Supporting Information

Transition-Metal Free Selective C(α)-C(β) Bond Cleavage of Trifluoromethyl Ketones with Amidines under Air: Facile Access to 5-Trifluoromethylated Imidazol-4-ones

Chuanle Zhu,* Chi Liu, Hao Zeng, Fulin Chen, Huanfeng Jiang*

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China E-mail: cechlzhu@scut.edu.cn, jianghf@scut.edu.cn; Fax and Tel.: (+86) 20-87112906

A. General Information	2
B. General Procedure for the Synthesis of 5-Trifluoromethylated Imidazol-4-ones	3
C. Analysis Data for the Products	3
D. Procedure for the Gram-Scale Synthesis of 3	11
E. Procedure for the Transformations of 3a	11
F. X-ray Crystallographic Data	12
G. GC-MS Analysis for ¹⁸ O-labled Experiments	14
H. NMR Spectra of New Compounds	18

A. General Information

Melting points were measured using a melting point instrument and are uncorrected. Chemical shifts were reported in ppm from the solvent resonance as the internal standard (d_6 -DMSO $\delta_H = 2.50$ ppm, $\delta_C = 39.50$ ppm). Multiplicity was indicated as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet). Coupling constants were reported in Hertz (Hz). IR spectra were obtained with an infrared spectrometer on either potassium bromide pellets or liquid films between two potassium bromide pellets. GC-MS data were obtained using electron ionization. HRMS was carried out on a high-resolution mass spectrometer (LCMS-IT-TOF). TLC was performed using commercially available 100–400 mesh silica gel plates (GF₂₅₄). X-ray structural analyses were conducted on an x-ray analysis instrument.

Materials. Tetrahydrofuran (THF) and toluene were distilled from sodium/benzophenone; 1,2-dichloroethane (DCE) was distilled from calcium hydride; acetonitrile (CH₃CN) was distilled from phosphorus pentoxide. Other commercially available reagents were purchased and used without further purification. Analytical thin-layer chromatography was performed on 0.20 mm silica gel plates (GF₂₅₄) using UV light as a visualizing agent. Flash column chromatography was carried out using silica gel (200–300 mesh) with the indicated solvent system. All reactions were conducted in oven-dried Schlenk tubes. All the reaction temperatures reported are oil bath temperatures.

B. General Procedure for the Synthesis of 5-Trifluoromethylated Imidazol-4-ones

A 25 mL oven-dried test tube equipped with a magnetic stirring bar, amidine **1** (0.2 mmol), trifluoromethyl ketone **2** (0.2 mmol), *t*-BuOK (0.5 mmol), and DMF (2 mL) was vigorously stirred at 70 °C for 12 h under air. Then the mixture was cooled to room temperature, added water (15 mL), extracted with EtOAc (15 mL \times 3). The combined organic phases were washed with brine (15 mL \times 3), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) provided the product **3**.

C. Analysis Data for the Products

2,5-Diphenyl-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3a)

58.4 mg, 96% yield; white soild, mp: 186–187 °C; ¹H NMR (400 MHz, *d*₆-DMSO) δ 12.47 (s, 1H), 8.17 (d, *J* = 7.6 Hz, 2H), 7.97 (d, *J* = 6.8 Hz, 2H), 7.71 (t, *J* = 7.2 Hz, 1H), 7.63 (t, *J* = 7.6 Hz, 2H), 7.47–7.52 (m, 3H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ 178.4, 164.7, 133.5, 132.0, 130.0, 129.5, 129.1, 128.0, 127.9, 127.8, 123.3 (q, ¹*J*_{C-F} = 281.3 Hz), 75.4 (q, ²*J*_{C-F} = 27.4 Hz); ¹⁹F NMR (376 MHz, *d*₆-DMSO) δ = -73.5 (s, 3F); IR (KBr): 3187, 1735, 1629, 1443, 1257, 1172 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₁₁F₃N₂O+H, 305.0896; found, 305.0898

2-(4-Methoxyphenyl)-5-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4*H*-Imidazol-4-one (3b)

64.8 mg, 97% yield; light yellow soild, mp: 192–193 °C; ¹H NMR (400 MHz, *d*₆-DMSO) δ 12.29 (s, 1H), 8.12 (d, *J* = 5.2 Hz, 2H), 7.93 (s, 2H), 7.47 (s, 3H), 7.15 (d, *J* = 6.8 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ 178.6, 164.1, 163.6, 132.2, 130.0, 129.9, 129.0, 127.8, 123.3 (q, ${}^{1}J_{C-F} = 281.4$ Hz), 119.9, 114.9, 75.0, 56.0; ¹⁹F NMR (376 MHz, *d*₆-DMSO) δ = -73.5 (s, 3F); IR

