Supporting information

Reactivity of epoxy-ynamides with metal halides: Nucleophile (Br/Cl/OH) assisted tandem

intramolecular 5-exo-dig and 6-endo-dig cyclisation and AgF₂ promoted oxidation

Mandala Anitha, Mallepalli Shankar and K. C. Kumara Swamy*

School of Chemistry, University of Hyderabad,

Hyderabad -500046, Telangana, India.

E-mail: kckssc@uohyd.ac.in, kckssc@yahoo.com

	Contents	Page No.
1	General methods	S2
2	Synthesis of epoxy ynamides 1a-o	S2-S6
3	Synthesis of 1,3 oxazolidines 3-11 from epoxy ynamides	S6-S11
4	Synthesis of compound 12	S11-S12
5	Synthesis of chloromethyl-1,4-oxazines 13-20 from epoxy ynamides	S12-S17
6	Synthesis of hydroxymethyl-1,4-oxazines 21-26 from epoxy ynamides	S17-S20
7	Synthesis of 3,5-dimethylphenoxy-1,4-oxazine 27	S20-S21
8	Synthesis of 1,2-dioxo-amides 28-31 and 33	S21-S23
9	Synthesis of ynamide 34 and 1,2-dibromo enamide 35	S23-S24
10	X-ray data and crystal structures of 4, 8, 19, 22, 30, and 35	S25-S27
11	References	S28
12	¹ H/ ¹³ C NMR spectra (Figures S7-S86)	S29-S68

(1) General methods: All chemicals were procured from Aldrich or local manufacturers and used further without any purification, unless noted otherwise. Chemicals and solvents were purified when required according to standard procedures.¹ ¹H, ¹³C{¹H} and ¹⁹F NMR spectra were recorded using 5 mm tubes on 400 MHz and 500 NMR spectrometer [field strengths: 400, 100 and 376 MHz for 400 MHz NMR spectrometer and 500, 125 and 470 MHz for 500 MHz NMR spectrometer respectively] in CDCl₃, DMSO-D₆ solutions (unless specified otherwise) with shifts referenced to SiMe₄ (= 0). All J values are in Hz. Infrared spectra were recorded neat or by using KBr pellets on a FT/IR spectrometer. Melting points were determined by using a local hot-stage melting point apparatus and are uncorrected. For TLC, glass micro slides were coated with silica-gel-GF254 (mesh size 75) and spots were identified using iodine or UV chamber as appropriate. For column chromatography, silica gel of 100-200 mesh size was used. Microanalyses were performed using a CHNS analyzer. LC-MS equipment was used to record mass spectra for isolated compounds where appropriate. LC-MS data were obtained using electrospray ionization on a C-18 column at a flow rate 0.2 mL/ min using MeOH/water (90:10) as eluent. Mass spectra were recorded using HRMS (ESI-TOF analyzer) equipment. X-ray data were collected at 298 K using Mo-K $_{\alpha}$ (λ = 0.71073 Å) radiation. Structures were solved and refined using standard methods.²

(2) Synthesis of epoxy-ynamides 1a-o

Our research group reported the synthesis of epoxy ynamides **1a-f** and **1l** by a known protocol with slight modification.³ In addition, in the current work, the new compounds **1h-l** and **1n-o** have been prepared (Scheme S1). The identities of all these substrates **1a-o** were confirmed by IR and NMR spectra. IR spectra are particularly useful in identifying these compounds because the alkyne C=C group shows a strong band at ~ 2200 cm⁻¹. In the ¹³C NMR spectra, two peaks at $\delta \sim 80$ and ~ 70 due to the presence of -C=C-group are observed.

Scheme S1: Synthesis of epoxy-ynamides 1a-o

N-((4-bromophenyl)ethynyl)-4-methyl-N-(oxiran-2-ylmethyl)benzenesulfonamide (1h)

Yield: 1.50 g (84%, gummy liquid, $R_f = 0.60$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3064, 2999, 2925, 2237, 1596, 1488, 1367, 1171, 940, 819, 711 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.87-7.86 (m, 2H), 7.46-7.43 (m, 2H), 7.39 (m, 2H), 7.25-7.22 (m, 2H), 3.62 (d, *J* = 5.0 Hz, 2H), 3.24-3.21 (m, 1H), 2.85-2.83 (m, 1H), 2.66-2.65 (m, 1H), 2.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 145.1, 134.3, 132.8, 131.6, 129.9, 127.8, 122.1, 121.6, 83.4, 69.8, 53.9, 49.3, 45.5, 21.7; HRMS (ESI): Calcd for C₁₈H₁₇BrNO₃S (M⁺+H), (M⁺+H+2) *m/z* 406.0112, 408.0092. Found: 406.0111, 408.0090.

N-(oxiran-2-ylmethyl)-1-phenyl-N-(phenylethynyl)methanesulfonamide (1i)

Yield: 1.29 g (90%, gummy liquid, $R_f = 0.58$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3062, 2999, 2929, 2237, 1495, 1361, 1258, 1202, 1158, 1135, 1007, 937, 796, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.53 (m, 2H), 7.42 (m, 5H), 7.36-7.34 (m, 3H), 4.64 (AB multiplet, 2H), 3.40-3.30 (m, 2H), 3.10 (m, 1H), 2.81 (m, 1H), 2.63 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 131.7, 131.0, 129.4, 129.0, 128.4, 128.3, 127.7, 122.3, 81.8, 71.0, 57.5, 54.8, 49.4, 45.6; LC-MS: m/z 328 [M+1]⁺; Anal.Calcd. for C₁₈H₁₇NO₃S: C, 66.03; H, 5.23; N, 4.28. Found: C, 66.15; H, 5.18; N, 4.32.

4-chloro-2,5-dimethyl-N-(oxiran-2-ylmethyl)-N-(phenylethynyl)benzenesulfonamide (1j) Yield: 1.21 g (86%, gummy liquid, R_f = 0.62 (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3059, 2997, 2926, 2858, 2236, 1599, 1543, 1479, 1370, 1169, 940, 755 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.92 (s, 1H), 7.36 (s, 1H), 7.34-7.29 (m, 5H), 3.72-3.68 (m, 1H), 3.64-3.60 (m, 1H), 3.32-3.28 (m, 1H), 2.87 (t, *J* = 4.3 Hz, 1H), 2.70 (d, *J* = 2.5 Hz, 1H), 2.69 (s, 3H), 2.42 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 140.2, 137.3, 134.5, 134.1, 133.2, 132.8, 131.2, 128.3, 128.1, 122.4, 81.9, 71.6, 53.5, 49.3, 45.7, 20.4, 19.6; HRMS (ESI): Calcd for C₁₉H₁₈CINO₃SNa (M⁺+Na), (M⁺+Na+2) *m/z* 398.0594, 400.0564. Found: 398.0589, 400.0565.

4-methyl-N-(oxiran-2-ylmethyl)-N-((4-pentylphenyl)ethynyl)benzenesulfonamide (1k)

Yield: 1.71 g (90%, gummy liquid, $R_f = 0.68$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 2955, 2927, 2857, 2236, 1597, 1366, 1170, 1114, 841, 745 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.89-7.87 (m, 2H), 7.38-7.36 (m, 2H), 7.32-7.30 (m, 2H), 7.12 (m, 2H), 3.68-3.64 (m, 1H) and 3.58-

3.54 (m, 1H) [as AB system], 3.24-3.21 (m, 1H), 2.81 (t, J = 4.3 Hz, 1H), 2.66-2.64 (m, 1H), 2.59 (t, J = 7.7 Hz, 2H), 2.46 (s, 3H), 1.64-1.58 (m, 2H), 1.38-1.32 (m, 4H), 0.91 (t, J = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 144.9, 143.3, 134.4, 131.6, 129.8, 128.4, 127.8, 119.6, 81.6, 70.7, 54.0, 49.2, 45.6, 35.8, 31.4, 31.0, 22.5, 21.7, 14.0; LC-MS: m/z 398 [M+1]⁺; Anal.Calcd. for C₂₃H₂₇NO₃S: C, 69.49; H, 6.85; N, 3.52. Found: C, 69.36; H, 6.81; N, 3.58.

