Electronic Supplementary Information

Palladium/SilverCo-catalyzedsyn-StereoselectiveAsymmetricRing-OpeningReactionsof

Azabenzonorbornadienes with Amides

Guoli Shen,^a Ruhima Khan,^{*a} Haiping Lv, ^a Yong Yang,^b Xia Zhang,^a Yong Zhan,^b Yongyun Zhou^a and Baomin Fan^{*a,c}

- a. YMU-HKBU Joint Laboratory of Traditional Natural Medicine, Yunnan Minzu University, Kunming,650500, China. E-mail: ruhimakhan@yahoo.in (Ruhima Khan); FanBM@ynni.edu.cn (Baomin Fan)
- b. Chongqing Academy of Chinese Materia Medica, Chongqing, 400065, China. Fax: (+86)-23-8902-9008
- c. Key Laboratory of Chemistry in Ethnic Medicinal Resources, Yunnan Minzu University, Kunming, 650500, China.

Table of Contents

A: General Information		S2
B: Procedure for the Reactions		S2
C: Characterization Data of Products		S2
D: NMR Spectra of Products	S11	
E: HPLC Spectra of Products	\$33	
F: X-Ray Crystallography of Compound 3ad		S54

A: General Information

The reactions and manipulations were performed under an atmosphere of argon by using standard Schlenk techniques and Drybox (Mikrouna, Supper 1220/750). Anhydrous DCE (Dichloroethane) was distilled from calcium hydride and stored under argon. ¹H NMR, ¹³C NMR and ³¹P NMR spectra were recorded on Bruker-Avance 400 MHz spectrometer. CDCl₃ was used as solvent. Chemical shifts (δ) were reported in ppm with tetramethylsilane as internal standard, and *J* values were given in Hz. The enantioselective excesses were determined by Agilent 1260 Series HPLC using Daicel AD-H $\$ AS-H $\$ OJ-H and OD-H chiral columns eluted with a mixture of isopropyl alcohol and hexane. Melting points were measured on X-4 melting point apparatus and uncorrected. High resolution mass spectra (HRMS) were performed on a VG Autospec-3000 spectrometer. Column chromatography was performed with silica gel (200-300 mesh) with petroleum ether and ethyl acetate as eluents.

B: Procedure for the reactions

Typical procedure for the asymmetric ring-opening reaction of azabenzonorbornadiene: Pd(OAc)₂ (2.3 mg, 0.01 mmol), (R)-BINAP (7.5 mg, 0.012 mmol) and 1.0 mL DCE were added to a Schlenk tube under argon atmosphere. The resulting solution was stirred at room temperature for 30 min, then AgBF₄ (3.9 mg, 0.02 mmol) was added and stirred for additional 10 min. Azabenzonorbornadiene 1a (48.6 mg, 0.2 mmol) in DCE (1.0 mL) was added to the above mixture and stirred for additional 10 min. After the addition of benzenesulfonamide 2a (94.3 mg, 0.6 mmol) the mixture was stirred at 60 °C under argon atmosphere with TLC monitoring until the complete consumption of 1a. The residue was purified by chromatography on a silica gel column to afford the desired product **3aa** (75.3mg, 94% yield).

C: Characterization Data of Products

tert-butyl ((1*R*,2*S*)-2-(phenylsulfonamido)-1,2-dihydronaphthalen1-yl)carbamate (3aa): White solid, 75.3 mg, 94% yield, 98% ee. mp 186 - 187 °C. $[\alpha]^{26}_{D}$ = +177.7 (c = 0.78, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.88 (d, *J* = 7.6Hz, 2H), 7.63 (t, *J* = 8.0Hz, 1H), 7.55 (t, *J* = 7.2 Hz, 2H), 7.29-7.25 (m, 3H), 7.08 (t, *J* = 4.0 Hz, 1H), 6.45 (d, *J* = 9.6 Hz, 1H), 5.65 (dd, *J* = 9.3, 5.2 Hz, 1H), 5.20 (d, *J* = 9.5 Hz, 1H), 4.97 - 4.90 (m, 2H), 4.25 - 3.78 (m, 1H), 1.51 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.1,

140.4, 133.5, 132.9, 131.9, 129.9, 129.3, 128.8, 128.2, 127.1, 126.4, 125.9, 80.2, 51.3, 51.0, 28.4. HRMS (EI-TOF) calcd for $C_{21}H_{24}N_2O_4S$ [M]⁺: 400.1462. Found: 400.1457. The ee of **3aa** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; $t_{minor} = 9.3 \text{ min}, t_{maior} = 17.5 \text{ min}.$

tert-butyl((1*R*,2*S*)-2-(4-fluorophenylsulfonamido)-1,2-dihydronaphthalen-1-

yl)carbamate (3ab): White solid, 70.3 mg, 84% yield, 98% ee. mp 195 - 197 °C. $[\alpha]^{26}_{D} = +157.9$ (c = 1.10, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.92 - 7.88 (m, 2H), 7.29 - 7.20 (m, 6H), 7.09 (dd, J = 5.0, 3.5 Hz, 1H), 6.48 (d, J = 9.6 Hz, 1H), 5.71 (dd, J = 9.5, 5.1 Hz, 1H), 5.09 (d, J = 9.6 Hz, 1H), 4.89 (t, J = 7.4 Hz, 2H), 4.03-3.99 (m, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 166.4, 163.9, 156.1, 136.6, 133.4, 131.9, 130.1, 129.9, 129.8, 128.8, 128.3, 127.1, 126.3, 126.0, 116.7, 116.4, 80.3, 51.3, 51.2, 28.4. HRMS (EI-TOF) calcd for C₂₁H₂₃FN₂O₄S [M]⁺: 418.1362. Found: 418.1363. The ee of **3ab** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; $t_{minor} = 7.1$ min, $t_{major} = 12.3$ min.