(KBr): 3062, 2851, 2743, 1757, 1609, 1441, 1262, 1175 cm⁻¹; HRMS (ESI, m/z): $[M+H]^+$ Calcd. for $C_{17}H_{13}F_3N_2O_2+H$, 335.1002; found, 335.1005

2-(3-Methoxyphenyl)-5-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4*H*-Imidazol-4-one (3c)

53.4 mg, 80% yield; light yellow soild, mp: 140–141 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.45 (s, 1H), 7.96 (d, J = 7.2 Hz, 2H), 7.78 (d, J = 7.6 Hz, 1H), 7.70 (s, 1H), 7.49–7.56 (m, 4H), 7.28 (d, J = 8.4 Hz, 1H), 3.88 (s, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.4, 164.6, 160.0, 131.9, 130.7, 130.0, 129.1, 129.0, 127.9, 123.3 (q, ¹ J_{C-F} = 281.4 Hz), 120.3, 119.6, 112.9, 75.4 (q, ² J_{C-F} = 27.8 Hz), 55.9; ¹⁹F NMR (376 MHz, d_6 -DMSO) δ = -73.5 (s, 3F); IR (KBr): 3197, 3095, 2930, 1734, 1606, 1468, 1262, 1168 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₇H₁₃F₃N₂O₂+H, 335.1002; found, 335.1006

5-Phenyl-2-(p-Tolyl)-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3d)

57.9 mg, 91% yield; white soild, mp: 214–215 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.38 (s, 1H), 8.06 (d, J = 8.0 Hz, 2H), 7.95 (d, J = 6.8 Hz, 2H), 7.49–7.51 (m, 3H), 7.42 (d, J = 8.0 Hz, 2H), 2.42 (s, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.5, 164.5, 143.9, 132.1, 130.0, 130.0, 129.1, 128.0, 127.9, 125.0, 123.3 (q, ¹ $J_{C-F} = 281.2$ Hz), 75.2 (q, ² $J_{C-F} = 27.2$ Hz), 21.6; ¹⁹F NMR (376 MHz, d_6 -DMSO) $\delta = -73.5$ (s, 3F); IR (KBr): 3188, 1735, 1628, 1446, 1251, 1179 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₇H₁₃F₃N₂O+H, 319.1053; found, 319.1057

5-Phenyl-2-(*m*-Tolyl)-5-(Trifluoromethyl)-3,5-Dihydro-4*H*-Imidazol-4-one (3e)

54.1 mg, 85% yield; light yellow oil; ¹H NMR (400 MHz, *d*₆-DMSO) δ 12.38 (s, 1H), 7.80 (s, 1H), 7.90–7.94 (m, 3H), 7.45–7.48 (m, 5H), 2.40 (s, 3H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ 178.4, 164.7, 139.0, 134.1, 132.0, 130.0, 129.4, 129.1, 128.3, 127.9, 127.7, 125.2, 123.3 (q, ¹*J*_{C-F} = 281.5 Hz), 75.4 (q, ²*J*_{C-F} = 27.5 Hz), 21.3; ¹⁹F NMR (376 MHz, *d*₆-DMSO) δ = -73.5 (s, 3F); IR (KBr):

3061, 2926, 2859, 2739, 1749, 1621, 1458, 1260, 1177 cm⁻¹; HRMS (ESI, m/z): $[M+H]^+$ Calcd. for $C_{17}H_{13}F_3N_2O+H$, 319.1053; found, 319.1058

5-Phenyl-2-(o-Tolyl)-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3f)

60.4 mg, 95% yield; light yellow solid, mp: 127–128 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.16 (s, 1H), 7.95 (d, J = 7.2 Hz, 2H), 7.65 (d, J = 7.6 Hz, 1H), 7.48–7.54 (m, 4H), 7.37–7.44 (m, 2H), 2.61 (s, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.0, 166.0, 138.2, 132.0, 131.8, 130.0, 129.5, 129.1, 127.9, 126.5, 123.2 (q, ¹ $J_{C-F} = 281.5$ Hz), 75.7 (q, ² $J_{C-F} = 27.4$ Hz), 21.0; ¹⁹F NMR (376 MHz, d_6 -DMSO) $\delta = -73.8$ (s, 3F); IR (KBr): 3070, 2839, 1750, 1624, 1444, 1259, 1175 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₇H₁₃F₃N₂O+H, 319.1053; found, 319.1057

2-(4-Hydroxyphenyl)-5-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3g)