N-(oxiran-2-ylmethyl)-N-(phenylethynyl)thiophene-2-sulfonamide (11)

Yield: 1.136 g (78%, gummy liquid, $R_f = 0.55$ (9:1 hexane/ethyl acetate)); IR (neat) ν_{max} 3099, 3059, 3000, 2927, 2238, 1401, 1371, 1228, 1171, 1017, 856, 757 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.78-7.77 (m, 1H), 7.72-7.70 (m, 1H), 7.43-7.41 (m, 2H), 7.31-7.30 (m, 3H), 7.17-7.15 (m, 1H), 3.68-3.58 (m, 2H), 3.26-3.23 (m, 1H), 2.82 (dd \rightarrow t, J = 4.5 Hz, 1H), 2.66-2.65 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 136.4, 134.1, 134.0, 131.5, 128.4, 128.3, 127.8, 122.3, 81.8, 71.6, 54.4, 49.2, 45.5; LC-MS: m/z 320 [M+1]⁺; Anal.Calcd. for C₁₅H₁₃NO₃S₂: C, 56.41; H, 4.10; N, 4.39. Found: C, 56.32; H, 4.15; N, 4.31.

4-nitro-N-(oxiran-2-ylmethyl)-N-(phenylethynyl)benzenesulfonamide (1n) Yield: 0.735 g (53%, gummy liquid, R_f = 0.62 (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3103, 2925, 2239, 1605, 1528, 1401, 1368, 1345, 1311, 1172, 1107, 1088, 1027, 938, 896, 810, 736, 687 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, *J* = 8.8 Hz, 2H), 8.20 (d, *J* = 8.8 Hz, 2H), 7.41-7.32 (m, 5H), 3.81-3.66 (m, 2H), 3.28-3.24 (m, 1H), 2.86 (t, *J* = 4.4 Hz, 1H), 2.69-2.67 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 150.7, 142.7, 131.7, 129.2, 128.6, 128.5, 124.4, 121.7, 80.8, 71.4, 54.4, 49.1, 45.5; HRMS (ESI): Calcd for C₁₇H₁₄N₂O₅S (M⁺+Na) *m/z* 381.0521. Found: 381.0524.

4-methyl-N-(oxiran-2-ylmethyl)-N-((3-(trifluoromethyl)phenyl)ethynyl)benzenesulfonamide

(10) Yield: 1.47 g (85%, gummy liquid, $R_f = 0.62$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3163, 3002, 2944, 2252, 1441, 1375, 1201, 1171, 1039, 918, 739 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.87 (d, J = 8.5Hz, 2H), 7.60 (s, 1H), 7.55-7.54 (m, 2H), 7.45-7.39 (m, 3H), 3.69-3.59 (m, 2H), 3.26-3.23 (m, 1H), 2.85 (t, J = 4.3 Hz, 1H), 2.67-2.66 (m, 1H), 2.48 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 145.3, 134.3, 130.9 (q, J = 65.0 Hz), 129.9, 128.8, 127.9 (q \rightarrow t, J = 3.7 Hz), 127.8, 124.4 (q, J = 7.7 Hz), 123.7 (q, J = 270.8 Hz), 123.6, 83.9, 69.6, 53.9, 49.3, 45.4, 21.7; ¹⁹F NMR (470 MHz, CDCl₃) -62.9; HRMS (ESI): Calcd. for C₁₉H₁₇F₃NO₃S (M⁺+H): *m/z* 396.0881. Found: 396.0880.

(3) Synthesis of 1,3 oxazolidines 3-11 from epoxy ynamides

То oven dried RBF (10 mL), 4-methyl-N-(oxiran-2-ylmethyl)-Nan (phenylethynyl)benzenesulfonamide (1a; 0.100 g, 0.3 mmol) in dry DMF (1 mL), CuBr (0.088 g, 0.6 mmol) was added. The mixture was heated with stirring at 80 °C for 1-2 h. After completion of the reaction as monitored by TLC, ethyl acetate (25 mL) was added and the solution was washed with water (3 x 30 mL). The aqueous layer was extracted with ethyl acetate (3x 20 mL). The combined organic portion was dried over anh. Na₂SO₄ and the solvent removed under reduced pressure. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded 1,3-oxazolidine 3. Compounds 4-11 were prepared following the same procedure and by using the same molar quantities.

(E)-2-(bromo(phenyl)methylene)-5-(bromomethyl)-3-tosyloxazolidine (3)

Yield: 0.131g (88% with *E:Z* in 96:4, $R_f = 0.78$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3054, 3030, 2959, 2923, 2852, 1649, 1596, 1490, 1443, 1367, 1346, 1165, 1088, 1052, 1018, 753 cm⁻¹; ¹H NMR (400 MHz, DMSO-D₆): δ 7.91 (d, *J* = 8.0 Hz, 2H), 7.54 (m, 4H), 7.38 (dd \rightarrow t, *J* ~ 7.4 Hz, 2H), 7.29 (t, *J* ~ 7.4 Hz, 1H), 4.24-4.20 (m, 1H), 3.97 (br m, 1H), 3.62-3.56 (m, 2H), 3.53-3.49 (m, 1H), 2.46 (s, 3H); ¹³C NMR (125 MHz, DMSO-D₆): δ 146.4, 145.8, 136.6, 134.8, 130.7, 130.2, 129.8, 129.4, 128.6, 128.4, 128.2, 127.0, 93.6, 77.7, 51.8, 33.2, 21.6; HRMS (ESI): Calcd. for C₁₈H₁₈Br₂NO₃S (M⁺+H), (M⁺+H+2), (M⁺+H+4) *m/z* 485.9374, 487.9354, 489.9334. Found: 485.9376, 487.9356, 489.9338.

(E)-2-(bromo(3-fluorophenyl)methylene)-5-(bromomethyl)-3-tosyloxazolidine (4)

Yield: 0.121 g (83% with *E:Z* in 78:22, $R_f = 0.76$ (9:1 hexane/ethyl acetate)); Mp: 118-120 °C; IR (KBr) v_{max} 3068, 3033, 2958, 1648, 1608, 1582, 1487, 1434, 1348, 1265, 1165, 1088, 1054, 1019, 953, 779, 680 cm⁻¹; ¹H NMR (400 MHz, DMSO-D₆): Major isomer: δ 7.90 (d, *J* = 8.4 Hz, 2H), 7.53 (d, *J* = 8.4 Hz, 2H), 7.45-7.42 (m, 2H), 7.37-7.32 (m, 2H), 4.25-4.20 (m, 1H), 4.03-3.97 (m, 1H), 3.66-3.62 (m, 2H), 3.56-3.53 (m, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, DMSO-D₆): Major isomer: δ 162.0 (d, *J* = 241.4 Hz), 147.3, 145.9, 138.8 (d, *J* = 8.3 Hz), 134.7, 130.7₄, 130.6₈, 128.2, 127.8, 126.9 (d, *J* = 3.3 Hz), 125.6 (d, *J* = 2.8 Hz), 115.9 (d, *J* = 23.3 Hz), 115.1 (d, *J* = 20.8 Hz), 91.8, 78.1, 51.8, 33.2, 21.6; ¹⁹F NMR: -113.30 (major isomer); -114.06 (minor isomer); HRMS (ESI): Calcd. for C₁₈H₁₇Br₂FNO₃S (M⁺+H), (M⁺+H+2), (M⁺+H+4): *m/z* 503.9280, 505.9260, 507.9240. Found:

503.9281, 505.9263, 507.9250; This compound was crystallized from hexane/ethyl acetate (2:1) mixture at 25 °C. X-ray structure was determined for the *E*-isomer.

(E)-2-(bromo(phenyl)methylene)-5-(bromomethyl)-3-(phenylsulfonyl)oxazolidine (5)

Yield: 0.121g (80% with *E:Z* in 88:12, $R_f = 0.66$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3061, 2955, 2926, 2854, 1651, 1446, 1367, 1348, 1168, 1088, 1053, 1023, 754, 726, 689 cm⁻¹; ¹H NMR (400 MHz, DMSO-D₆): Major isomer: δ 8.04-8.02 (m, 2H), 7.86-7.82 (m, 1H), 7.75-7.72 (m, 2H), 7.56-7.54 (m, 2H), 7.39-7.36 (m, 2H), 7.31-7.27 (m, 1H), 4.26-4.22 (m, 1H), 4.01-3.96 (m, 1H), 3.64-3.58 (m, 2H), 3.52-3.49 (m, 1H); ¹³C NMR (100 MHz, DMSO-D₆): Major isomer: δ 146.3, 137.8, 136.6, 135.0, 130.3, 129.4, 128.6, 128.4, 128.2, 127.7, 93.6, 77.8, 51.9, 33.1; HRMS (ESI): Calcd. for C₁₇H₁₆Br₂NO₃S (M⁺+H), (M⁺+H+2), (M⁺+H+4): *m/z* 471.9217, 473.9197, 475.9177. Found: 471.9218, 473.9195, 475.9178.