tert-butyl((1*R*,2*S*)-2-(4-chlorophenylsulfonamido)-1,2-dihydronaphthalen-1yl)carbamate (3ac): White solid, 71.3 mg, 82% yield, 98% ee. mp 189 - 191 °C. $[\alpha]^{26}_{D}$ = +176.4 (c = 0.84, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.82 - 7.79 (m, 2H), 7.51 -7.49 (m, 2H), 7.29 - 7.23 (m, 4H), 7.09 - 7.07 (m, 1H), 6.47 (d, *J* = 9.6 Hz, 1H), 5.71 (dd, *J* = 9.5, 5.1 Hz, 1H), 5.10 (d, *J* = 9.6 Hz, 1H), 5.01 (d, *J* = 9.0 Hz, 1H), 4.88 (dd, *J* = 9.5, 5.3 Hz, 1H), 4.03 - 3.98 (m, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.1, 139.4, 138.9, 133.3, 131.9, 130.1, 129.6, 128.8, 128.6, 128.3, 127.2, 126.3, 80.3, 51.3, 51.2, 28.4. HRMS (EI-TOF) calcd for C₂₁H₂₃ClN₂O₄S [M]⁺: 434.1085. Found: 434.1067. The ee of **3ac** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; *t*_{minor}= 8.0 min, *t*_{major} = 15.6 min.

tert-butyl((1*R*,2*S*)-2-(4-bromophenylsulfonamido)-1,2-dihydronaphthalen-1yl)carbamate (3ad): White solid, 73.8 mg, 77% yield, 98% ee. mp 197 - 199 °C. $[\alpha]^{26}_{D}$ = +128.8 (c = 0.08, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.75 - 7.72 (m, 2H), 7.68 - 7.66 (m, 2H), 7.30 - 7.24 (m, 3H), 7.10 - 7.06 (m, 1H), 6.48 (d, *J* = 9.6 Hz, 1H), 5.72 (dd, *J* = 9.5, 5.1 Hz, 1H), 5.10 (d, *J* = 9.6 Hz, 1H), 4.99 (d, *J* = 9.0 Hz, 1H), 4.89 (dd, *J* = 9.5, 5.3 Hz, 1H), 4.03 - 3.99 (m, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.1, 139.5, 133.3, 132.6, 131.9, 130.1, 128.8, 128.7, 128.4, 127.9, 127.2, 126.3, 126.1, 80.4, 51.3, 28.4. HRMS (EI-TOF) calcd for C₂₁H₂₃BrN₂O₄S [M]⁺: 478.0558. Found: 478.0562. The ee of **3ad** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; *t*_{minor} = 8.7 min, *t*_{major} = 18.5 min.

tert-butyl((1*R*,2*S*)-2-(4-methoxyphenylsulfonamido)-1,2-dihydronaphthalen-1yl)carbamate (3ae): White solid, 80.1 mg, 93% yield, 98% ee. mp 185 - 187 °C. $[\alpha]^{26}_{D} = +179.6$ (c = 1.00, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.82 - 7.78 (m, 2H), 7.31 - 7.22 (m, 3H), 7.08 - 7.06 (m, 1H), 7.01 - 6.97 (m, 2H), 6.45 (d, *J* = 9.6 Hz, 1H), 5.66 (dd, *J* = 9.5, 5.3 Hz, 1H), 5.20 (d, *J* = 9.7 Hz, 1H), 4.90 (dd, *J* = 9.6, 5.4 Hz, 1H), 4.75 (d, *J* = 9.2 Hz, 1H), 3.97 - 3.92 (m, 1H), 3.89 (s, 3H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 163.0, 156.1, 133.6, 131.9, 129.9, 129.3, 128.8, 128.2, 127.0, 126.6, 125.9, 114.4, 80.1, 55.7, 51.3, 50.9, 28.4. HRMS (EI-TOF) calcd for C₂₂H₂₆N₂O₅S [M]⁺: 430.1568. Found: 430.1562. The ee of **3ae** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; *t*_{minor} = 13.1 min, *t*_{major} = 22.7 min.