38.4 mg, 60% yield; colorless oil; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.23 (s, 1H), 10.43 (s, 1H), 7.91–8.01 (m, 4H), 7.47–7.47 (m, 3H), 6.97 (d, J = 7.6 Hz, 2H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.5, 164.0, 162.3, 132.4, 130.1, 129.9, 129.0, 127.9, 123.4 (q, ¹ J_{C-F} = 281.5 Hz), 118.4, 116.2, 75.2 (q, ² J_{C-F} = 27.1 Hz); ¹⁹F NMR (376 MHz, d_6 -DMSO) δ = -73.5 (s, 3F); IR (KBr): 3459, 3131, 2843, 1745, 1608, 1458, 1263, 1177 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₁₁F₃N₂O₂+H, 321.0845; found, 321.0850

2-(4-Fluorophenyl)-5-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3h)

52.2 mg, 81% yield; white soild, mp: 226–227 °C; ¹H NMR (400 MHz, *d*₆-DMSO) δ 12.47 (s, 1H), 8.22–8.31 (m, 2H), 7.93–7.94 (m, 2H), 7.44–7.46 (m, 5H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ 178.4, 165.3 (d, ¹*J*_{C-F} = 250.0 Hz), 163.7, 132.0, 130.8 (d, ³*J*_{C-F} = 9.3 Hz), 130.0, 129.1, 127.9, 124.4, 123.2 (q, ¹*J*_{C-F} = 281.5 Hz), 116.7 (d, ²*J*_{C-F} = 22.1 Hz), 75.5 (q, ²*J*_{C-F} = 27.1 Hz); ¹⁹F NMR (376 MHz, *d*₆-DMSO) δ = -73.5 (s, 3F), -106.0 (s, 1F); IR (KBr): 3183, 2919, 1734, 1631, 1447,

1250, 1174 cm⁻¹; HRMS (ESI, m/z): $[M+H]^+$ Calcd. for C₁₆H₁₀F₄N₂O+H, 323.0802; found, 323.0804

2-(4-Chlorophenyl)-5-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3i)

62.9 mg, 93% yield; white soild, mp: 193–194 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.49 (s, 1H), 8.18 (d, J = 8.0 Hz, 2H), 7.95 (d, J = 6.4 Hz, 2H), 7.71 (d, J = 8.0 Hz, 2H), 7.50–7.51 (m, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.4, 164.0, 138.5, 131.8, 130.0, 129.9, 129.7, 129.1, 127.8, 126.6, 123.2 (q, ¹ $J_{C-F} = 281.2$ Hz), 75.4 (q, ² $J_{C-F} = 28.1$ Hz); ¹⁹F NMR (376 MHz, d_6 -DMSO) $\delta = -73.5$ (s, 3F); IR (KBr): 3177, 1732, 1625, 1437, 1251, 1173 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₁₀ClF₃N₂O+H, 339.0507; found, 339.0512

2-(2-Chlorophenyl)-5-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3j)

58.1 mg, 86% yield; light yellow solid, mp: 145–146 °C; ¹H NMR (400 MHz, *d*₆-DMSO) δ 12.27 (s, 1H), 7.94 (d, *J* = 8.0 Hz, 2H), 7.76 (d, *J* = 7.6 Hz, 1H), 7.63–7.70 (m, 2H), 7.49–7.57 (m, 4H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ 177.7, 164.7, 133.6, 132.2, 131.5, 131.3, 130.9, 130.1, 129.2, 128.5, 128.1, 127.9, 123.0 (q, ¹*J*_{C-F} = 281.3 Hz), 75.6 (q, ²*J*_{C-F} = 27.1 Hz); ¹⁹F NMR (376 MHz, *d*₆-DMSO) δ = -73.5 (s, 3F); IR (KBr): 3265, 3070, 1756, 1624, 1437, 1257, 1179 cm⁻¹; HRMS (ESI, m/z): $[M+H]^+$ Calcd. for C₁₆H₁₀ClF₃N₂O+H, 339.0507; found, 339.0510

2-(4-Bromophenyl)-5-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4*H*-Imidazol-4-one (3k)

71.8 mg, 94% yield; white soild, mp: 243–244 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.53 (s, 1H), 8.11 (d, J = 7.6 Hz, 2H), 7.97 (d, J = 6.0 Hz, 2H), 7.85 (d, J = 7.6 Hz, 2H), 7.51–7.52 (m, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.4, 164.2, 132.6, 131.8, 130.0, 130.0, 129.1, 127.9, 127.5, 126.9, 123.1 (q, ¹ J_{C-F} = 281.5 Hz), 75.4 (q, ² J_{C-F} = 27.9 Hz); ¹⁹F NMR (376 MHz, d_6 -DMSO) δ = -73.5 (s, 3F); IR (KBr): 3178, 1733, 1626, 1436, 1251, 1176 cm⁻¹; HRMS (ESI,

m/z): [M+H]⁺ Calcd. for C₁₆H₁₀BrF₃N₂O+H, 383.0001; found, 383.0002

2-(3-Bromophenyl)-5-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4*H*-Imidazol-4-one (31)

