrm{m} / \mathrm{z} 356.0182$, 358.0152. Found: 356.0187, 358.0160.

(6) Synthesis of hydroxymethyl-1,4-oxazines 21-26 from epoxy ynamides

To an oven dried 10 mL RBF, epoxy ynamide (1a; $0.1 \mathrm{~g}, 0.3 \mathrm{mmol}$) in NMP/ $\mathrm{H}_{2} \mathrm{O}(0.9+0.1 \mathrm{~mL}$), and $\mathrm{CuF}_{2}(0.62 \mathrm{~g}, 0.6 \mathrm{mmol})$ were added. The mixture was heated with stirring at $80^{\circ} \mathrm{C}$ for 4 h . After completion of the reaction as monitored by TLC, ethyl acetate (25 mL) was added and the solution was washed with water ($3 \times 30 \mathrm{~mL}$); the aqueous layer was extracted with ethyl acetate ($3 \times 20 \mathrm{~mL}$). The combined organic portion was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded compound 1,4-oxazine 21. Compounds 22-26 were prepared by following the same procedure and by using the same molar quantities.

(6-phenyl-4-tosyl-3,4-dihydro-2H-1,4-oxazin-2-yl)methanol (21)
Yield: $0.082 \mathrm{~g}\left(78 \%, \mathrm{R}_{\mathrm{f}}=0.61\right.$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3531,3064,2987,2881$, 1651, 1448, 1349, 1263, 1214, 1162, 1061, 1005, $751 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 3.90-3.87(\mathrm{~m}, 1 \mathrm{H}), 3.83-$ $3.80(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.72(\mathrm{~m}, 1 \mathrm{H}), 3.61-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.24-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.93(\mathrm{br}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.2,139.9,133.8,133.5,130.0,128.4,128.1,127.3,123.8$, 101.8, 72.9, 62.5, 44.3, 21.6; HRMS (ESI): Calcd. for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: m / z 346.1111. Found: 346.1117.

(4-((4-(tert-butyl)phenyl)sulfonyl)-6-phenyl-3,4-dihydro-2H-1,4-oxazin-2-yl)methanol (22)
Yield: $0.078 \mathrm{~g}\left(75 \%, \mathrm{R}_{\mathrm{f}}=0.62\right.$ (9:1 hexane/ethyl acetate)); $\mathrm{Mp}: 106-110^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v_{\max } 3437$, 2960, 2927, 2869, 1726, 1597, 1452, 1262, 1165, 1085, 1005, 843, $798 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right): ~ \delta ~ 7.77-7.74(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 1 \mathrm{H})$, 3.85-3.81 (m, 1H), 3.75-3.72 (m, 1H), 3.71-3.67 (m, 1H), 3.26-3.20 (m, 1H), 2.24 (br s, 1H), 1.35 (s, 9H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 157.2,139.7,133.7,133.5,128.4,128.1,127.2,126.4$, 123.7, 101.8, 73.1, 62.4, 44.3, 35.3, 31.1; HRMS (ESI): Calcd. for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right): \mathrm{m} / \mathrm{z}$ 410.1402. Found: 410.1407. This compound was crystallized from hexane/ethyl acetate (2:1) mixture at $25^{\circ} \mathrm{C}$. X-ray structure was determined for this sample.

(4-((4-bromophenyl)sulfonyl)-6-phenyl-3,4-dihydro-2H-1,4-oxazin-2-yl)methanol (23)
Yield: 0.073 g ($71 \%, \mathrm{R}_{\mathrm{f}}=0.63$ (9:1 hexane/ethyl acetate)); IR (neat) $\boldsymbol{v}_{\max } 3532,3093,2927,1651$, 1573, 1389, 1355, 1310, 1167, 1087, 1067, 1006, $758 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-$ $7.65(\mathrm{~m} \rightarrow \mathrm{~s}, 4 \mathrm{H}), 7.50-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.30(\mathrm{~m}, 3 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.84-3.74$ ($\mathrm{m}, 2 \mathrm{H}$), 3.65-3.60(m,1H), 3.25-3.19(m,1H), $2.27(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.6$, 135.7, 133.2, 132.7, 128.8, 128.5, 128.3, 123.9, 101.2, 73.0, 62.3, 44.4; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BrNO}_{4} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right),\left(\mathrm{M}^{+}+\mathrm{Na}+2\right): m / z 431.9881,433.9851$. Found: 431.9885, 433.9852.