tert-butyl((1*R*,2*S*)-2-(4-methylphenylsulfonamido)-1,2-dihydronaphthalen-1yl)carbamate (3af): White solid, 72.1 mg, 87% yield, 98% ee. mp 182 - 184 °C. $[\alpha]^{26}_{D}$ = +180.6 (c = 1.02, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.76 - 7.73 (m, 2H), 7.33 - 7.22 (m, 5H), 7.07 (dd, *J* = 5.7, 2.9 Hz, 1H), 6.44 (d, *J* = 9.6 Hz, 1H), 5.64 (dd, *J* = 9.5, 5.3 Hz, 1H), 5.20 (d, *J* = 9.7 Hz, 1H), 4.90 (dd, *J* = 9.6, 5.4 Hz, 1H), 4.78 (d, *J* = 9.1 Hz, 1H), 3.99 - 3.95 (m, 1H), 2.45 (s, 3H), 1.50 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.2, 143.8, 137.4, 133.5, 131.9, 129.9, 128.8, 128.2, 127.1, 127.0, 126.5, 125.9, 80.1, 51.3, 50.9, 28.4, 21.6. HRMS (EI-TOF) calcd for C₂₂H₂₆N₂O₄S [M]⁺: 414.1620. Found: 414.1613. The ee of **3af** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; *t*_{minor} = 10.2 min, *t*_{major} = 18.6 min.

tert-butyl((1*R*,2*S*)-2-(3-methylphenylsulfonamido)-1,2-dihydronaphthalen-1yl)carbamate (3ag): White solid, 76.3 mg, 92% yield, 98% ee. mp 83 - 85 °C. $[\alpha]^{26}_{D}$ = +154.9 (c = 1.24, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.66 (dd, *J* = 8.8, 4.6 Hz, 2H), 7.41 (d, *J* = 4.6 Hz, 2H), 7.30 - 7.23 (m, 3H), 7.10 - 7.06 (m, 1H), 6.44 (d, *J* = 9.6 Hz, 1H), 5.64 (dd, *J* = 9.4, 5.2 Hz, 1H), 5.20 (d, *J* = 9.4 Hz, 1H), 4.90 - 4.84 (m, 2H), 4.02 - 3.97 (m, 1H), 2.44 (s, 3H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.2, 140.2, 139.5, 133.8, 133.5, 131.9, 129.9, 129.2, 128.8, 128.2, 127.4, 127.1, 126.4, 126.0, 124.2, 80.2, 51.3, 51.0, 28.4, 21.8. HRMS (EI-TOF) calcd for C₂₂H₂₆N₂O₄S [M]⁺: 414.1642. Found: 414.1613. The ee of **3ag** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; *t*_{minor} = 8.3 min, *t*_{major} = 12.4 min.

tert-butyl((1R,2S)-2-(2-methylphenylsulfonamido)-1,2-dihydronaphthalen-1-

yl)carbamate (3ah): White solid, 66.3 mg, 80% yield, 96% ee. mp 93 - 95 °C. $[\alpha]^{26}_{D}$ = +97.5 (c = 1.42, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 8.02 - 7.99 (m, 1H), 7.52-7.48 (m, 1H), 7.36 - 7.32 (m, 2H), 7.29 - 7.24 (m, 3H), 7.11 - 7.07 (m, 1H), 6.47 (d, *J* = 9.6 Hz, 1H), 5.67 (dd, *J* = 9.6, 5.1 Hz, 1H), 5.15 (d, *J* = 9.6 Hz, 1H), 4.93 (d, *J* = 9.2 Hz, 1H), 4.87 (dd, *J* = 9.5, 5.3 Hz, 1H), 3.96 - 3.91 (m, 1H), 2.59 (s, 3H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.1, 137.9, 136.9, 133.5, 133.2, 131.9, 129.8, 128.8, 128.3, 127.1, 126.6, 126.4, 126.2, 80.2, 51.4, 51.1, 28.4, 20.3. HRMS (EI-TOF) calcd for C₂₂H₂₆N₂O₄S [M]⁺: 414.1618. Found: 414.1613. The ee of **3ah** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; *t*_{minor} = 8.4 min, *t*_{major} = 13.8 min.

tert-butyl((1*R*,2*S*)-2-(thiophene-2-sulfonamido)-1,2-dihydronaphthalen-1yl)carbamate (3ai): White solid, 73.2 mg, 90% yield, 98% ee. mp 177 - 179 °C. [α]²⁶_D = +237.5 (c = 1.26, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.63 (dd, J = 3.4, 2.0 Hz, 2H), 7.32 - 7.25 (m, 3H), 7.12 - 7.07 (m, 2H), 6.49 (d, J = 9.6 Hz, 1H), 5.73 (dd, J = 9.5, 5.2 Hz, 1H), 5.20 (d, J = 9.5 Hz, 1H), 5.01 (d, J = 9.0 Hz, 1H), 4.93 (dd, J = 9.4, 5.3 Hz, 1H), 4.12 -4.07 (m, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.1, 141.4, 133.5, 132.5, 132.4, 131.9, 130.2, 128.8, 128.3, 127.6, 127.1, 126.1, 126.0, 80.2, 51.5, 51.2, 28.4. HRMS (EI-TOF) calcd for C₁₉H₂₂N₂O₄S₂[M]⁺: 406.1019. Found: 406.1021. The ee of **3ai** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; t_{minor} = 10.4 min, t_{major} = 19.9 min.