(E)-2-(bromo(phenyl)methylene)-5-(bromomethyl)-3-((4-(tertbutyl)phenyl)sulfonyl)oxazolidine (6)

Yield: 0.117 g (82% with *E:Z* in 92:8, $R_f = 0.72$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 2925, 2870, 2854, 1752, 1596, 1496, 1399, 1331, 1267, 1164, 1113, 1088, 1027, 837, 753, 629 cm⁻¹.; ¹H NMR (400 MHz, DMSO-D₆): Major isomer: δ 7.95 (d, J = 8.4 Hz, 2H), 7.74 (d, J = 8.4 Hz, 2H), 7.55 (d, J = 8.0 Hz, 2H), 7.38 (dd \rightarrow t, $J \sim$ 7.4 Hz, 2H), 7.29 (t, $J \sim$ 7.4 Hz, 1H), 4.22-4.17 (m, 1H), 4.03-3.98 (m, 1H), 3.61-3.55 (m, 2H), 3.49-3.45 (m, 1H), 1.34 (s, 9H); ¹³C NMR (100 MHz, DMSO-

D₆): Major isomer: δ 158.4, 146.4, 136.6, 134.7, 129.5, 128.6, 128.4, 128.2, 127.1, 93.6, 78.0, 51.8, 35.6, 33.1, 31.2; HRMS (ESI): Calcd. for C₂₁H₂₄Br₂NO₃S (M⁺+H), (M⁺+H+2), (M⁺+H+4): *m/z* 527.9843, 529.9823, 531.9803. Found: 527.9842, 529.9824, 531.9801.

(*E*)-2-(bromo(phenyl)methylene)-5-(bromomethyl)-3-(naphthalen-2-ylsulfonyl)oxazolidine (7) Yield: 0.112 g (78% with *E:Z* in 96: 4, R_f = 0.70 (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3058, 2923, 2853, 1748, 1591, 1504, 1455, 1444, 1336, 1260, 1157, 1131, 1073, 1027, 900, 814, 749, 659 cm⁻¹; ¹H NMR (500 MHz, DMSO-D₆): Major isomer: δ 8.75 (s, 1H), 8.28-8.24 (m, 2H), 8.12 (d, J = 8.0 Hz, 1H), 8.02-8.00 (m, 1H), 7.81-7.72 (m, 2H), 7.57 (d, J = 8.0 Hz, 2H), 7.37 (dd \rightarrow t, $J \sim$ 7.7 Hz, 2H), 7.28 (t, J = 7.5 Hz, 1H), 4.34-4.30 (m, 1H), 4.01-3.97 (m, 1H), 3.68-3.64 (m, 1H), 3.59-3.56 (m, 1H), 3.51-3.50 (m, 1H); ¹³C NMR (125 MHz, DMSO-D₆): Major isomer: δ 146.4, 136.6, 135.4, 134.8, 132.1, 130.4, 130.2, 130.1, 130.0, 129.5, 128.6, 128.5₃, 128.4₆, 128.4, 122.8, 93.6, 77.8, 52.0, 33.2; HRMS (ESI): Calcd. for C₂₁H₁₇Br₂NO₃SNa (M⁺+Na), (M⁺+Na+2), (M⁺+Na+4): *m/z* 543.9194, 545.9174, 547.9154. Found: 543.9193, 545.9180, 547.9155.

(*E*)-2-(*bromo(phenyl)methylene*)-5-(*bromomethyl*)-3-((4-bromophenyl)sulfonyl)oxazolidine (8) Yield: 0.113 g (81% with *E:Z* in 89:11, R_f = 0.73 (9:1 hexane/ethyl acetate)); Mp: 138-140 °C; IR (KBr) v_{max} 3105, 3035, 2959, 2922, 2852, 1678, 1606, 1531, 1350, 1311, 1169, 856, 772, 739 cm⁻¹; ¹H NMR (400 MHz, DMSO-D₆): Major isomer: δ 7.97-7.91 (m, 4H), 7.56-7.54 (m, 2H), 7.37 (t, *J* = 7.7 Hz, 2H), 7.29 (t, *J* = 7.5 Hz, 1H), 4.27-4.23 (m, 1H), 4.11-4.06 (m, 1H), 3.66-3.62 (m, 2H), 3.56-3.53 (m, 1H); ¹³C NMR (100 MHz, DMSO-D₆): Major isomer: δ 146.1, 137.1, 136.5, 133.4, 130.1, 130.0, 129.4, 129.2, 128.6, 128.5, 93.7, 77.9, 51.9, 33.2; HRMS (ESI): Calcd. for C₁₇H₁₅Br₃NO₃S (M⁺+H), (M⁺+H+2), (M⁺+H+4), (M⁺+H+6) : *m/z* 549.8323, 551.8303, 553.8283, 555.8263. Found: 549.8321, 551.8305, 553.8284, 555.8258. This compound was crystallized from hexane/ethyl acetate (2:1) mixture at 25 $^{\circ}$ C. X-ray structure was determined for this sample.

(E)-2-(bromo(p-tolyl)methylene)-5-(bromomethyl)-3-tosyloxazolidine (9)

Yield: 0.126 g (86% with *E:Z* in 86:14, $R_f = 0.74$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 2960, 2923, 2855, 1747, 1597, 1513, 1422, 1330, 1260, 1159, 1090, 1018, 811, 752 cm⁻¹; ¹H NMR (500 MHz, DMSO-D₆): Major isomer: δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 7.43 (d, *J* = 8.0 Hz, 2H), 7.17 (d, *J* = 8.0 Hz, 2H), 4.21-4.17 (m, 1H), 3.93-3.90 (m, 1H), 3.59-3.53 (m, 2H), 3.50-3.47 (m, 1H), 2.44 (s, 3H), 2.30 (1s, 3H); ¹³C NMR (125 MHz, DMSO-D₆): Major isomer: δ 146.0, 145.7, 137.9, 134.8, 133.8, 130.7, 129.3, 129.1, 128.2, 127.7, 93.9, 77.6, 51.8, 33.2, 21.6, 21.2; HRMS (ESI): Calcd. for C₁₉H₂₀Br₂NO₃S (M⁺+H), (M⁺+H+2), (M⁺+H+4): *m/z* 499.9530, 501.9500, 503.9480. Found: 499.9523, 501.9504, 503.9484.

(E/Z)-2-(bromo(4-bromophenyl)methylene)-5-(bromomethyl)-3-tosyloxazolidine (10) (two isomers)

Yield: 0.108 g (78% with *E:Z* in 54:46, $R_f = 0.76$ (9:1 hexane/ethyl acetate)); IR (near) v_{max} 2956, 2925, 2854, 1748, 1657, 1596, 1488, 1338, 1163, 1090, 1011, 814, 756, 669 cm⁻¹; ¹H NMR (500

MHz, DMSO-D₆): Isomer 1: δ 7.89 (d, *J* = 8.5 Hz, 2H), 7.53-7.48 (m, 6H), 4.23-4.19 (m, 1H), 4.00-3.94 (m, 1H), 3.59-3.56 (m, 2H), 3.52-3.49 (m, 1H), 2.44 (s, 3H). Isomer 2: δ 7.59-7.57 (m, 2H), 7.45-7.41 (m, 4H), 7.38-7.36 (m, 2H), 4.34-4.30 (m, 1H); 4.00-3.94 (m, 1H), 3.82-3.78 (m, 1H); 3.64-3.60 (m, 2H), 2.43 (s, 3H); ¹³C NMR (125 MHz, DMSO-D₆): Isomer 1: δ 146.9, 145.8, 135.9, 134.8, 132.0, 131.4, 130.7, 130.3, 128.2, 121.3, 92.1, 77.9, 51.9, 33.1, 21.6. Isomer 2: 146.5, 145.7, 137.2, 134.3, 131.5, 131.3, 130.6, 127.7, 121.0, 88.9, 76.9, 52.9, 32.8, 21.6; HRMS (ESI): Calcd. for C₁₈H₁₇Br₃NO₃S (M⁺+H), (M⁺+H+2), (M⁺+H+4), (M⁺+H+6): *m/z* 563.8479, 565.8459, 567.8439, 569.8419. Found: 563.8470, 565.8450, 567.8432, 569.8412.

(E)-3-(benzylsulfonyl)-2-(bromo(phenyl)methylene)-5-(bromomethyl)oxazolidine (11)

Yield: 0.126 g (85% with *E:Z* in 94:6, $R_f = 0.80$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 2929, 1745, 1495, 1455, 1327, 1212, 1127, 1029, 830, 751, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.68-7.65 (m, 2H), 7.59-7.57 (m, 2H), 7.48-7.46 (m, 3H), 7.38-7.34 (m, 2H), 7.29-7.25 (m, 1H), 4.77 (AB pattern, 2H), 4.49-4.42 (m, 1H), 3.43-3.33 (m, 3H), 3.27-3.23 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 146.2, 135.9, 131.4, 129.3, 128.9, 128.1, 128.0, 127.9, 92.1, 78.1, 60.7, 52.5, 30.0; HRMS (ESI): Calcd. for C₁₈H₁₈Br₂NO₃S (M⁺+H), (M⁺+H+2), (M⁺+H+4): *m/z* 485.9374, 487.9354, 489.9334. Found: 485.9368, 487.9353, 489.9331.