Yield: $0.071 \mathrm{~g}\left(68 \%, \mathrm{R}_{\mathrm{f}}=0.62\right.$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3437,3064,2923,2857$, 1697, 1452, 1365, 1320, 1224, 1158, 1026, 980, $702,605 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.83$ $(\mathrm{s}, 1 \mathrm{H}), 7.49(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.36-7.29(\mathrm{~m}, 4 \mathrm{H}), 6.74(\mathrm{~s}, 1 \mathrm{H}), 3.89-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.82-3.78(\mathrm{~m}$, $2 \mathrm{H}), 3.28-3.24(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.06(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 139.6, 139.1, 136.7, 134.6, 134.0, 133.5, 133.3, 132.3, 128.8, 128.4, 128.1, 123.7, 101.6, 73.4, 62.3, 43.8, 20.3, 19.6; $\mathrm{HRMS}(E S I):$ Calcd. for $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{4} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right),\left(\mathrm{M}^{+}+\mathrm{Na}+2\right): \mathrm{m} / \mathrm{z}$ 416.0700, 418.0670. Found: 416.0700, 418.0671.

(4-((4-chlorophenyl)sulfonyl)-6-phenyl-3,4-dihydro-2H-1,4-oxazin-2-yl)methanol (25)
Yield: $0.079 \mathrm{~g}\left(76 \%, \mathrm{R}_{\mathrm{f}}=0.63\right.$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3436,3089,2927,1696$, 1650, 1583, 1475, 1354, 1307, 1165, 1089, 1005, $828 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78-$ $7.74(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 6.70(\mathrm{~s}, 1 \mathrm{H}), 3.92-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.85-3.74(\mathrm{~m}$, $2 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.26-3.20(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{br}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 140.5$, 139.9, 135.2, 133.3, 129.7, 128.7, 128.4, 128.3, 123.9, 101.2, 73.0, 62.4, 44.4; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{ClNO}_{4} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right),\left(\mathrm{M}^{+}+\mathrm{Na}+2\right)$: $m / z 388.0387$, 390.0357. Found: 388.0385, 390.0356.

(6-(4-pentylphenyl)-4-tosyl-3,4-dihydro-2H-1,4-oxazin-2-yl)methanol (26)

Yield: 0.076 g (74\%, $\mathrm{R}_{\mathrm{f}}=0.58$ (9:1 hexane/ethyl acetate)); IR (neat) $\boldsymbol{v}_{\max } 3540,2956,2927,2861$, 1701, 1597, 1456, 1353, 1164, 1089, 1010, 734, $663 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70$ (d, J $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, 3.89-3.86 (m, 1H), 3.82-3.79 (m, 1H), 3.74-3.71 (m, 1H), 3.58-3.54 (m, 1H), 3.23-3.18 (m, 1H), $2.61(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 5 \mathrm{H}), 0.90(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.1,143.2,140.2,133.8,130.9,129.9,128.5,127.3,123.6$, 101.1, 72.8, 62.5, 44.3, 35.6, 31.4, 31.0, 22.5, 21.6, 14.0; HRMS (ESI): Calcd. for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{4} \mathrm{SNa}$ $\left(\mathrm{M}^{+}+\mathrm{Na}\right): m / z 438.1715$. Found: 438.1714.