64.9 mg, 85% yield; white soild, mp: 168–169 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.50 (s, 1H), 8.32 (s, 1H), 8.15 (d, J = 7.6 Hz, 1H), 7.90–7.93 (m, 3H), 7.59 (t, J = 8.0 Hz, 1H), 7.49–7.52 (m, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.2, 163.7, 136.3, 132.7, 131.7, 131.7, 130.5, 130.1, 129.9, 129.2, 127.9, 127.1, 123.1 (q, ¹ J_{C-F} = 281.4 Hz), 122.7, 75.5 (q, ² J_{C-F} = 24.1 Hz); ¹⁹F NMR (376 MHz, d_6 -DMSO) δ = -73.5 (s, 3F); IR (KBr): 3442, 3201, 1738, 1627, 1448, 1257, 1174 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₁₀BrF₃N₂O+H, 383.0001; found, 383.0005

2-(4-Nitrophenyl)-5-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3m)

59.3 mg, 85% yield; yellow soild, mp: 202–203 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.73 (s, 1H), 8.39–8.47 (m, 4H), 7.94 (d, J = 6.8 Hz, 2H), 7.51–7.52 (m, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.2, 163.8, 150.5, 133.3, 131.5, 130.2, 129.6, 129.2, 127.8, 124.6, 123.1 (q, ¹ $J_{C-F} = 281.5$ Hz), 75.7 (q, ² $J_{C-F} = 26.7$ Hz); ¹⁹F NMR (376 MHz, d_6 -DMSO) $\delta = -73.5$ (s, 3F); IR (KBr): 3173, 3106, 2883, 1737, 1610, 1531, 1442, 1349, 1255, 1175 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₁₀F₃N₃O₃+H, 350.0747; found, 350.0750

5-Phenyl-2-(Pyridin-3-yl)-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3n)

52.5 mg, 86% yield; white soild, mp: 187–188 °C; ¹H NMR (400 MHz, *d*₆-DMSO) δ 12.60 (s, 1H), 9.29 (s, 1H), 8.87 (d, J = 2.8 Hz, 1H), 8.51 (d, J = 7.6 Hz, 1H), 7.94 (d, J = 5.2 Hz, 2H), 7.67 (s, 1H), 7.50 (s, 3H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ 178.3, 163.7, 154.0, 148.9, 135.6, 131.7, 130.1, 129.1, 127.9, 124.5, 124.0, 123.1 (q, ¹*J*_{C-F} = 278.1 Hz), 75.3 (q, ²*J*_{C-F} = 27.9 Hz); ¹⁹F NMR (376 MHz, *d*₆-DMSO) δ = -73.4 (s, 3F); IR (KBr): 3443, 3064, 1756, 1615, 1476, 1267, 1173 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₅H₁₀F₃N₃O+H, 306.0849; found, 306.0853

2-Methyl-5-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4*H*-Imidazol-4-one (30)

18.9 mg, 39% yield; light yellow oil; ¹H NMR (400 MHz, d_6 -DMSO) δ 11.63 (s, 1H), 7.81 (d, J = 4.4 Hz, 1H), 7.44–7.48 (m, 3H), 2.22 (s, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 177.8, 166.5, 131.8, 129.9, 129.0, 127.9, 123.2 (q, ${}^{1}J_{C-F} = 280.9$ Hz), 75.2 (q, ${}^{2}J_{C-F} = 27.7$ Hz), 16.6; ¹⁹F NMR (376 MHz, d_6 -DMSO) $\delta = -73.8$ (s, 3F); IR (KBr): 3274, 3058, 2924, 2848, 1752, 1643, 1441, 1260, 1178 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₁H₉F₃N₂O+H, 243.0740; found, 243.0745

5-(4-Methoxyphenyl)-2-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4*H*-Imidazol-4-one (3p)

60.8 mg, 91% yield; orange soild, mp: 107–108 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.41 (s, 1H), 8.14 (d, J = 7.6 Hz, 2H), 7.84 (d, J = 8.8 Hz, 2H), 7.70 (t, J = 7.6 Hz, 1H), 7.62 (t, J = 7.2 Hz, 2H), 7.05 (d, J = 8.8 Hz, 2H), 3.79 (s, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.7, 164.4, 160.6, 133.5, 129.5, 129.2, 128.0, 127.8, 123.7, 123.3 (q, ¹ J_{C-F} = 281.2 Hz), 114.5, 75.1 (q, ² J_{C-F} = 27.4 Hz), 55.7; ¹⁹F NMR (376 MHz, d_6 -DMSO) δ = -73.8 (s, 3F); IR (KBr): 3175, 2933, 1738, 1622, 1509, 1453, 1252, 1171 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₇H₁₃F₃N₂O₂+H, 335.1002; found, 335.1006