tert-butyl((1*R*,2*S*)-2-(methylsulfonamido)-1,2-dihydronaphthalen-1-yl)carbamate (3aj): White solid, 48.7 mg, 72% yield, 98% ee. mp 114 - 117°C. [α]²⁶_D = +163.4 (c = 0.64, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.32 (dd, *J* = 8.3, 4.8 Hz, 1H), 7.30 - 7.24 (m, 2H), 7.14 - 7.11 (m, 1H), 6.59 (d, *J* = 9.6 Hz, 1H), 6.10 (dd, *J* = 9.5, 4.9 Hz, 1H), 5.22 (d, *J* = 9.7 Hz, 1H), 5.01 (dd, *J* = 9.5, 5.5 Hz, 1H), 4.82 (d, *J* = 9.4 Hz, 1H), 4.24 - 4.19 (m, 1H), 2.98 (s, 3H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.0, 133.4, 131.9, 130.1, 128.8, 128.4, 127.2, 126.9, 126.2, 80.3, 51.5, 51.2, 41.6, 28.4. HRMS (EI-TOF) calcd for C₁₆H₂₂N₂O₄S [M]⁺: 338.1297. Found: 338.1300. The ee of **3aj** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; *t*_{minor} = 10.9 min, *t*_{major} = 12.4 min.

di-*tert*-butyl ((1*R*,2*S*)-1,2-dihydronaphthalene-1,2-diyl)dicarbamate (3ak): White solid, 96% yield, 69.2 mg, 95% ee. mp 98 - 100 °C. $[\alpha]^{26}_{D}$ = +60.7 (c = 0.96, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.34 (d, *J* = 3.5 Hz, 1H), 7.28 - 7.22 (m, 2H), 7.10 (dd, *J* = 5.7, 3.0 Hz, 1H), 6.54 (d, *J* = 9.7 Hz, 1H), 5.98 (dd, *J* = 9.5, 4.5 Hz, 1H), 5.01 (s, 2H), 4.72 (d, *J* = 8.2 Hz, 1H), 4.57 (s, 1H), 1.46 (d, *J* = 13.8 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃): 155.8, 155.6, 134.1, 132.2, 129.1, 128.3, 128.1, 127.9, 126.9, 126.7, 79.8, 51.3, 48.1, 28.4, 28.3. HRMS (EI-TOF) calcd for C₂₀H₂₈N₂O₄ [M]⁺: 360.2056. Found: 360.2049. The ee of **3ak** was determined by HPLC analysis using Daicel Chiralcel OD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 98/2, 0.5 mL/min, 254 nm; *t*_{minor} = 24.6 min, *t*_{major} = 31.7 min.

tert-butyl methyl ((1*R*,2*S*)-1,2-dihydronaphthalene-1,2-diyl)dicarbamate (3al): White solid, 59.9 mg, 94% yield, 90% ee. mp 169 - 171 °C. $[\alpha]^{26}_{D}$ = +61.7 (c = 0.58, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.33 (s, 1H), 7.30 - 7.24 (m, 2H), 7.12 (d, *J* = 7.9 Hz, 1H), 6.56 (d, *J* = 9.6 Hz, 1H), 5.99 (dd, *J* = 9.0, 3.6 Hz, 1H), 5.08 - 4.78 (m, 3H), 4.57 (d, *J* = 42.5 Hz, 1H), 3.71 (d, *J* = 23.8 Hz, 3H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.9, 155.9, 134.0, 132.1, 129.2, 128.4, 128.3, 127.8, 126.9, 126.8, 80.0, 52.3, 51.3, 49.2, 28.4. HRMS (EI-TOF) calcd for C₁₇H₂₂N₂O₄ [M]⁺: 318.1592. Found: 318.1580. The ee of **3al** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; *t*_{major} = 12.3min, *t*_{minor} = 14.5 min.

tert-butyl ((1*R*,2*S*)-2-benzamido-1,2-dihydronaphthalen-1-yl)carbamate (3am): White solid, 66.3 mg, 91% yield, 90% ee. mp 188 - 189 °C. $[\alpha]^{26}_{D}$ = +15.5 (c = 0.10, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.83 (d, *J* = 7.5 Hz, 2H), 7.51 (t, *J* = 7.3 Hz, 1H), 7.43 (t, *J* = 7.5 Hz, 2H), 7.37 - 7.28 (m, 3H), 7.17 (d, *J* = 7.1 Hz, 2H), 6.60 (d, *J* = 9.4 Hz, 1H), 6.09 (d, *J* = 8.5 Hz, 1H), 5.08 - 5.01 (m, 3H), 1.48 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 167.6, 134.2, 131.6, 128.8, 128.4, 128.3, 127.7, 127.1, 127.0, 80.4, 51.6, 50.2, 28.3. HRMS (EI-TOF) calcd for C₂₂H₂₄N₂O₃ [M]⁺: 364.1794. Found: 364.1787. The ee of **3am** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 254 nm; *t*_{minor} = 11.3 min, *t*_{major} = 17.7 min.