(7) Synthesis of 3,5-dimethylphenoxy-1,4-oxazine 27

To an oven dried 5 mL RBF, epoxy-ynamide (1a; $0.100 \mathrm{~g}, 0.3 \mathrm{mmol}$), 3,5-dimethylphenol (0.055 g, 0.45 mmol$), \mathrm{CuF}_{2}(0.015 \mathrm{~g}, 0.015 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.021 \mathrm{~g}, 0.015 \mathrm{mmol})$ were added. The contents were mixed thoroughly and the mixture was heated in a microwave oven [MW; 120 $\left.{ }^{\circ} \mathrm{C} / 10 \mathrm{~min}\right]$. After completion of the reaction as monitored by TLC, DCM (15 mL) was added, the mixture filtered and the filtrate concentrated under reduced pressure. The crude product was purified by using flash column chromatography (neutral alumina; slow column led to decomposition of the product) to obtain pure 3,5-dimethylphenoxy-1,4-oxazine 27 by using hexane-ethyl acetate (9:1) mixture as the eluent. [Note: In silica gel compound decomposed very fast]

2-((3,5-dimethylphenoxy)methyl)-6-phenyl-4-tosyl-3,4-dihydro-2H-1,4-oxazine (27)
Yield: 0.121 g (89%, gummy liquid, $\mathrm{R}_{\mathrm{f}}=0.89$ (hexane, neutral alumina); IR (neat) $v_{\max } 3281$, 2922, 1663, 1594, 1495, 1329, 1295, 1159, $911 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.81$ (d, J= $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.15-7.11(\mathrm{~m}, 1 \mathrm{H}), 6.66(\mathrm{~s}, 1 \mathrm{H}), 6.41(\mathrm{~s}$, $2 \mathrm{H})$, $5.97(\mathrm{~s}, 1 \mathrm{H}), 4.59-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.09-4.04(\mathrm{~m}, 1 \mathrm{H}), 3.98-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.54-3.50(\mathrm{~m}, 1 \mathrm{H})$,
$2.40(\mathrm{~s}, 3 \mathrm{H}), 2.29(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.9,146.8,144.9,139.3,135.4,133.6$, 129.9, 128.3, 127.6, 127.5, 125.1, 123.3, 112.3, 88.6, 74.9, 66.9, 48.7, 21.6, 21.4; HRMS (ESI): Calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right) \mathrm{m} / \mathrm{z} 450.1739$. Found: 450.1739.

(8) Synthesis of 1,2-dioxo-amides 28-31 and 33

To an oven dried 10 mL RBF, epoxy ynamide ($1 \mathrm{f} ; 0.1 \mathrm{~g}, 0.25 \mathrm{mmol}$) in dry DMC (1 mL), AgF_{2} ($0.185 \mathrm{~g}, 1.27 \mathrm{mmol}$) was added. The mixture was kept for stirring at $30^{\circ} \mathrm{C}$ for 12 h . After completion of the reaction as monitored by TLC, the mixture was passed through celite and concentrated in vacuum. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded compound 1,2-dioxoenamide 28. Compounds 29-31 and 33 were prepared following the same procedure and by using the same molar quantities.

N-((4-bromophenyl)sulfonyl)-N-(oxiran-2-ylmethyl)-2-oxo-2-phenylacetamide (28)

Yield: 0.076 g ($71 \%, \mathrm{R}_{\mathrm{f}}=0.73$ (9:1 hexane/ethyl acetate)); IR (neat) $\boldsymbol{v}_{\max } 3092,3068,2925,1682$, $1573,1450,1371,1210,1171,1069,1008,945,823,741,612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 7.98-7.93 (m, 4H), 7.79-7.77 (m, 2H), 7.71-7.68 (m, 1H), 7.59-7.56 (m, 2H), 4.03-3.92 (m, 2H), 3.24-3.21 (m, 1H), $2.83(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.5$, 167.1, 136.2, 134.8, 132.7, 132.5, 130.3, 130.1, 129.8, 128.9, 49.1, 47.0, 46.4; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{BrNO}_{5} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right): \mathrm{m} / \mathrm{z} 445.9674,447.9654$. Found: 445.9674, 447.9656.