(4) Synthesis of compound 12

To an oven dried 10 mL RBF, 4-methyl-*N*-(oxiran-2-ylmethyl)-*N*-phenylbenzenesulfonamide (0.1 g, 0.3 mmol) in DMF/H₂O(0.9+0.1 mL), and CuBr (0.94 g, 0.6 mmol) were added. The mixture was heated with stirring at 80 $^{\circ}$ C for 2 h. After completion of the reaction as monitored by TLC, ethyl acetate (25 mL) was added and the solution was washed with water (3 x 30 mL); the aqueous layer was extracted with ethyl acetate (3x 20 mL). The combined organic portion was

dried over anh. Na_2SO_4 and the solvent removed under reduced pressure. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded compound **12**.

N-(3-bromo-2-hydroxypropyl)-4-methyl-N-phenylbenzenesulfonamide (12)

Yield: 0.117 g (93%, $R_f = 0.46$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3495, 3063, 2924, 1595, 1490, 1344, 1160, 1088, 1023, 814 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.46 (d, J = 8.5 Hz, 2H), 7.34-7.31 (m, 3H), 7.26 (d, J = 8.0 Hz, 2H), 7.09-7.07 (m, 2H), 3.92-3.87 (m, 1H), 3.76-3.65 (m, 2H), 3.58-3.55 (m, 1H), 3.48-3.45 (m, 1H), 3.02 (d, J = 5.5 Hz, 1H), 2.43 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 144.0, 139.8, 134.5, 129.6, 129.3, 128.7, 128.4, 127.8, 69.0, 55.0, 36.4, 21.6; HRMS (ESI): Calcd. for C₁₆H₁₈BrNO₃SNa (M⁺+Na), (M⁺+Na+2): *m/z* 406.0089, 408.0069. Found: 406.0089, 408.0070.

(5) Synthesis of chloromethyl-1,4-oxazines 13-20 from epoxy ynamides

То oven dried 10 mL RBF, 4-methyl-N-(oxiran-2-ylmethyl)-Nan (phenylethynyl)benzenesulfonamide (1a; 0.1 g, 0.3 mmol) in DMF/H₂O(0.9+0.1 mL), anhy. LiCl (0.024 g, 0.6 mmol) was added. The mixture was heated with stirring at 80 °C for 12 h. After completion of the reaction as monitored by TLC, ethyl acetate (25 mL) was added and the solution was washed with water (3 x 30 mL); the aqueous layer was extracted with ethyl acetate (3x 20 mL). The combined organic portion was dried over anh. Na₂SO₄ and the solvent removed under reduced pressure. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded compound 1,4-oxazine 13. Compounds 13' and 14-20 were prepared following the same procedure and by using the same molar quantities.

2-(chloromethyl)-6-phenyl-4-tosyl-3,4-dihydro-2H-1,4-oxazine (13)

Yield: 0.086 g (78%, $R_f = 0.80$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3112, 3059, 3028, 2960, 2924, 2872, 1651, 1597, 1494, 1353, 1306, 1164, 1005, 755 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.72 (d, J = 8.0 Hz, 2H), 7.51-7.48 (m, 2H), 7.37-7.30 (m, 5H), 6.75 (s, 1H), 4.03-4.00 (m, 1H), 3.70-3.64 (m, 2H), 3.53-3.48 (m, 1H), 3.26-3.21 (m, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 1.44.4, 139.8, 133.1, 130.1, 128.4, 128.2, 127.4, 123.8, 101.8, 71.9, 45.1, 42.4, 21.6; HRMS (ESI): Calcd. for C₁₈H₁₉CINO₃S (M⁺+H), (M⁺+H+2): m/z 364.0774, 366.0744. Found: 364.0772, 366.0747.

2-(chloromethyl)-5-deutero-6-phenyl-4-tosyl-3,4-dihydro-2H-1,4-oxazine (13')

Yield: 0.061 g (55%, $R_f = 0.79$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 2957, 2925, 2855, 1725, 1637, 1598, 1494, 1356, 1167, 1089, 760 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.72 (d, J = 8.5 Hz, 2H), 7.50-7.48 (m, 2H), 7.37-7.34 (m, 4H), 7.32-7.30 (m, 1H), 6.75 (s, 0.1H), 4.02-4.00 (m, 1H), 3.70-3.64 (m, 2H), 3.52-3.49 (m, 1H), 3.26-3.22 (m, 1H), 2.45 (s, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 144.3, 139.7, 133.7, 133.2, 130.0, 128.4, 128.2, 127.4, 123.8, 101.8, 101.4 (d, J = 28.4 Hz), 72.0, 45.0, 42.4, 21.6; HRMS (ESI): Calcd. for C₁₈H₁₇DCINO₃SNa (M⁺+Na), (M⁺+Na+2): m/z 387.0657, 389.0627. Found: 387.0654, 389.0628.

2-(chloromethyl)-6-phenyl-4-(phenylsulfonyl)-3,4-dihydro-2H-1,4-oxazine (14)

Yield: 0.082 g (74%, $R_f = 0.78$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3027, 2960, 2925, 2873, 1652, 1446, 1354, 1309, 1166, 1088, 1007, 749, 688 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.85 (d, J = 7.6 Hz, 2H), 7.65 (t, J = 7.2 Hz, 1H), 7.58 (dd \rightarrow t, $J \sim 7.6$ Hz, 2H), 7.51 (d, J = 7.2 Hz, 2H), 7.39-7.30 (m, 3H), 6.77 (s, 1H), 4.03 (d, J = 13.2 Hz, 1H), 3.70-3.63 (m, 2H), 3.52-3.48 (m, 1H), 3.29-3.24 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 139.9, 136.5, 133.5, 133.1, 129.5, 128.5, 128.3, 127.3, 123.8, 101.6, 72.0, 45.1, 42.4; HRMS (ESI): Calcd. for C₁₇H₁₇ClNO₃S (M⁺+H), (M⁺+H+2): m/z 350.0617, 352.0587. Found: 350.0616, 352.0584.

2-(chloromethyl)-4-(naphthalen-2-ylsulfonyl)-6-phenyl-3,4-dihydro-2H-1,4-oxazine (15)

Yield: 0.076 g (69%, R_f = 0.74 (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3027, 2959, 2926, 1653, 1498, 1448, 1350, 1308, 1164, 1133, 1074, 1007, 858, 751 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.43 (s, 1H), 8.02-7.99 (m, 2H), 7.94 (d, *J* = 8.5 Hz, 1H), 7.82-7.80 (m, 1H), 7.71-7.63 (m, 2H), 7.50-7.48 (m, 2H), 7.37-7.30 (m, 3H), 6.84 (s, 1H), 4.12-4.09 (m, 1H), 3.68-3.62 (m, 2H), 3.50-3.46 (m, 1H), 3.33-3.29 (m, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 139.9, 135.1, 133.6, 133.1, 132.2, 129.8, 129.4, 129.3, 128.9, 128.5, 128.3, 128.0, 127.9, 123.9, 122.3, 101.7, 72.0, 45.1, 42.4; HRMS (ESI): Calcd. for C₂₁H₁₈ClNO₃SNa (M⁺+Na), (M⁺+Na+2): *m/z* 422.0594, 424.0564. Found: 422.0595, 424.0559.

4-((4-chloro-2,5-dimethylphenyl)sulfonyl)-2-(chloromethyl)-6-phenyl-3,4-dihydro-2H-1,4oxazine (16)

Yield: 0.068 g (65%, $R_f = 0.79$ (9:1 hexane/ethyl acetate)); IR (near) v_{max} 2961, 2926, 2870, 2857, 1724, 1658, 1599, 1448, 1365, 1341, 1165, 1087, 1016, 758 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.84 (s, 1H), 7.51-7.50 (m, 2H), 7.38-7.30 (m, 4H), 6.75 (s, 1H), 3.95-3.90 (m, 2H), 3.77-3.73 (m, 1H), 3.60-3.56 (m, 1H), 3.29-3.25 (m, 1H), 2.62 and 2.42 (2 s, 6H); ¹³C NMR (125 MHz, CDCl₃): δ 139.8, 139.1, 136.7, 134.8, 133.8, 133.4, 133.1, 132.4, 128.5, 128.2, 123.8, 101.6, 72.4, 44.6, 42.3, 20.5, 19.6; HRMS (ESI): Calcd. for C₁₉H₁₉Cl₂NO₃SNa (M⁺+Na), (M⁺+Na+2): *m/z* 434.0361, 436.0331. Found: 434.0363, 436.0329.