2-Phenyl-5-(p-Tolyl)-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3q)

54.1 mg, 85% yield; white soild, mp: 209–210 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.42 (s, 1H), 8.15 (d, J = 7.2 Hz, 2H), 7.81 (d, J = 8.0 Hz, 2H), 7.70 (t, J = 7.2 Hz, 1H), 7.62 (d, J = 7.6 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 2.33 (s, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.6, 164.5, 139.6, 133.5, 129.6, 129.5, 129.0, 128.0, 127.8, 127.7, 122.8 (q, ¹ $J_{C-F} = 281.3$ Hz), 75.2 (q, ² $J_{C-F} = 26.5$ Hz), 21.1; ¹⁹F NMR (376 MHz, d_6 -DMSO) $\delta = -73.6$ (s, 3F); IR (KBr): 3194, 3126, 1736, 1629, 1506, 1458, 1423, 1256, 1183 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₇H₁₃F₃N₂O+H,

5-(4-Chlorophenyl)-2-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3r)

54.8 mg, 81% yield; light yellow solid, mp: 149–150 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.51 (s, 1H), 8.12 (d, J = 7.6 Hz, 2H), 7.92 (d, J = 8.4 Hz, 2H), 7.53–7.68 (m, 5H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.1, 165.1, 135.1, 133.6, 129.8, 129.5, 129.2, 128.1, 127.6, 123.0 (q, ¹ J_{C-F} = 281.2 Hz), 74.9 (q, ² J_{C-F} = 27.6 Hz); ¹⁹F NMR (376 MHz, d_6 -DMSO) δ = -73.8 (s, 3F); IR (KBr): 3184, 2942, 2858, 1748, 1622, 1469, 1257, 1177 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₁₀ClF₃N₂O+H, 339.0507; found, 339.0503

5-(3-Chlorophenyl)-2-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4*H*-Imidazol-4-one (3s)

54.1 mg, 80% yield; white solid, mp: 223–224 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.58 (s, 1H), 8.18 (d, J = 7.2 Hz, 2H), 7.94 (s, 2H), 7.58–7.72 (m, 5H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 177.9, 165.3, 134.0, 133.8, 133.7, 131.1, 130.2, 129.5, 128.1, 127.6, 126.7, 123.0 (q, ¹ $J_{C-F} = 281.5$ Hz), 74.8 (q, ² $J_{C-F} = 27.6$ Hz); ¹⁹F NMR (376 MHz, d_6 -DMSO) $\delta = -73.7$ (s, 3F); IR (KBr): 3187, 2924, 1736, 1631, 1457, 1255, 1177 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₁₀ClF₃N₂O+H, 339.0507; found, 339.0508

5-(4-Bromophenyl)-2-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3t)

62.6 mg, 82% yield; yellow soild, mp: 141–142 °C; ¹H NMR (400 MHz, *d*₆-DMSO) δ 12.52 (s, 1H), 8.13 (d, *J* = 7.6 Hz, 2H), 7.85 (d, *J* = 8.4 Hz, 2H), 7.67–7.72 (m, 3H), 7.60 (t, *J* = 7.6 Hz, 2H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ 178.1, 165.1, 133.7, 132.2, 131.2, 130.0, 129.5, 128.1, 127.6, 123.8, 123.0 (q, ¹*J*_{C-F} = 281.4 Hz), 75.0 (q, ²*J*_{C-F} = 27.3 Hz); ¹⁹F NMR (376 MHz, *d*₆-DMSO) δ = -73.7 (s, 3F); IR (KBr): 3185, 2923, 1737, 1631, 1461, 1255, 1177 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₁₀BrF₃N₂O+H, 383.0001; found, 382.9998

5-(3-Bromophenyl)-2-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3u)

61.1 mg, 80% yield; white soild, mp: 202–203 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.56 (s, 1H), 8.14 (d, J = 7.6 Hz, 2H), 8.05 (s, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.69–7.70 (m, 2H), 7.61 (t, J = 7.2 Hz, 2H), 7.48 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 177.9, 165.3, 134.2, 133.7, 133.1, 131.4, 130.4, 129.5, 128.1, 127.6, 127.1, 122.9 (q, ¹ J_{C-F} = 281.5 Hz), 122.3, 74.7 (q, ² J_{C-F} = 27.4 Hz); ¹⁹F NMR (376 MHz, d_6 -DMSO) δ = -73.7 (s, 3F); IR (KBr): 3177, 3123, 1734, 1631, 1456, 1255, 1182 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₁₀BrF₃N₂O+H, 383.0001; found, 382.9999

5-(4-Iodophenyl)-2-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4H-Imidazol-4-one (3v)