N-((4-chlorophenyl)sulfonyl)-N-(oxiran-2-ylmethyl)-2-oxo-2-phenylacetamide (29)
Yield: $0.081 \mathrm{~g}\left(73 \%, \mathrm{R}_{\mathrm{f}}=0.72\right.$ (9:1 hexane/ethyl acetate)); Mp 104-108 ${ }^{\circ} \mathrm{C}$ (white solid); IR $(K B r) v_{\max } 3089,3068,2924,1682,1583,1370,1209,1169,1086,1011,924,757,713,688 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.03-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.98-7.96(\mathrm{~m}, 2 \mathrm{H}), 7.71-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.56$
$(\mathrm{m}, 4 \mathrm{H}), 4.03-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.24-3.21(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{t}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.70-2.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.6,167.2,141.6,135.6,134.8,132.5,130.1,129.8,129.7,129.0,49.1$, 47.0, 46.4; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{ClNO}_{5} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right),\left(\mathrm{M}^{+}+\mathrm{Na}+2\right): \mathrm{m} / \mathrm{z}$ 402.0179, 404.0149. Found: 402.0179, 404.0149.

N-((4-nitrophenyl)sulfonyl)-N-(oxiran-2-ylmethyl)-2-oxo-2-phenylacetamide (30)
Yield: 0.082 g (74%; purity $\sim 97 \%, \mathrm{R}_{\mathrm{f}}=0.61$ (9:1 hexane/ethyl acetate)); Mp $168-170{ }^{\circ} \mathrm{C}$ (white solid); IR (KBr) $v_{\max } 3108,1684,1597,1533,1404,1376,1350,1258,1210,1173,1086,1045$, $924,855,739,617 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.48-8.46(\mathrm{~m}, 2 \mathrm{H}), 8.31-8.29(\mathrm{~m}, 2 \mathrm{H}), 7.99-$ $7.97(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.57(\mathrm{~m}, 2 \mathrm{H}), 4.26-4.23(\mathrm{~m}, 1 \mathrm{H}), 3.96-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.23-$ $3.20(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68-2.67(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 187.4$, 166.9, 151.1, 142.9, 135.0, 132.2, 130.2, 129.9, 129.0, 124.4, 49.1, 47.4, 46.0; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right)$: m / z 391.0600. Found: 391.0600. This compound was crystallized from hexane/ethyl acetate (2:1) mixture at $25^{\circ} \mathrm{C}$. X-ray structure was determined for this sample.

N-(oxiran-2-ylmethyl)-2-oxo-N-tosyl-2-(3-(trifluoromethyl)phenyl)acetamide (31)
Yield: $0.091 \mathrm{~g}\left(85 \%, R_{f}=0.70\right.$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 2928,1740,1699,1597$, $1363,1331,1165,1125,1092,1075,814 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.27$ (br, 1H), 8.13 ($d, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), $7.92(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 3 \mathrm{H}), 7.72(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.00-$ $3.91(\mathrm{~m}, 2 \mathrm{H}), 3.23-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{t}, \mathrm{J}=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.71-2.70(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 186.1,166.8,146.4,133.8,133.4,133.1,131.7(q, J=66.5 \mathrm{~Hz}), 130.8(q, J=$
$7.0 \mathrm{~Hz}), 130.2,129.6,128.6,126.1$ (q, J = 8.0 Hz), 123.5 (q, J = 270.8 Hz), 49.0, 46.7, 46.5, 21.8; ${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): -62.9; HRMS (ESI): Calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{NO}_{5} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right): \mathrm{m} / \mathrm{z} 428.0779$. Found: 428.0779.