6-(4-bromophenyl)-2-(chloromethyl)-4-tosyl-3,4-dihydro-2H-1,4-oxazine (17)

Yield: 0.067 g (62%, $R_f = 0.80$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3110, 3028, 2960, 2924, 1651, 1596, 1490, 1355, 1308, 1166, 1088, 1006, 752 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.72-7.70 (m, 2H), 7.48-7.45 (m, 2H), 7.36-7.34 (m, 4H), 6.75 (s, 1H), 4.01-3.98 (m, 1H), 3.68-3.64 (m, 2H), 3.52-3.50 (m, 1H), 3.25-3.21 (m, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 143.5, 137.7, 132.7, 131.1, 130.5, 129.1, 126.3, 124.2, 121.0, 101.2, 71.0, 44.0, 41.3, 20.6; HRMS (ESI): Calcd. for C₁₈H₁₇BrClNO₃SNa (M⁺+Na), (M⁺+Na+2), (M⁺+Na+4): *m/z* 463.9699, 465.9679, 467.9659. Found: 463.9702, 465.9681, 467.9657.

2-(chloromethyl)-6-(4-pentylphenyl)-4-tosyl-3,4-dihydro-2H-1,4-oxazine (18)

Yield: 0.081 g (74%, $R_f = 0.81$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3112, 3029, 2956, 2927, 2856, 1658, 1597, 1356, 1310, 1261, 1218, 1167, 1124, 1055, 1009, 813, 770 cm⁻¹; ¹H NMR (500

MHz, CDCl₃): δ 7.71 (d, *J* = 8.0 Hz, 2H), 7.39 (d, *J* = 8.5 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.70 (s, 1H), 4.01-3.98 (m, 1H), 3.68-3.59 (m, 2H), 3.51-3.47 (m, 1H), 3.24-3.20 (m, 1H), 2.61 (t, *J* = 7.7 Hz, 2H), 2.45 (s, 3H), 1.64-1.58 (m, 2H), 1.36-1.30 (m, 4H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 144.3, 143.3, 140.0, 133.7, 130.6, 130.0, 128.5, 127.4, 123.8, 101.1, 71.9, 45.1, 42.4, 35.6, 31.4, 31.0, 22.5, 21.6, 14.0; HRMS (ESI): Calcd. for C₂₃H₂₈ClNO₃SNa (M⁺+Na), (M⁺+Na+2): *m/z* 456.1376, 458.1346. Found: 456.1375, 458.1350.

2-(chloromethyl)-6-(p-tolyl)-4-tosyl-3,4-dihydro-2H-1,4-oxazine (19)

Yield: 0.085 g (77%, R_f = 0.78 (9:1 hexane/ethyl acetate)); Mp: 124-126 °C; IR (KBr) v_{max} 3111, 3031, 2957, 2922, 2871, 1655, 1597, 1514, 1354, 1308, 1165, 1089, 1007, 818, 758 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.71 (d, *J* = 8.0 Hz, 2H), 7.38 (d, *J* = 8.0 Hz, 2H), 7.34 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.70 (s, 1H), 4.02-4.00 (m, 1H), 3.68-3.60 (m, 2H), 3.51-3.48 (m, 1H), 3.25-3.20 (m, 1H), 2.45 and 2.40 (2s, 6H); ¹³C NMR (100 MHz, CDCl₃): δ 144.3, 140.0, 138.2, 133.7, 130.4, 130.0, 129.1, 127.4, 123.8, 101.1, 72.0, 45.1, 42.4, 21.6, 21.2; HRMS (ESI): Calcd. for C₁₉H₂₀CINO₃SNa (M⁺+Na), (M⁺+Na+2): *m/z* 400.0750, 402.0720. Found: 400.0743, 402.0714. This compound was crystallized from hexane/ethyl acetate (2:1) mixture at 25 °C. X-ray structure was determined for this sample.

2-(chloromethyl)-6-phenyl-4-(thiophen-2-ylsulfonyl)-3,4-dihydro-2H-1,4-oxazine (20)

Yield: 0.076 g (69%, R_f = 0.70 (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3110, 3028, 2958, 2926, 1652, 1448, 1403, 1360, 1310, 1226, 1165, 1092, 1014, 757, 724 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.66-7.65 (m, 1H), 7.64-7.63 (m, 1H), 7.53-7.51 (m, 2H), 7.38-7.32 (m, 3H), 7.18-7.16

(m, 1H), 6.71 (s, 1H), 4.08-4.05 (m, 1H), 3.74-3.67 (m, 2H), 3.58-3.55 (m, 1H), 3.30-3.26 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 140.7, 136.6, 133.0, 132.8₄, 132.8₀, 128.5, 128.4, 127.9, 123.9, 101.1, 72.0, 45.2, 42.4; HRMS (ESI): Calcd. for C₁₅H₁₅CINO₃S₂ (M⁺+H), (M⁺+H+2): *m/z* 356.0182, 358.0152. Found: 356.0187, 358.0160.

(6) Synthesis of hydroxymethyl-1,4-oxazines 21-26 from epoxy ynamides

To an oven dried 10 mL RBF, epoxy ynamide (**1a**; 0.1 g, 0.3 mmol) in NMP/H₂O(0.9+0.1 mL), and CuF₂ (0.62 g, 0.6 mmol) were added. The mixture was heated with stirring at 80 °C for 4 h. After completion of the reaction as monitored by TLC, ethyl acetate (25 mL) was added and the solution was washed with water (3 x 30 mL); the aqueous layer was extracted with ethyl acetate (3x 20 mL). The combined organic portion was dried over anh. Na₂SO₄ and the solvent removed under reduced pressure. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded compound 1,4-oxazine **21**. Compounds **22-26** were prepared by following the same procedure and by using the same molar quantities.

(6-phenyl-4-tosyl-3,4-dihydro-2H-1,4-oxazin-2-yl)methanol (21)

Yield: 0.082 g (78%, $R_f = 0.61$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3531, 3064, 2987, 2881, 1651, 1448, 1349, 1263, 1214, 1162, 1061, 1005, 751 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.70 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.35-7.31 (m, 5H), 6.74 (s, 1H), 3.90-3.87 (m, 1H), 3.83-3.80 (m, 1H), 3.75-3.72 (m, 1H), 3.61-3.57 (m, 1H), 3.24-3.19 (m, 1H), 2.43 (s, 3H), 1.93 (br, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 144.2, 139.9, 133.8, 133.5, 130.0, 128.4, 128.1, 127.3, 123.8, 101.8, 72.9, 62.5, 44.3, 21.6; HRMS (ESI): Calcd. for C₁₈H₂₀NO₄S (M⁺+H): *m/z* 346.1111. Found: 346.1117.

(4-((4-(tert-butyl)phenyl)sulfonyl)-6-phenyl-3,4-dihydro-2H-1,4-oxazin-2-yl)methanol (22) Yield: 0.078 g (75%, R_f = 0.62 (9:1 hexane/ethyl acetate)); Mp: 106-110 °C; IR (KBr) ν_{max} 3437, 2960, 2927, 2869, 1726, 1597, 1452, 1262, 1165, 1085, 1005, 843, 798 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.77-7.74 (m, 2H), 7.56-7.50 (m, 4H), 7.37-7.28 (m, 3H), 6.77 (s, 1H), 3.92-3.88 (m, 1H), 3.85-3.81 (m, 1H), 3.75-3.72 (m, 1H), 3.71-3.67 (m, 1H), 3.26-3.20 (m, 1H), 2.24 (br s, 1H), 1.35 (s, 9H); ¹³C NMR (100 MHz, CDCl₃): δ 157.2, 139.7, 133.7, 133.5, 128.4, 128.1, 127.2, 126.4, 123.7, 101.8, 73.1, 62.4, 44.3, 35.3, 31.1; HRMS (ESI): Calcd. for C₂₁H₂₅NO₄SNa (M⁺+Na): *m/z* 410.1402. Found: 410.1407. This compound was crystallized from hexane/ethyl acetate (2:1) mixture at 25 °C. X-ray structure was determined for this sample.