57.6 mg, 67% yield; pale green soild, mp: 187–188 °C; ¹H NMR (400 MHz, *d*₆-DMSO) δ 12.50 (s, 1H), 8.13 (d, *J* = 7.2 Hz, 2H), 7.87 (d, *J* = 8.0 Hz, 2H), 7.67–7.71 (m, 3H), 7.60 (t, *J* = 7.2 Hz, 2H); ¹³C NMR (100 MHz, *d*₆-DMSO) δ 178.1, 165.1, 138.0, 133.6, 131.7, 130.0, 129.5, 128.1, 127.6, 122.9 (q, ¹*J*_{C-F} = 281.5 Hz), 97.2, 75.1 (q, ²*J*_{C-F} = 27.8 Hz); ¹⁹F NMR (376 MHz, *d*₆-DMSO) δ = -73.6 (s, 3F); IR (KBr): 3194, 2921, 1737, 1628, 1458, 1251, 1175 cm⁻¹; HRMS (ESI, m/z): $[M+H]^+$ Calcd. for C₁₆H₁₀F₃IN₂O+H, 430.9863; found, 430.9864

5-(3-Iodophenyl)-2-Phenyl-5-(Trifluoromethyl)-3,5-Dihydro-4*H*-Imidazol-4-one (3w)

55.9 mg, 65% yield; white soild, mp: 170–171 °C; ¹H NMR (400 MHz, d_6 -DMSO) δ 12.54 (s, 1H), 8.22 (s, 1H), 8.14 (d, J = 7.2 Hz, 2H), 7.96 (d, J = 7.6 Hz, 1H), 7.87 (d, J = 7.6 Hz, 1H), 7.61–7.71 (m, 3H), 7.33 (t, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 178.0, 165.3, 138.9, 136.2, 134.0, 133.7, 131.3, 129.6, 128.1, 127.6, 127.4, 123.0 (q, ¹ $J_{C-F} = 281.5$ Hz), 95.3, 74.6 (q, ² $J_{C-F} = 27.8$ Hz); ¹⁹F NMR (376 MHz, d_6 -DMSO) $\delta = -73.6$ (s, 3F); IR (KBr): 3180, 2920, 1733, 1633, 1456, 1253, 1178 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₆H₁₀F₃IN₂O+H, 430.9863; found, 430.9865

D. Procedure for the Gram-Scale Synthesis of 3

A 250 mL oven-dried round-bottom flask equipped with a reflux condenser and a magnetic stirring bar, amidine **1** (5 mmol), trifluoromethyl ketone **2a** (10 mmol), *t*-BuOK (12.5 mmol), and DMF (50 mL) was vigorously stirred at 70 °C for 12 h under air. Then the mixture was cooled to room temperature, added water (150 mL), extracted with EtOAc (150 mL \times 3). The combined organic phases were washed with brine (150 mL \times 3), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) provided the products **3**.

E. Procedure for the Transformations of 3a

A 25 mL oven-dried round-bottom flask equipped with a magnetic stirring bar, **3a** (60.8 mg, 0.2 mmol), NaH (8 mg, 60% in oil, 0.4 mmol), and DMF (2 mL) was vigorously stirred at room temperature for 30 min under N₂. Then propargyl bromide (47.6 mg, 0.4 mmol) was added. The resulting mixture was then stirred at room temperature for another 12 h, quenched with water (15 mL), extracted with EtOAc (15 mL \times 3). The combined organic phases were washed with brine (15 mL \times 3), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) provided the products **4a**.

63.6 mg, 93% yield; colorless oil; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.91–7.93 (m, 4H), 7.63–7.73 (m, 3H), 7.51 (s, 3H), 4.40–4.52 (m, 2H), 3.34 (s, 1H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 175.8, 166.2, 132.8, 131.1, 130.3, 129.6, 129.3, 128.7, 128.4, 127.9, 123.0 (q, ¹ J_{C-F} = 281.5 Hz), 77.9, 76.1, 74.6 (q, ² J_{C-F} = 27.6 Hz), 32.3; ¹⁹F NMR (376 MHz, d_6 -DMSO) δ = -73.6 (s, 3F); IR (KBr): 3297, 3066, 2928, 1748, 1623, 1494, 1448, 1381, 1324, 1254, 1165 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₁₉H₁₃F₃N₂O+H, 343.1053; found, 343.1056

A 25 mL oven-dried round-bottom flask equipped with a magnetic stirring bar, **3a** (60.8 mg, 0.2 mmol), NaH (8 mg, 60% in oil, 0.4 mmol), and DMF (2 mL) was vigorously stirred at room temperature for 30 min under N₂. Then ethyl bromoacetate (66.8 mg, 0.4 mmol) was added. The resulting mixture was then stirred at room temperature for another 12 h, quenched with water (15 mL), extracted with EtOAc (15 mL \times 3). The combined organic phases were washed with brine (15 mL \times 3), dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo*. Further purification by flash column chromatography on silica gel (eluting with petroleum ether/ethyl acetate) provided the products **4b**.