N-methyl-2-oxo-2-phenyl-N-tosylacetamide (33)

Yield: $0.086 \mathrm{~g}\left(78 \%, \mathrm{R}_{\mathrm{f}}=0.72\right.$ (9:1 hexane/ethyl acetate)); Mp $116-120{ }^{\circ} \mathrm{C}$ (white solid); IR (neat) $v_{\max } 2923,2853,1739,1677,1595,1368,1230,1202,1087,945,662 \mathrm{~cm}^{-1}$; ${ }^{1}$ H NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.98-7.90(\mathrm{~m}, 4 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}$, $2 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 188.1,167.3,145.9,134.5,133.5$, 132.8, 130.1, 129.7, 128.9, 128.4, 30.7, 21.7; HRMS (ESI): Calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{Na}\right): \mathrm{m} / \mathrm{z}$ 340.0620. Found: 340.0622. This compound has been prepared previosly by a different method (S. W. Kim, T. -W. Um and S. Shin, J. Org. Chem. 2018, 83, 4703.)

(9) Synthesis of ynamide 34 and $\alpha, 6$-dibromo enamide 35

Synthesis of ynamide 34: To a mixture of N-(2-bromoethyl)-4-methylbenzenesulfonamide (1.00 $\mathrm{g}, 3.62 \mathrm{mmol}), \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.180 \mathrm{~g}, 0.72 \mathrm{mmol}), 1,10-\mathrm{phenanthroline} \mathrm{monohydrate}(0.287 \mathrm{~g}$, $1.44 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(1.25 \mathrm{~g}, 9.0 \mathrm{mmol})$ in dry THF (20 mL), (bromoethynyl)benzene (0.786 g , $4.34 \mathrm{mmol})$ was added. The vessel was stoppered under nitrogen atmosphere and heated overnight on an oil-bath maintained at $70^{\circ} \mathrm{C}$. The mixture was filtered and concentrated in vacuum. The crude product was purified by using silica gel column chromatography to obtain the pure ynamide 34 by using hexane-ethyl acetate (8:2) as the eluent.

N-(2-bromoethyl)-4-methyl-N-(phenylethynyl)benzenesulfonamide (34)

Yield: $1.03 \mathrm{~g}\left(76 \%, \mathrm{R}_{\mathrm{f}}=0.67\right.$ (9:1 hexane/ethyl acetate)); IR (neat) $v_{\max } 3061,2925,2855,2235$, 1730, 1704, 1597, 1493, 1367, 1289, 1168, 1119, 1089, 1020, 958, 813, $755 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.89(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 7 \mathrm{H}), 3.83(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{t}, \mathrm{J}=7.4$ $\mathrm{Hz}, 2 \mathrm{H}), 2.49(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta \delta$ 145.2, 134.3, 131.6, 129.9, 128.4, 128.2, 127.8, 122.3, 81.4, 71.2, 52.7, 27.5, 21.7; HRMS (ESI): Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{BrNO}_{2} \mathrm{~S}\left(\mathrm{M}^{+}+\mathrm{H}\right),\left(\mathrm{M}^{+}+\mathrm{H}+2\right)$ m / z 378.0163, 380.0143. Found 378.0164, 380.0145.

Synthesis of $\alpha, 6$-dibromo enamide 35: To an oven dried 10 mL RBF (round bottom flask) N-(2-bromoethyl)-4-methyl-N-(phenylethynyl)benzenesulfonamide 34 (0.3 mmol) in dry acetonitrile $(1 \mathrm{~mL}), \mathrm{CuBr}(0.6 \mathrm{mmol})$ was added at $25^{\circ} \mathrm{C}$. After completion of the reaction as monitored by TLC, the contents were passed through a pad of celite, washed with ethyl acetate ($2 \times 20 \mathrm{~mL}$) and concentrated in vacuo. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded compound 35.