tert-butyl ((1*R*,2*S*)-2-acetamido-1,2-dihydronaphthalen-1-yl)carbamate (3an): White solid, 53.8 mg, 89% yield, 91% ee. mp 202 - 204 °C. $[\alpha]^{26}_{D}$ = +34.9 (c = 0.72, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.33-7.25 (m, 3H), 7.13 (d, *J* = 6.9 Hz, 1H), 6.56 (d, *J* = 9.6 Hz, 1H), 6.08 (d, *J* = 7.0 Hz, 1H), 5.95 (d, *J* = 6.4 Hz, 1H), 5.08 (d, *J* = 8.3 Hz, 1H), 4.93 - 4.88 (m, 2H), 1.99 (s, 3H), 1.47 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 170.6, 156.2, 133.9, 132.2, 129.0, 128.4, 128.4, 128.1, 127.1, 126.9, 80.1, 51.5, 48.2, 28.3, 23.5. HRMS (EI-TOF) calcd for C₁₇H₂₂N₂O₃ [M]⁺: 302.1634. Found: 302.1630. The ee of **3an** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 254 nm; *t*_{minor} = 9.6 min, *t*_{major} =13.3 min.

tert-butyl((1R,2S)-2-((diphenylphosphoryl)amino)-1,2-dihydronaphthalen-1-

yl)carbamate (3ao): White solid, 60.8 mg, 66% yield, 99% ee. mp 116 - 118 °C. $[\alpha]^{26}{}_{D}$ = +67.5 (c = 0.32, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.98 - 7.88 (m, 4H), 7.55 - 7.36 (m, 7H), 7.31 - 7.21 (m, 2H), 7.09 - 7.07 (m, 1H), 6.67 (d, *J* = 9.5 Hz, 1H), 6.54 (d, *J* = 9.6 Hz, 1H), 6.17 (dd, *J* = 9.5, 5.3 Hz, 1H), 4.97 (dd, *J* = 9.5, 5.0 Hz, 1H), 3.77 - 3.69 (m, 1H), 3.03 (dd, *J* = 11.3, 6.8 Hz, 1H), 1.49 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.4, 134.4, 132.5, 132.4, 132.3, 132.2, 129.1, 128.9, 128.8, 128.7, 128.7, 128.6, 128.5, 127.8, 127.7, 126.7, 126.5, 79.5, 52.7, 49.9, 28.6. ³¹P NMR (CDCl₃): δ 23.46. HRMS (EI-TOF) calcd for C₂₇H₂₉N₂O₃P [M]⁺: 460.1923. Found: 460.1916. The ee of **3ao** was determined by HPLC analysis using Daicel Chiralcel OD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, 254 nm; *t*_{minor} = 6.1 min, *t*_{major} = 9.9 min.

benzyl *tert*-**butyl** ((1*R*,2*S*)-1,2-dihydronaphthalene-1,2-diyl)dicarbamate (3bk): White solid, 95% yield, 96% ee. mp 174 - 176 °C. $[\alpha]^{24}_{D}$ = +72.3 (c = 0.52, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.38 - 7.30 (m, 6H), 7.26 - 7.23 (m, 2H), 7.10 (dd, *J* = 7.0, 1.7 Hz, 1H), 6.54 (d, *J* = 9.6 Hz, 1H), 5.98 (dd, *J* = 9.4, 4.3 Hz, 1H), 5.34 (d, *J* = 9.3 Hz, 1H), 5.15 (s, 2H), 5.05 (dd, *J* = 9.5, 5.4 Hz, 1H), 4.72 (s, 1H), 4.59 (s, 1H), 1.42 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): δ 156.5, 155.7, 136.3, 133.8, 132.1, 129.3, 128.6, 128.4, 128.3, 128.2, 128.2, 127.7, 126.9, 126.6, 80.0, 67.1, 52.2, 48.2, 28.3. HRMS (EI-TOF) calcd for C₂₃H₂₆N₂O₄ [M]⁺: 394.1896. Found: 394.1893. The ee of **3bk** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 240 nm; *t*_{minor} = 8.7 min, *t*_{major} = 14.6 min.

di-*tert*-butyl ((1*R*,2*S*)-6,7-dimethyl-1,2-dihydronaphthalene-1,2-diyl)dicarbamate (3ck): White solid, 73.8 mg, 95% yield, 96% ee. mp 179 - 180 °C. $[\alpha]^{24}_{D}$ = +64.6 (c = 1.48, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.09 (s, 1H), 6.87 (s, 1H), 6.46 (d, *J* = 9.6 Hz, 1H), 5.88 (dd, *J* = 9.2, 4.0 Hz, 1H), 4.93 (s, 2H), 4.73 (d, *J* = 8.3 Hz, 1H), 4.53 (s, 1H), 2.23 (d, *J* = 8.5 Hz, 6H), 1.45 (d, *J* = 16.7 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 155.6, 136.8, 136.3, 131.4, 129.9, 128.9, 128.2, 128.1, 126.9, 79.7, 51.1, 48.4, 28.4, 28.3, 19.8, 19.4. HRMS (EI-TOF) calcd for C₂₂H₃₂N₂O₄ [M]⁺: 388.2368. Found: 388.2362. The ee of **3ck** was determined by HPLC analysis using Daicel ChiralcelAD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 90/10, 1.0 mL/min, 240 nm; *t*_{minor} = 5.7 min, *t*_{major} = 7.4 min.