(4-((4-bromophenyl)sulfonyl)-6-phenyl-3,4-dihydro-2H-1,4-oxazin-2-yl)methanol (23) Yield: 0.073 g (71%, R_f = 0.63 (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3532, 3093, 2927, 1651, 1573, 1389, 1355, 1310, 1167, 1087, 1067, 1006, 758 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.70-7.65 (m→s, 4H), 7.50-7.47 (m, 2H), 7.37-7.30 (m, 3H), 6.69 (s, 1H), 3.92-3.88 (m, 1H), 3.84-3.74 (m, 2H), 3.65-3.60 (m, 1H), 3.25-3.19 (m, 1H), 2.27 (br, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 140.6, 135.7, 133.2, 132.7, 128.8, 128.5, 128.3, 123.9, 101.2, 73.0, 62.3, 44.4; HRMS (ESI): Calcd. for C₁₇H₁₆BrNO₄SNa (M⁺+Na), (M⁺+Na+2): *m/z* 431.9881, 433.9851. Found: 431.9885, 433.9852.

(4-((4-chloro-2,5-dimethylphenyl)sulfonyl)-6-phenyl-3,4-dihydro-2H-1,4-oxazin-2-yl)methanol (24)

Yield: 0.071 g (68%, R_f = 0.62 (9:1 hexane/ethyl acetate)); IR (neat) ν_{max} 3437, 3064, 2923, 2857, 1697, 1452, 1365, 1320, 1224, 1158, 1026, 980, 702, 605 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.83 (s, 1H), 7.49 (d, *J* = 7.5 Hz, 2H), 7.36-7.29 (m, 4H), 6.74 (s, 1H), 3.89-3.86 (m, 2H), 3.82-3.78 (m, 2H), 3.28-3.24 (m, 1H), 2.60 (s, 3H), 2.41 (s, 3H), 2.06 (br, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 139.6, 139.1, 136.7, 134.6, 134.0, 133.5, 133.3, 132.3, 128.8, 128.4, 128.1, 123.7, 101.6, 73.4, 62.3, 43.8, 20.3, 19.6; HRMS (ESI): Calcd. for C₁₉H₂₀ClNO₄SNa (M⁺+Na), (M⁺+Na+2): *m/z* 416.0700, 418.0670. Found: 416.0700, 418.0671.

(4-((4-chlorophenyl)sulfonyl)-6-phenyl-3,4-dihydro-2H-1,4-oxazin-2-yl)methanol (25)

Yield: 0.079 g (76%, $R_f = 0.63$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3436, 3089, 2927, 1696, 1650, 1583, 1475, 1354, 1307, 1165, 1089, 1005, 828 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.78-7.74 (m, 2H), 7.53-7.47 (m, 4H), 7.37-7.31 (m, 3H), 6.70 (s, 1H), 3.92-3.88 (m, 1H), 3.85-3.74 (m, 2H), 3.65-3.60 (m, 1H), 3.26-3.20 (m, 1H), 2.19 (br, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 140.5, 139.9, 135.2, 133.3, 129.7, 128.7, 128.4, 128.3, 123.9, 101.2, 73.0, 62.4, 44.4; HRMS (ESI): Calcd. for C₁₇H₁₆ClNO₄SNa (M⁺+Na), (M⁺+Na+2): *m/z* 388.0387, 390.0357. Found: 388.0385, 390.0356.

(6-(4-pentylphenyl)-4-tosyl-3,4-dihydro-2H-1,4-oxazin-2-yl)methanol (26)

Yield: 0.076 g (74%, $R_f = 0.58$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3540, 2956, 2927, 2861, 1701, 1597, 1456, 1353, 1164, 1089, 1010, 734, 663 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.70 (d, *J* = 8.5 Hz, 2H), 7.39 (d, *J* = 8.0 Hz, 2H), 7.32 (d, *J* = 8.0 Hz, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 6.69 (s, 1H), 3.89-3.86 (m, 1H), 3.82-3.79 (m, 1H), 3.74-3.71 (m, 1H), 3.58-3.54 (m, 1H), 3.23-3.18 (m, 1H), 2.61 (t, *J* = 7.7 Hz, 2H), 2.43 (s, 3H), 1.64-1.59 (m, 2H), 1.36-1.29 (m, 5H), 0.90 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (125 MHz, CDCl₃): δ 144.1, 143.2, 140.2, 133.8, 130.9, 129.9, 128.5, 127.3, 123.6, 101.1, 72.8, 62.5, 44.3, 35.6, 31.4, 31.0, 22.5, 21.6, 14.0; HRMS (ESI): Calcd. for C₂₃H₂₉NO₄SNa (M⁺+Na): *m/z* 438.1715. Found: 438.1714.

(7) Synthesis of 3,5-dimethylphenoxy-1,4-oxazine 27

To an oven dried 5 mL RBF, epoxy-ynamide (**1a**; 0.100 g, 0.3 mmol), 3,5-dimethylphenol (0.055 g, 0.45 mmol), CuF₂ (0.015 g, 0.015 mmol) and K₂CO₃ (0.021 g, 0.015 mmol) were added. The contents were mixed thoroughly and the mixture was heated in a microwave oven [MW; 120 $^{\circ}$ C/10 min]. After completion of the reaction as monitored by TLC, DCM (15 mL) was added, the mixture filtered and the filtrate concentrated under reduced pressure. The crude product was purified by using flash column chromatography (neutral alumina; slow column led to decomposition of the product) to obtain pure 3,5-dimethylphenoxy-1,4-oxazine **27** by using hexane-ethyl acetate (9:1) mixture as the eluent. [Note: In silica gel compound decomposed very fast]

2-((3,5-dimethylphenoxy)methyl)-6-phenyl-4-tosyl-3,4-dihydro-2H-1,4-oxazine (27)

Yield: 0.121 g (89%, gummy liquid, $R_f = 0.89$ (hexane, neutral alumina); IR (neat) v_{max} 3281, 2922, 1663, 1594, 1495, 1329, 1295, 1159, 911 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.81 (d, J = 8.0 Hz, 2H), 7.48 (d, J = 8.0 Hz, 2H), 7.31-7.24 (m, 4H), 7.15-7.11 (m, 1H), 6.66 (s, 1H), 6.41 (s, 2H), 5.97 (s, 1H), 4.59-4.53 (m, 1H), 4.09-4.04 (m, 1H), 3.98-3.89 (m, 2H), 3.54-3.50 (m, 1H),

2.40 (s, 3H), 2.29 (s, 6H); ¹³C NMR (100 MHz, CDCl₃): *δ* 157.9, 146.8, 144.9, 139.3, 135.4, 133.6, 129.9, 128.3, 127.6, 127.5, 125.1, 123.3, 112.3, 88.6, 74.9, 66.9, 48.7, 21.6, 21.4; HRMS (ESI): Calcd for C₂₆H₂₈NO₄S (M⁺+H) *m/z* 450.1739. Found: 450.1739.

(8) Synthesis of 1,2-dioxo-amides 28-31 and 33

To an oven dried 10 mL RBF, epoxy ynamide (**1f**; 0.1 g, 0.25 mmol) in dry DMC (1 mL), AgF₂ (0.185 g, 1.27 mmol) was added. The mixture was kept for stirring at 30 °C for 12 h. After completion of the reaction as monitored by TLC, the mixture was passed through celite and concentrated in vacuum. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded compound 1,2-dioxoenamide **28**. Compounds **29-31** and **33** were prepared following the same procedure and by using the same molar quantities.

N-((4-bromophenyl)sulfonyl)-N-(oxiran-2-ylmethyl)-2-oxo-2-phenylacetamide (28)

Yield: 0.076 g (71%, R_f = 0.73 (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3092, 3068, 2925, 1682, 1573, 1450, 1371, 1210, 1171, 1069, 1008, 945, 823, 741, 612 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 7.98-7.93 (m, 4H), 7.79-7.77 (m, 2H), 7.71-7.68 (m, 1H), 7.59-7.56 (m, 2H), 4.03-3.92 (m, 2H), 3.24-3.21 (m, 1H), 2.83 (t, *J* = 4.2 Hz, 1H), 2.71-2.69 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 187.5, 167.1, 136.2, 134.8, 132.7, 132.5, 130.3, 130.1, 129.8, 128.9, 49.1, 47.0, 46.4; HRMS (ESI): Calcd. for C₁₇H₁₄BrNO₅SNa (M⁺+Na): *m/z* 445.9674, 447.9654. Found: 445.9674, 447.9656.