(E)-N-(2-bromoethyl)-N-(1,2-dibromo-2-phenylvinyl)-4-methylbenzenesulfonamide (35)

Yield: 0.131 g (92\%; E/Z: 7:3; pure E-isomer was isolated), white solid, $\mathrm{R}_{\mathrm{f}}=0.76$ (9:1 hexane/ethyl acetate)); Mp: 132-134 ${ }^{\circ} \mathrm{C} \operatorname{IR}(\mathrm{KBr}) v_{\max } 2954,2923,2853,1597,1492,1445,1361$, $1165,1087,967,899,813,695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.90(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-$ $7.37(\mathrm{~m}, 7 \mathrm{H}), 3.92-3.86(\mathrm{~m}, 1 \mathrm{H}), 3.75-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.60-3.47(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{~s}, 3 \mathrm{H}) . ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 145.1,138.8,134.6,129.8,129.6,128.9,128.8,128.5,126.9,116.2,50.4$, 27.2, 21.7; HRMS (ESI): Calcd. for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{3} \mathrm{NO}_{2} \mathrm{SNa}\left(\mathrm{M}^{+}+\mathrm{Na}\right),\left(\mathrm{M}^{+}+\mathrm{Na}+2\right),\left(\mathrm{M}^{+}+\mathrm{Na}+4\right)$, $\left(\mathrm{M}^{+}+\mathrm{Na}+6\right): \mathrm{m} / \mathrm{z} 557.8350,559.8330$, 561.8310, 563.8290. Found: 557.8352, 559.8336, 561.8316, 563.8293. This compound was crystallized from DCM/ethyl acetate (2:1) mixture at $25^{\circ} \mathrm{C}$. X-ray structure was determined for this sample.
(10) X-ray data and crystal structures of 4, 8, 19, 22, 30, and 35

Compound 4: $\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{Br}_{2} \mathrm{FNO}_{3} \mathrm{~S}, \mathrm{M}=505.20$, Triclinic, Space group $P-1, a=6.9921(3), b=$ 11.2113(6), $c=12.4434(7) \AA, V=959.19(9) \AA^{3}, \alpha=96.443(2), B=95.376(2), v=95.626(2), Z=2$, $\mu=4.361 \mathrm{~mm}^{-1}$, data/restraints/parameters: 3377/0/237, R indices $(\mathrm{I}>2 \sigma(\mathrm{I})$ R1 $=0.0479, w R 2$ (all data) $=0.1485$. CCDC No. 1885280.

Compound 8: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{Br}_{3} \mathrm{NO}_{3} \mathrm{~S}, \mathrm{M}=552.08$, Triclinic, Space group $P-1, a=6.9458(2), b=$ $10.9848(2), c=12.6203(4) \AA, V=946.11(4) \AA^{3}, \alpha=95.166(2), b=94.677(2), v=97.680(2), Z=2$, $\mu=6.522 \mathrm{~mm}^{-1}$, data/restraints/parameters: 3962/0/226, R indices $(\mathrm{I}>2 \sigma(\mathrm{I})) \mathrm{R} 1=0.0509, w R 2$ (all data) $=0.1223$. CCDC No. 1885281.

Compound 19: $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{3} \mathrm{~S}, \mathrm{M}=377.87$, Monoclinic, Space group $\mathrm{C} 2 / \mathrm{c}, a=18.258(2), b=$ 13.0810(13), $c=15.4466(14) \AA$, $V=3687.2(6) \AA^{3}, \alpha=90, b=91.845(3), \gamma=90, Z=8, \mu=0.338$ mm^{-1}, data/restraints/parameters: 3227/0/229, R indices $(\mathrm{I}>2 \sigma(\mathrm{I})) \mathrm{R} 1=0.0488$, wR2 (all data) $=$ 0.1434. CCDC No. 1885282.

Compound 22: $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NO}_{4} \mathrm{~S}, \mathrm{M}=387.48$, Triclinic, Space group $P-1, a=10.994(13), b=$ $12.052(15), c=16.90(2) \AA, V=2130(4) \AA^{3}, \alpha=95.131(11), B=99.760(11), \gamma=103.107(11), Z=4$, $\mu=0.176 \mathrm{~mm}^{-1}$, data/restraints/parameters: 5863/0/498, R indices $(I>2 \sigma(\mathrm{I})) \mathrm{R} 1=0.0954, w R 2$ (all data) $=0.3278$. CCDC No. 1885283.