71.0 mg, 91% yield; colorless oil; ¹H NMR (400 MHz, d_6 -DMSO) δ 7.91–7.93 (m, 2H), 7.77 (d, J = 7.2 Hz, 2H), 7.59–7.70 (m, 3H), 7.51–7.52 (m, 3H), 4.48–4.58 (m, 2H), 3.97 (q, J = 7.2 Hz, 2H), 1.00 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, d_6 -DMSO) δ 176.3, 167.3, 166.5, 132.5, 131.2, 130.3, 129.5, 129.2, 128.6, 128.5, 127.9, 123.0 (q, ¹ $J_{C-F} = 281.4$ Hz), 74.8 (q, ² $J_{C-F} = 27.8$ Hz), 61.9, 43.7, 14.0; ¹⁹F NMR (376 MHz, d_6 -DMSO) $\delta = -73.3$ (s, 3F); IR (KBr): 3067, 2987, 2934, 1750, 1629, 1450, 1380, 1327, 1260, 1211 cm⁻¹; HRMS (ESI, m/z): [M+H]⁺ Calcd. for C₂₀H₁₇F₃N₂O₃+H, 391.1264; found, 391.1268

F. X-ray Crystallographic Data

The X-ray crystallographic structures for **3a**. ORTEP representation with 50% probability thermal ellipsoids. Crystal data have been deposited to CCDC, number 1847590.

C14 cc C15 C13 C12		C5 C6 C7
C12/8	F3 CI6 F2	

Empirical formula	$C_{16}H_{11}F_3N_2O$
Formula weight	304.27
Temperature	100.00(10)K
Wavelength	1.54184

Crystal system, space group	monoclinic, P2 ₁ /c
Unit cell dimensions	a = 6.59270(10) Å $alpha = 90$ deg. $b = 24.4163(4)$ Å $beta = 108.268(2)$ deg. $c = 9.1339(2)$ Å $gamma = 90$ deg.
Volume	1396.18(5) Å ³
Z, Calculated density	4, 1.448 Mg/m ³
Absorption coefficient	1.028 mm ⁻¹
F(000)	624.0
Crystal size	$0.13 \times 0.12 \times 0.11 \text{ mm}$
Theta range for data collection	3.621 to 73.527 deg.
Limiting indices	$-4 \le h \le 7, -28 \le k \le 29, -11 \le l \le 11$
Reflections collected / unique	5053 / 2717 [R(int) = 0.0312]
Completeness to theta $= 66.97$	99.88%
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2717/0/203
Goodness-of-fit on F ²	1.048
Final R indices [I>2sigma(I)]	$R_1 = 0.0470, wR_2 = 0.1251$
R indices (all data)	$R_1 = 0.0517, wR_2 = 0.1316$
Largest diff. peak and hole	0.25 and -0.29 e. Å ⁻³

G. GC-MS Analysis for ¹⁸O-labled Experiments

1) Variation the standard reaction conditions: under ${}^{18}O_2$ atmosphere instead of air.

The ¹⁸O-labled ratio of **3a** under ¹⁸O₂ is 23%

2) Variation the standard reaction conditions: under ${}^{18}O_2$ atmosphere instead of air, and using molecular sives dried DMF as the solvent.

The ¹⁸O-labled ratio of **3a** under ¹⁸O₂ is 33%

3) Variation the standard reaction conditions: with $H_2^{18}O(10 \text{ equiv})$ as additive.

The ¹⁸O-labled ratio of **3a** under ¹⁸O₂ is 67%

4) Variation the standard reaction conditions: with $H_2^{18}O$ (10 equiv) as additive, and using molecular sives dried DMF as the solvent.

The ¹⁸O-labled ratio of **3a** under ¹⁸O₂ is 69%

For the synthesis of ¹⁸O-labled **2a**

$$\begin{array}{ccc} Ph & CF_{3} & H_{2}^{18}O & Ph & CF_{3} \\ O & 80 \ ^{o}C, \ N_{2}, \ 12 \ h & I^{8}O \ (90\%) \\ \end{array}$$
2a $\qquad I^{8}O-2a \end{array}$

A 10 mL oven-dried Schlenk tube equipped with a magnetic stirring bar, **2a** (188 mg, 1 mmol), and H₂¹⁸O (0.6 mL, 30 mmol) was stirred at 80 °C for 12 h under N₂. Then the mixture was cooled to room temperature, extracted with CH₂Cl₂ (10 mL). The organic phase was dried over anhydrous Na₂SO₄, filtered and concentrated *in vacuo* at 0 °C to give the desired the ¹⁸O-2a in 76% yield. 144.4 mg, colorless oil, ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.36 (m, 3H), 7.18 (d, *J* = 7.2 Hz, 2H), 3.98 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 188.9 (q, ²*J*_{C-F} = 34.8 Hz), 130.4, 129.7, 128.9, 127.9, 115.8 (q, ¹*J*_{C-F} = 290.7 Hz), 43.0; ¹⁹F NMR (376 MHz, CDCl₃) δ = -78.3 (s, 3F).