N-((4-chlorophenyl)sulfonyl)-N-(oxiran-2-ylmethyl)-2-oxo-2-phenylacetamide (29)

Yield: 0.081 g (73%, $R_f = 0.72$ (9:1 hexane/ethyl acetate)); Mp 104-108 °C (white solid); IR (KBr) v_{max} 3089, 3068, 2924, 1682, 1583, 1370, 1209, 1169, 1086, 1011, 924, 757, 713, 688 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.03-8.01 (m, 2H), 7.98-7.96 (m, 2H), 7.71-7.68 (m, 1H), 7.62-7.56

(m, 4H), 4.03-3.92 (m, 2H), 3.24-3.21 (m, 1H), 2.82 (t, J = 4.5 Hz, 1H), 2.70-2.69 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 187.6, 167.2, 141.6, 135.6, 134.8, 132.5, 130.1, 129.8, 129.7, 129.0, 49.1, 47.0, 46.4; HRMS (ESI): Calcd. for C₁₇H₁₄ClNO₅SNa (M⁺+Na), (M⁺+Na+2): m/z 402.0179, 404.0149. Found: 402.0179, 404.0149.

N-((4-nitrophenyl)sulfonyl)-N-(oxiran-2-ylmethyl)-2-oxo-2-phenylacetamide (30)

Yield: 0.082 g (74%; purity ~97%, $R_f = 0.61$ (9:1 hexane/ethyl acetate)); Mp 168-170 °C (white solid); IR (KBr) v_{max} 3108, 1684, 1597, 1533, 1404, 1376, 1350, 1258, 1210, 1173, 1086, 1045, 924, 855, 739, 617 cm⁻¹; ¹H NMR (500 MHz, CDCl₃): δ 8.48-8.46 (m, 2H), 8.31-8.29 (m, 2H), 7.99-7.97 (m, 2H), 7.73-7.70 (m, 1H), 7.61-7.57 (m, 2H), 4.26-4.23 (m, 1H), 3.96-3.92 (m, 1H), 3.23-3.20 (m, 1H), 2.82 (t, J = 4.5 Hz, 1H), 2.68-2.67 (m, 1H); ¹³C NMR (125 MHz, CDCl₃): δ 187.4, 166.9, 151.1, 142.9, 135.0, 132.2, 130.2, 129.9, 129.0, 124.4, 49.1, 47.4, 46.0; HRMS (ESI): Calcd. for C₁₇H₁₅N₂O₇S (M⁺+H): *m/z* 391.0600. Found: 391.0600. This compound was crystallized from hexane/ethyl acetate (2:1) mixture at 25 °C. X-ray structure was determined for this sample.

N-(oxiran-2-ylmethyl)-2-oxo-N-tosyl-2-(3-(trifluoromethyl)phenyl)acetamide (31)

Yield: 0.091 g (85%, $R_f = 0.70$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 2928, 1740, 1699, 1597, 1363, 1331, 1165, 1125, 1092, 1075, 814 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.27 (br, 1H), 8.13 (d, J = 7.6 Hz, 1H), 7.92 (d, J = 8.4 Hz, 3H), 7.72 (t, J = 7.8 Hz, 1H), 7.44 (d, J = 8.0 Hz, 2H), 4.00-3.91 (m, 2H), 3.23-3.19 (m, 1H), 2.82 (t, J = 4.2 Hz, 1H), 2.71-2.70 (m, 1H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 186.1, 166.8, 146.4, 133.8, 133.4, 133.1, 131.7 (q, J = 66.5 Hz), 130.8 (q, J = 8.4 Hz, 14), 140 MHz, 200 MHz

7.0 Hz), 130.2, 129.6, 128.6, 126.1 (q, J = 8.0 Hz), 123.5 (q, J = 270.8 Hz), 49.0, 46.7, 46.5, 21.8; ¹⁹F NMR (470 MHz, CDCl₃): -62.9; HRMS (ESI): Calcd. for C₁₉H₁₇F₃NO₅S (M⁺+H): m/z 428.0779. Found: 428.0779.

N-methyl-2-oxo-2-phenyl-N-tosylacetamide (33)

Yield: 0.086 g (78%, $R_f = 0.72$ (9:1 hexane/ethyl acetate)); Mp 116-120 °C (white solid); IR (neat) v_{max} 2923, 2853, 1739, 1677, 1595, 1368, 1230, 1202, 1087, 945, 662 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.98-7.90 (m, 4H), 7.70-7.65 (m, 1H), 7.56 (t, *J* = 7.8 Hz, 2H), 7.42 (d, *J* = 8.0 Hz, 2H), 3.27 (s, 3H), 2.50 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ 188.1, 167.3, 145.9, 134.5, 133.5, 132.8, 130.1, 129.7, 128.9, 128.4, 30.7, 21.7; HRMS (ESI): Calcd. for C₁₆H₁₅NO₄S (M⁺+Na): *m/z* 340.0620. Found: 340.0622. This compound has been prepared previosly by a different method (S. W. Kim, T. -W. Um and S. Shin, *J. Org. Chem.* 2018, **83**, 4703.)

(9) Synthesis of ynamide 34 and α , β -dibromo enamide 35

Synthesis of ynamide 34: To a mixture of *N*-(2-bromoethyl)-4-methylbenzenesulfonamide (1.00 g, 3.62 mmol), CuSO₄·5H₂O (0.180 g, 0.72 mmol), 1,10-phenanthroline monohydrate (0.287 g, 1.44 mmol) and K₂CO₃ (1.25 g, 9.0 mmol) in dry THF (20 mL), (bromoethynyl)benzene (0.786 g, 4.34 mmol) was added. The vessel was stoppered under nitrogen atmosphere and heated overnight on an oil-bath maintained at 70 °C. The mixture was filtered and concentrated in vacuum. The crude product was purified by using silica gel column chromatography to obtain the pure ynamide **34** by using hexane-ethyl acetate (8:2) as the eluent.

N-(2-bromoethyl)-4-methyl-N-(phenylethynyl)benzenesulfonamide (34)

Yield: 1.03 g (76%, $R_f = 0.67$ (9:1 hexane/ethyl acetate)); IR (neat) v_{max} 3061, 2925, 2855, 2235, 1730, 1704, 1597, 1493, 1367, 1289, 1168, 1119, 1089, 1020, 958, 813, 755 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.89 (d, J = 8.4 Hz, 2H), 7.40 -7.33 (m, 7H), 3.83 (t, J = 7.4 Hz, 2H), 3.58 (t, J = 7.4 Hz, 2H), 2.49 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃): δ δ 145.2, 134.3, 131.6, 129.9, 128.4, 128.2, 127.8, 122.3, 81.4, 71.2, 52.7, 27.5, 21.7; HRMS (ESI): Calcd for C₁₇H₁₇BrNO₂S (M⁺+H), (M⁺+H+2) m/z 378.0163, 380.0143. Found 378.0164, 380.0145.

Synthesis of α , θ -dibromo enamide 35: To an oven dried 10 mL RBF (round bottom flask) N-(2bromoethyl)-4-methyl-N-(phenylethynyl)benzenesulfonamide 34 (0.3 mmol) in dry acetonitrile (1 mL), CuBr (0.6 mmol) was added at 25 °C. After completion of the reaction as monitored by TLC, the contents were passed through a pad of celite, washed with ethyl acetate (2 x 20 mL) and concentrated *in vacuo*. Purification by column chromatography (hexane/ethyl acetate 9:1) afforded compound 35.

(E)-N-(2-bromoethyl)-N-(1,2-dibromo-2-phenylvinyl)-4-methylbenzenesulfonamide (35)

Yield: 0.131 g (92%; *E/Z*: 7:3; pure *E*-isomer was isolated), white solid, $R_f = 0.76$ (9:1 hexane/ethyl acetate)); Mp: 132-134 °C IR (KBr) v_{max} 2954, 2923, 2853, 1597, 1492, 1445, 1361, 1165, 1087, 967, 899, 813, 695 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 7.90 (d, *J* = 8.0 Hz, 2H), 7.47-7.37 (m, 7H), 3.92-3.86 (m, 1H), 3.75-3.70 (m, 1H), 3.60-3.47 (m, 2H), 2.48 (s, 3H).; ¹³C NMR (100 MHz, CDCl₃): δ 145.1, 138.8, 134.6, 129.8, 129.6, 128.9, 128.8, 128.5, 126.9, 116.2, 50.4, 27.2, 21.7; HRMS (ESI): Calcd. for C₁₇H₁₆Br₃NO₂SNa (M⁺+Na), (M⁺+Na+2), (M⁺+Na+4), (M⁺+Na+6): *m/z* 557.8350, 559.8330, 561.8310, 563.8290. Found: 557.8352, 559.8336, 561.8316, 563.8293. This compound was crystallized from DCM/ethyl acetate (2:1) mixture at 25 °C. X-ray structure was determined for this sample.