Compound 30: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}, \mathrm{M}=390.36$, Monoclinic, Space group P2(1)/n, $a=7.4466(5), b=$ 24.7338(15), $c=9.6421(5) \AA$ A $, V=1718.87(18) \AA^{3}, \alpha=90, b=104.560(2), v=90, Z=4, \mu=0.233$ mm^{-1}, data/restraints/parameters: 3032/0/247, R indices $(\mathrm{I}>2 \sigma(\mathrm{I})) \mathrm{R} 1=0.0435, w R 2$ (all data) $=$ 0.1128. CCDC No. 1885284.

Compound 35: $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{Br}_{3} \mathrm{NO}_{2} \mathrm{~S}, \mathrm{M}=538.10$, Monoclinic, Space group P2(1)/c, $a=8.2985(3), b=$ 12.4303(6), $c=19.4432(8) \AA, V=1966.59(14) \AA^{3}, \alpha=90, b=101.3220(10), v=90, Z=4, \mu=$ $6.269 \mathrm{~mm}^{-1}$, data/restraints/parameters: 3431/0/218, R indices $(\mathrm{I}>2 \sigma(\mathrm{I})$) R1 $=0.0394, w R 2$ (all data) $=0.1036$. CCDC No. 1885285 .

Figure S1. ORTEP diagram of compound 4 (probability ellipsoid at 30%). Selected bond lengths [Å] with esds in parentheses: S1-N1 1.694(4), N1-C8 1.479(6), O3-C9 1.441(5), O3-C11 1.358(5), C11-C12 1.326(6), Br2-C12 1.899(4), Br1-C10 1.928(5), C9-C10 1.491(7), C12-C13 1.477(5).

Figure S2. ORTEP diagram of compound 8 (probability ellipsoid at 30%). Selected bond lengths [\AA] with esds in parentheses:

Figure S3. ORTEP diagram of compound 19 (probability ellipsoid at 30\%). Selected bond lengths [Å] with esds in parentheses: S1-N1 1.6563(19), N1-C8 1.470(3), N1-C12 1.419(3), C12-C11 1.332(3), C13-C11 1.471(3), O3-C11 1.377(2), O3-C9 1.436(3), Cl1-C10 1.770(3), C9-C8 1.504(3), C9-C10 1.514(3).

Figure S4. ORTEP diagram of compound 22 (probability ellipsoid at 30%). Selected bond lengths [Å] with esds in parentheses: S1-N1 1.668(8), N1-C14 1.409(11), N1-C11 1.446(13), C12-C11 $1.388(16)$, C15-C14 1.346(13), O4-C15 1.373(11), O3-C13 1.422(17), C15-C16 1.433(13), O4-C12 1.357(13), C12-C13 1.402(17).

Figure S5. ORTEP diagram of compound $\mathbf{3 0}$ (probability ellipsoid at 30%). Selected bond lengths [Å] with esds in parentheses: N1-C10 1.393(3), C10-C11 1.539(3), O6-C10 1.204(3), O7-C11 1.206(3), C11-C12 1.476(3), N1-C7 1.479(3), C7-C8 1.506(4), C8-C9 1.432(4), O3-C8 1.409(3), O3-C9 1.431(4).

Figure S6. ORTEP diagram of compound 35 (probability ellipsoid at 30%). Selected bond lengths [Å] with esds in parentheses: S1-N1 1.663(3), N1-C8 1.394(5), C8-C9 1.309(6), C10-C9 1.488(5), Br2-C8 1.931(4), Br3-C9 1.890(4), Br1-C17 1.919(6), N1-C16 1.496(6), C16-C17 1.486(7).