di-*tert*-butyl ((1*R*,2*S*)-6,7-dibromo-1,2-dihydronaphthalene-1,2-diyl)dicarbamate (3dk): White solid, 78% yield, 91% ee. mp 89 - 91 °C. $[\alpha]^{24}_{D}$ = +49.0 (c = 0.62, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 7.57 (s, 1H), 7.34 (s, 1H), 6.44 (d, *J* = 9.6 Hz, 1H), 6.09 (dd, *J* = 9.4, 4.4 Hz, 1H), 5.03 (d, *J* = 8.6 Hz, 1H), 4.94 - 4.91(m, 1H), 4.55 (d, *J* = 9.8 Hz, 2H), 1.45 (d, *J* = 21.2 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃): δ 155.7, 155.5, 134.9, 132.9, 131.7, 131.4, 129.5, 127.4, 124.1, 124.0, 80.3, 80.2, 50.9, 47.2, 28.4, 28.3. HRMS (EI-TOF) calcd for C₂₀H₂₆N₂O₄Br₂ [M]⁺: 516.0251. Found: 516.0259. The ee of **3dk** was determined by HPLC analysis using Daicel Chiralcel AD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 0.5 mL/min, 240 nm; *t*_{minor} = 9.4 min, *t*_{major} = 10.5 min.

di-*tert*-**butyl**((5*R*,6*S*)-5,6-dihydronaphtho[2,3-d][1,3]dioxole-5,6-diyl)dicarbamate (3ek): White solid, 78% yield, 96% ee. mp 120 - 122 °C. $[\alpha]^{24}_{D} = +38.3$ (c = 0.80, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 6.84 (s, 1H), 6.57 (s, 1H), 6.38 (d, *J* = 9.7 Hz, 1H), 5.92 (d, *J* = 6.8 Hz, 2H), 5.83 (dd, *J* = 9.4, 4.1 Hz, 1H), 4.98 (d, *J* = 8.8 Hz, 1H), 4.91 - 4.80 (m, 1H), 4.75 (d, *J* = 7.8 Hz, 1H), 4.50 (s, 1H), 1.44 (d, *J* = 8.3 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 155.7, 147.3, 147.2, 128.8, 128.6, 126.4, 126.0, 107.9, 107.4, 79.9, 51.4, 48.4, 28.4, 28.3. HRMS (EI-TOF) calcd for C₂₁H₂₈N₂O₆ [M]⁺: 404.1944. Found: 404.1947. The ee of **3ek** was determined by HPLC analysis using Daicel ChiralcelAD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 240 nm; *t*_{minor} = 6.4 min, *t*_{major} = 7.6 min.

di-tert-butyl((6R,7S)-2,3,6,7-tetrahydronaphtho[2,3-b][1,4]dioxine-6,7-

diyl)dicarbamate (3fk): White solid, 92% yield, 96% ee. mp 91 - 93 °C. $[\alpha]^{24}_{D}$ = +57.8 (c = 0.46, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 6.84 (s, 1H), 6.61 (s, 1H), 6.39 (d, *J* = 9.6 Hz, 1H), 5.85 (dd, *J* = 9.5, 4.6 Hz, 1H), 4.95 - 4.86 (m, 2H), 4.68 (d, *J* = 8.2 Hz, 1H), 4.48 (s, 1H), 4.23 (s, 4H), 1.44 (d, *J* = 12.9 Hz, 18H). ¹³C NMR (100 MHz, CDCl₃): δ 155.8, 143.3, 142.9, 128.5, 127.7, 126.1, 126.0, 116.1, 115.8, 79.8, 64.5, 64.4, 51.0, 48.1, 28.4, 28.3. HRMS (EI-TOF) calcd for C₂₂H₃₀N₂O₆ [M]⁺: 418.2102. Found: 418.2104. The ee of **3fk** was determined by HPLC analysis using

Daicel ChiralcelAD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 240 nm; $t_{minor} = 7.2 \text{ min}$, $t_{major} = 9.9 \text{ min}$.

di-tert-butyl((1R,2S)-6,7-dimethoxy-1,2-dihydronaphthalene-1,2-

diyl)dicarbamate (3gk): White solid, 69.0 mg, 82% yield, 97% ee. mp 91 - 93 °C. $[\alpha]^{24}_{D} = +4.4$ (c = 1.34, CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃): δ 6.81 (s, 1H), 6.56 (s, 1H), 6.36 (d, J = 9.5 Hz, 1H), 5.76-5.74 (m, 1H), 4.88 - 4.72 (m, 3H), 4.48 (s, 1H), 3.80 (d, J = 6.5 Hz, 6H), 1.39 (s, 18H). ¹³C NMR (100 MHz, CDCl₃): δ 155.9, 155.7, 148.8, 148.6, 128.6, 127.0, 126.1, 124.9, 110.6, 110.2, 79.8, 56.1, 56.1, 51.1, 48.8, 28.4. HRMS (EI-TOF) calcd for C₂₂H₃₂N₂O₆[M]⁺: 420.2248. Found: 420.2260. The ee of **3gk** was determined by HPLC analysis using Daicel Chiralcel OD-H columns (25 cm × 0.46 cm ID), conditions: *n*-hexane/*i*-PrOH = 80/20, 1.0 mL/min, 240 nm; $t_{minor} = 5.0$ min, $t_{major} = 6.7$ min.