(10) X-ray data and crystal structures of 4, 8, 19, 22, 30, and 35

Compound 4: $C_{18}H_{16}Br_2FNO_3S$, M = 505.20, Triclinic, Space group *P*-1, a = 6.9921(3), b = 11.2113(6), c = 12.4434(7) Å, V = 959.19(9) Å³, $\alpha = 96.443(2)$, $\beta = 95.376(2)$, $\gamma = 95.626(2)$, Z = 2, $\mu = 4.361$ mm⁻¹, data/restraints/parameters: 3377/0/237, R indices (I > 2 σ (I)) R1 = 0.0479, *w*R2 (all data) = 0.1485. CCDC No. 1885280.

Compound 8: $C_{17}H_{14}Br_3NO_3S$, M = 552.08, Triclinic, Space group *P-1*, a = 6.9458(2), b = 10.9848(2), c = 12.6203(4) Å, V = 946.11(4) Å³, $\alpha = 95.166(2)$, $\beta = 94.677(2)$, $\gamma = 97.680(2)$, Z = 2, $\mu = 6.522$ mm⁻¹, data/restraints/parameters: 3962/0/226, R indices (I > 2 σ (I)) R1 = 0.0509, *w*R2 (all data) = 0.1223. CCDC No. 1885281.

Compound 19: $C_{19}H_{20}CINO_3S$, M = 377.87, Monoclinic, Space group C2/c, a = 18.258(2), b = 13.0810(13), c = 15.4466(14) Å, V = 3687.2(6) Å³, $\alpha = 90$, $\beta = 91.845(3)$, $\gamma = 90$, Z = 8, $\mu = 0.338$ mm⁻¹, data/restraints/parameters: 3227/0/229, R indices (I > 2 σ (I)) R1 = 0.0488, wR2 (all data) = 0.1434. CCDC No. 1885282.

Compound 22: $C_{21}H_{25}NO_4S$, M = 387.48, Triclinic, Space group *P-1, a* = 10.994(13), *b* = 12.052(15), *c* = 16.90(2) Å, *V*= 2130(4) Å³, *a* = 95.131(11), *b* = 99.760(11), *y* = 103.107(11), *Z* = 4, $\mu = 0.176 \text{ mm}^{-1}$, data/restraints/parameters: 5863/0/498, R indices (I > 2 σ (I)) R1 = 0.0954, *w*R2 (all data) = 0.3278. CCDC No. 1885283.

Compound 30: $C_{17}H_{14}N_2O_7S$, M = 390.36, Monoclinic, Space group P2(1)/n, a = 7.4466(5), b = 24.7338(15), c = 9.6421(5) Å, V = 1718.87(18)Å³, $\alpha = 90$, $\beta = 104.560(2)$, $\gamma = 90$, Z = 4, $\mu = 0.233$ mm⁻¹, data/restraints/parameters: 3032/0/247, R indices (I > 2σ (I)) R1 = 0.0435, wR2 (all data) = 0.1128. CCDC No. 1885284.

Compound 35: $C_{17}H_{16}Br_3NO_2S$, M = 538.10, Monoclinic, Space group P2(1)/c, a = 8.2985(3), b = 12.4303(6), c = 19.4432(8) Å, V = 1966.59(14) Å³, $\alpha = 90$, $\beta = 101.3220(10)$, $\gamma = 90$, Z = 4, $\mu = 6.269$ mm⁻¹, data/restraints/parameters: 3431/0/218, R indices (I > 2σ (I)) R1 = 0.0394, wR2 (all data) = 0.1036. CCDC No. 1885285.

Figure S1. ORTEP diagram of compound **4** (probability ellipsoid at 30%). Selected bond lengths [Å] with esds in parentheses: S1-N1 1.694(4), N1-C8 1.479(6), O3-C9 1.441(5), O3-C11 1.358(5), C11-C12 1.326(6), Br2-C12 1.899(4), Br1-C10 1.928(5), C9-C10 1.491(7), C12-C13 1.477(5).

Figure S2. ORTEP diagram of compound **8** (probability ellipsoid at 30%). Selected bond lengths [Å] with esds in parentheses:

Figure S3. ORTEP diagram of compound **19** (probability ellipsoid at 30%). Selected bond lengths [Å] with esds in parentheses: S1-N1 1.6563(19), N1-C8 1.470(3), N1-C12 1.419(3), C12-C11 1.332(3), C13-C11 1.471(3), O3-C11 1.377(2), O3-C9 1.436(3), Cl1-C10 1.770(3), C9-C8 1.504(3), C9-C10 1.514(3).

Figure S4. ORTEP diagram of compound **22** (probability ellipsoid at 30%). Selected bond lengths [Å] with esds in parentheses: S1-N1 1.668(8), N1-C14 1.409(11), N1-C11 1.446(13), C12-C11 1.388(16), C15-C14 1.346(13), O4-C15 1.373(11), O3-C13 1.422(17), C15-C16 1.433(13), O4-C12 1.357(13), C12-C13 1.402(17).

Figure S5. ORTEP diagram of compound **30** (probability ellipsoid at 30%). Selected bond lengths [Å] with esds in parentheses: N1-C10 1.393(3), C10-C11 1.539(3), O6-C10 1.204(3), O7-C11 1.206(3), C11-C12 1.476(3), N1-C7 1.479(3), C7-C8 1.506(4), C8-C9 1.432(4), O3-C8 1.409(3), O3-C9 1.431(4).

Figure S6. ORTEP diagram of compound **35** (probability ellipsoid at 30%). Selected bond lengths [Å] with esds in parentheses: S1-N1 1.663(3), N1-C8 1.394(5), C8-C9 1.309(6), C10-C9 1.488(5), Br2-C8 1.931(4), Br3-C9 1.890(4), Br1-C17 1.919(6), N1-C16 1.496(6), C16-C17 1.486(7).

(11) References:

- 1. D. D. Perrin, W. L. F. Armarego and D. R. Perrin, *Purification of Laboratory Chemicals*, Pergamon, Oxford, 1986.
- (a) G. M. Sheldrick, SADABS, Siemens Area Detector Absorption Correction, University of Göttingen, Germany, 1996; (b) G. M. Sheldrick, SHELX-97- A program for crystal structure solution and refinement, University of Göttingen, 1997; (c) G. M. Sheldrick, SHELXTL NT Crystal Structure Analysis Package, Bruker AXS, Analytical X-ray System, WI, USA, 1999, version 5.10.
- 3. A. Leela Siva Kumari, A. Siva Reddy and K. C. Kumara Swamy, Org. Lett. 2016, 18, 5752.

Figure S8. ¹³C NMR spectrum of compound **1h**

Figure S10. ¹³C NMR spectrum of compound 1i

7.923 7.7317 7.7317 7.7317 7.7317 7.7317 7.7317 7.7285 7.7295 7.7

Figure S14. ¹³C NMR spectrum of compound 1k

Figure S16. ¹³C NMR spectrum of compound 1I

Figure S17. ¹H NMR spectrum of compound 1n

Figure S20. ¹³C NMR spectrum of compound **10**

Figure S24. ¹³C NMR spectrum of compound 4

Figure S26. ¹³C NMR spectrum of compound 5

Figure S28. ¹³C NMR spectrum of compound 6

8,238 8,238 8,238 8,238 8,236 8,238 8,236 8,236 8,236 8,236 8,236 8,236 8,236 8,236 8,236 8,236 8,236 8,236 8,236 7,737 7,739 7,539

S40

S41

Figure S34. ¹³C NMR spectrum of compound 9

Figure S36. ¹³C NMR spectrum of compound **10**

Figure S40. ¹³C NMR spectrum of compound **12**

Figure S44. ¹³C NMR spectrum of compound 13'

S49

Figure S62. ¹³C NMR spectrum of compound 22

Figure S68. ¹³C NMR spectrum of compound 25

7.711 7.7984 7.7394 7.7394 7.7394 7.7394 7.7394 7.7394 7.7394 7.7216 7.7157 7.7169 7.7394 7.7216 7.7169 7.7216 7.7169 7.7

Figure S72. ¹³C NMR spectrum of compound 27

8.028 8.017 7.797 7.7961 7.7961 7.7961 7.7961 7.7961 7.7961 7.777 7.777 7.777 7.779 7.7961 7.7961 7.777 7.7710 7.7961 7.7761 7.7761 7.7761 7.7761 7.7612 7.77512 7.77512 7.77517 7.77517 7.77517 7.77517 7.77517 7.77517 7.

Figure S78. ¹³C NMR spectrum of compound 29

Figure S80. ¹³C NMR spectrum of compound **31**

S66

Figure S83. ¹H NMR spectrum of compound 34

Figure S84. ¹³C NMR spectrum of compound 34

7.912 7.912 7.912 7.466 7.7466 7.466 7.466 7.461 7.411 7.411 7.411 7.411 7.412 7.412 7.411 7.412

Figure S86. ¹³C NMR spectrum of compound 35