The GC-MS spectrum of 2a

The GC-MS spectrum of ¹⁸O-2a

The ¹⁸O-labled ratio of **2a** is 90%

Using ¹⁸O-labled **2a** as the starting material.

The ¹⁸O-labled ratio of **3a** is 47%

H. NMR Spectra of New Compounds ¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3a

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3a

¹H NMR (400 MHz, d_6 -DMSO) spectrum for 3b

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3b

 $^{19}\mathrm{F}$ NMR (376 MHz, $d_6\text{-}\mathrm{DMSO})$ spectrum for 3b

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3c

$^{13}\mathrm{C}$ NMR (100 MHz, $d_6\text{-}\mathrm{DMSO})$ spectrum for 3c

¹⁹F NMR (376 MHz, *d*₆-DMSO) spectrum for 3c

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3d

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3d

 $^{19}\mathrm{F}$ NMR (376 MHz, $d_6\text{-}\mathrm{DMSO}$) spectrum for 3d

¹H NMR (400 MHz, d_6 -DMSO) spectrum for 3e

$^{13}\mathrm{C}$ NMR (100 MHz, $d_6\text{-}\mathrm{DMSO})$ spectrum for 3e

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3f

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3f

 $^{19}\mathrm{F}$ NMR (376 MHz, $d_6\text{-}\mathrm{DMSO})$ spectrum for 3f

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3g

$^{13}\mathrm{C}$ NMR (100 MHz, $d_6\text{-}\mathrm{DMSO})$ spectrum for 3g

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3h

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3h

 $^{19}\mathrm{F}$ NMR (376 MHz, $d_6\text{-}\mathrm{DMSO})$ spectrum for 3h

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3i

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3i

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3j

¹⁹F NMR (376 MHz, *d*₆-DMSO) spectrum for 3j

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3k

$^{13}\mathrm{C}$ NMR (100 MHz, $d_6\text{-}\mathrm{DMSO})$ spectrum for 3k

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 31

¹⁹F NMR (376 MHz, *d*₆-DMSO) spectrum for 31

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3m

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3m

¹H NMR (400 MHz, d_6 -DMSO) spectrum for 3n

 $^{19}\mathrm{F}$ NMR (376 MHz, $d_6\text{-}\mathrm{DMSO}$) spectrum for 3n

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 30

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 30

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3p

 $^{19}\mathrm{F}$ NMR (376 MHz, $d_6\text{-}\mathrm{DMSO}$) spectrum for 3p

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3q

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3q

¹H NMR (400 MHz, d_6 -DMSO) spectrum for 3r

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3r

19 F NMR (376 MHz, d_6 -DMSO) spectrum for 3r

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3s

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3s

¹⁹F NMR (376 MHz, *d*₆-DMSO) spectrum for 3s

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3t

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3t

 $^{19}\mathrm{F}$ NMR (376 MHz, $d_6\text{-}\mathrm{DMSO})$ spectrum for 3t

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3u

¹³C NMR (100 MHz, d₆-DMSO) spectrum for 3u

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3v

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3v

 $^{19}\mathrm{F}$ NMR (376 MHz, $d_6\text{-}\mathrm{DMSO})$ spectrum for 3v

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 3w

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 3w

¹⁹F NMR (376 MHz, *d*₆-DMSO) spectrum for 3w

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 4a

¹³C NMR (100 MHz, *d*₆-DMSO) spectrum for 4a

¹⁹F NMR (376 MHz, *d*₆-DMSO) spectrum for 4a

¹H NMR (400 MHz, *d*₆-DMSO) spectrum for 4b

$^{13}\mathrm{C}$ NMR (100 MHz, $d_6\text{-}\mathrm{DMSO}$) spectrum for 4b

¹⁹F NMR (376 MHz, *d*₆-DMSO) spectrum for 4b

¹H NMR (400 MHz, CDCl₃) spectrum for ¹⁸O-2a

¹³C NMR (100 MHz, CDCl₃) spectrum for ¹⁸O-2a

¹⁹F NMR (376 MHz, CDCl₃) spectrum for ¹⁸O-2a