D: NMR Spectra of Products

170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 ppm

7.7.753 7.7.748 7.7.748 7.7.726 7.7.726 7.7.668 7.7.668 7.7.669 7.7.669 7.7.669 7.7.669 7.7.269 7.7.269 7.7.265 7.7.266 7.7.270 7.7.266 7.7.270 7.7.266 7.7.270 7.7.27

S25

E: HPLC Spectra of Products

Racemic:

3aa

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	9.365	вв	0.3197	643.53711	31.06831	50.3758
2	17.206	вв	0.7617	633.93622	12.89164	49.6242

Enantioenriched:

#	[min]		[min]	[mAU* s]	[mAU]	8
1	9.389	BB	0.3221	830.87878	39.70722	1.0747
2	17.089	BB	0.8034	7.64798e4	1473.77979	98.9253

Racemic:

Enantioenriched:

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.103	BB	0.2150	89.83296	6.42899	0.6948
2	12.277	вв	0.5393	1.28391e4	369.60922	99.3052

Racemic:

0.2515 5020.15137 307.41354

0.7014 4986.80176 110.31419

50.1666

49.8334

1

2

7.981 BB 15.627 BB

RetTime Type Width Height Peak Area Area ŝ # [min] [min] [mAU*s] [mAU] -----|----|-----|-----|-----| -----| ---- I 7.990 BB 0.2483 82.25282 5.09647 0.8352 1 2 15.604 BB 0.6984 9765.84766 217.25140 99.1648

Racemic:

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
I		-				
1	8.715	вв	0.2781	4407.02686	243.60928	50.0661
2	18.547	вв	0.8324	4395.39502	81.99196	49.9339

Enantioenriched:

1

2

0.9555

Peak	RefTime	Type	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
		-					
1	13.096	BB	0.4665	3292.96167	108.99734	49.9347	
2	22.823	BB	0.9721	3301.57007	52.32901	50.0653	

Peak	RefTime	Гуре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
	-	-				
1	10.229 B	в	0.3496	3183.48022	140.88254	50.2645
2	18.589 B	B	0.8403	3149.97144	58.58482	49.7355

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	10.282	BB	0.3519	120.35932	5.26160	1.1704
2	18.617	BB	0.8373	1.01633e4	188.42487	98.8296

Enantioenriched:

2

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
	I	-				
1	7.650	BV	0.2664	5109.42480	296.02634	49.2347
2	11.952	вв	0.5832	5268.26465	139.93561	50.7653

Enantioenriched:

2

12.411 BB

474.75104 98.8910

0.6244 1.90593e4

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-			I	
1	10.477	BB	0.3413	6369.62012	288.75998	49.8793
2	19.969	BB	0.8751	6400.43945	114.68821	50.1207

Peak	RetTime Ty	pe Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
		-			
1	10.835 BB	0.3441	2124.20972	94.20878	49.9873
2	12.373 BB	0.4552	2125.28516	71.83150	50.0127

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	10.916	MM	0.3501	15.06394	7.17135e-1	0.6759
2	12.453	вв	0.4496	2213.61353	75.81379	99.3241

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
		-				
1	23.326	BB	1.1503	2866.37085	37.18521	50.9632
2	30.728	BBA	1.2952	2758.02563	31.75651	49.0368

3al

Racemic:

0.3623 3711.73389

156.71568

49.7387

2

14.558 BB

Enantioenriched:

1

2

11.377 BB

17.722 BB

0.6192 5381.94531

266.20831

10.72866

133.81926

4.7132 95.2868

0.3805

[mAU] %	
37 422.25473 49.8384	
74 269.82254 50.1616	
	[mAU] % 17 422.25473 49.8384 74 269.82254 50.1616

3ao Racemic:

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.144	MM	0.3647	32.72740	1.49577	0.5748
2	9.995	BB	0.8008	5660.61963	106.54388	99.4252

3bk

Racemic:

Peak	RetTime	Type	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
			I	I		
1	8.752	вв	0.2600	923.99994	54.45257	50.4136
2	14.629	вв	0.5169	908.83984	27.12661	49.5864

Enantioenriched:

1 2 8.676 BB

14.576 BB

75.07973

0.5115 4018.25293 121.59698

0.2475

1.8342

98.1658

4.67161

Enantioenriched:

Peak	RetTime Type	e Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	8
1	5.064 BB	0.2471	187.90674	11.47426	1.4817
2	6.740 MM	0.4414	1.24937e4	471.76736	98.5183