(11) References:

1. D. D. Perrin, W. L. F. Armarego and D. R. Perrin, Purification of Laboratory Chemicals, Pergamon, Oxford, 1986.
2. (a) G. M. Sheldrick, SADABS, Siemens Area Detector Absorption Correction, University of Göttingen, Germany, 1996; (b) G. M. Sheldrick, SHELX-97- A program for crystal structure solution and refinement, University of Göttingen, 1997; (c) G. M. Sheldrick, SHELXTL NT Crystal Structure Analysis Package, Bruker AXS, Analytical X-ray System, WI, USA, 1999, version 5.10.
3. A. Leela Siva Kumari, A. Siva Reddy and K. C. Kumara Swamy, Org. Lett. 2016, 18, 5752.

Figure S7．${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 h}$

		言彩然

Figure S8．${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 h}$

Figure S9. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 i}$

Figure S10. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 i}$

Figure S11. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 j}$

Figure S12. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 j}$

Figure S13. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 k}$

Figure S14. ${ }^{\mathbf{1 3}} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 k}$

Figure S15. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 I}$

Figure S16. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 1}$

Figure S17. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 n}$

Figure S18. ${ }^{13}$ C NMR spectrum of compound $\mathbf{1 n}$

Figure S19. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10

Figure S2O. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 10

Figure S21. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3}$

Figure S22. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 3

Figure S23. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 4

Figure S24. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 4

Figure S25. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 5

Figure S26. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 5

Figure S27. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 6

Figure S28. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 6

Figure S29. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 7

Figure S30. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 7

Figure S31. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 8

Figure S32. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 8

Figure S33. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 9

Figure S34. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 9

Figure S35. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 10

Figure S36. ${ }^{13}$ C NMR spectrum of compound 10

Figure S37. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 11

Figure S38. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 11

Figure S39. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 12

Figure S40. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 12

Figure S41. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 13

Figure S42. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 13

Figure S43. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{1 3}^{\mathbf{\prime}}$

Figure S44. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $13{ }^{\prime}$

Figure S45. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 14

Figure S46. ${ }^{13}$ C NMR spectrum of compound 14

Figure S47. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 15

Figure S48. ${ }^{13}$ C NMR spectrum of compound 15

Figure S49. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 16

Figure S50. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{1 6}$

Figure S51. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 17

Figure S52. ${ }^{13}$ C NMR spectrum of compound 17

Figure S53. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 18

Figure S54. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 18

Figure S55. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 19

Figure S56. ${ }^{13}$ C NMR spectrum of compound 19

Figure S57. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 20

Figure S58. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 20

Figure S59. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 21

Figure S60. ${ }^{13}$ C NMR spectrum of compound 21

Figure S61. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 22

Figure S62. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 22

Figure S63. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 23

Figure S64. ${ }^{13}$ C NMR spectrum of compound 23

Figure S65. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 24

Figure S66. ${ }^{13}$ C NMR spectrum of compound 24

Figure S67. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{2 5}$

Figure S68. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 5}$

Figure S69. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 26

Figure S70. ${ }^{13}$ C NMR spectrum of compound 26

Figure S71. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 27

Figure S72. ${ }^{13}$ C NMR spectrum of compound 27

Figure S73. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 28

Figure S74. ${ }^{13} \mathrm{C}$ NMR spectrum of compound $\mathbf{2 8}$

Figure S75. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 29

Figure S76. ${ }^{13}$ C NMR spectrum of compound 29

웅
Figure S77. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 0}$

Figure $\mathbf{S 7 8}$. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 29

Figure S79. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 31

Figure S80. ${ }^{13}$ C NMR spectrum of compound $\mathbf{3 1}$

Figure S81. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 33

Figure S82. ${ }^{13}$ C NMR spectrum of compound 33

Figure S83. ${ }^{1} \mathrm{H}$ NMR spectrum of compound 34

Figure S84. ${ }^{13} \mathrm{C}$ NMR spectrum of compound 34

Figure S85. ${ }^{1} \mathrm{H}$ NMR spectrum of compound $\mathbf{3 5}$

Figure S86. ${ }^{13}$ C NMR spectrum of compound $\mathbf{3 5}$