F: X-Ray Crystallography of Compound 3ad

Crystal data for cu_qsgl359b2_0m: C₂₁H₂₃BrN₂O₄S, M = 479.38, a = 9.4007(2) Å, b = 10.8468(2) Å, c = 21.7267(5) Å, $a = 90^{\circ}$, $\beta = 90^{\circ}$, $\gamma = 90^{\circ}$, V = 2215.42(8) Å³, T = 100(2) K, space group *P*212121, Z = 4, μ (CuK α) = 3.653 mm⁻¹, 13347 reflections measured, 3808 independent reflections ($R_{int} = 0.0426$). The final R_1 values were 0.0364 ($I > 2\sigma(I)$). The final $wR(F^2)$ values were 0.0944 ($I > 2\sigma(I)$). The final R_1 values were 0.0365 (all data). The final $wR(F^2)$ values were 0.0946 (all data). The goodness of fit on F^2 was 1.087. Flack parameter = 0.089(6).

View of a molecule of qsgl359b2 with the atom-labelling scheme.

Displacement ellipsoids are drawn at the 30% probability level.

View of the pack drawing of qsgl359b2. Hydrogen-bonds are shown as dashed lines.

Table 1.Crystal data and structure refinement for cu_qsgl359b2_0m.

Identification code	cu_qsgl359b2_0m			
Empirical formula	C21 H23 Br N2 O4 S			
Formula weight	479.38			
Temperature	100(2) K			
Wavelength	1.54178 Å			
Crystal system	Orthorhombic			
Space group	P212121			
Unit cell dimensions	a = 9.4007(2) Å	α=90°.		
	b = 10.8468(2) Å	β= 90°.		
	c = 21.7267(5) Å	$\gamma = 90^{\circ}$.		
Volume	2215.42(8) Å ³			
Z	4			
Density (calculated)	1.437 Mg/m ³			
Absorption coefficient	3.653 mm ⁻¹			
F(000)	984			
Crystal size	0.710 x 0.250 x 0.220 mm ³			
Theta range for data collection	4.069 to 70.227°.			

Index ranges	-9<=h<=11, -10<=k<=13, -25<=l<=25
Reflections collected	13347
Independent reflections	3808 [R(int) = 0.0426]
Completeness to theta = 67.679°	98.9 %
Absorption correction	Semi-empirical from equivalents
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3808 / 0 / 266
Goodness-of-fit on F ²	1.087
Final R indices [I>2sigma(I)]	R1 = 0.0364, wR2 = 0.0944
R indices (all data)	R1 = 0.0365, wR2 = 0.0946
Absolute structure parameter	0.089(6)
Extinction coefficient	0.0033(3)
Largest diff. peak and hole	0.904 and -0.872 e.Å ⁻³

Table 2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³)

	Х	У	Z	U(eq)
Br(1)	6621(1)	12883(1)	7969(1)	68(1)
S(1)	6869(1)	10605(1)	10679(1)	23(1)
O(1)	7991(3)	8556(3)	8503(1)	35(1)
O(2)	9835(3)	7407(2)	8861(1)	31(1)
O(3)	8119(3)	11123(2)	10956(1)	32(1)
O(4)	5506(3)	10798(2)	10954(1)	34(1)
N(1)	7066(3)	9132(2)	10604(1)	23(1)
N(2)	8098(3)	8146(3)	9491(1)	26(1)
C(1)	6708(4)	12146(3)	8761(2)	32(1)
C(2)	5472(4)	11678(4)	9013(2)	32(1)
C(3)	5524(4)	11182(3)	9600(2)	27(1)
C(4)	6807(4)	11183(3)	9919(2)	21(1)
C(5)	8516(4)	8606(3)	10568(2)	24(1)
C(6)	8616(4)	7637(3)	10060(2)	21(1)
C(7)	8747(4)	7981(3)	8939(2)	22(1)
C(8)	8369(4)	8493(4)	7846(2)	32(1)
C(9)	7210(6)	9287(7)	7559(2)	67(2)
C(10)	7988(4)	12144(4)	9065(2)	31(1)
C(11)	8032(4)	11656(3)	9656(2)	26(1)
C(12)	9783(6)	9110(7)	7749(2)	65(2)
C(13)	8308(12)	7206(5)	7628(3)	95(3)

for cu_qsgl359b2_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(14)	7892(4)	6440(3)	10243(2)	21(1)
C(15)	7981(4)	6080(3)	10864(2)	24(1)
C(16)	8698(4)	6882(3)	11301(2)	30(1)
C(17)	8952(4)	8064(4)	11178(2)	29(1)
C(18)	7364(4)	4960(3)	11042(2)	31(1)
C(19)	6679(4)	4223(3)	10619(2)	34(1)
C(20)	6615(4)	4575(3)	10008(2)	32(1)
C(21)	7217(4)	5681(3)	9821(2)	26(1)

_

Supporting information

Br(1)-C(1)	1.899(4)
S(1)-O(4)	1.430(3)
S(1)-O(3)	1.435(3)
S(1)-N(1)	1.617(3)
S(1)-C(4)	1.767(3)
O(1)-C(7)	1.338(4)
O(1)-C(8)	1.471(4)
O(2)-C(7)	1.209(4)
N(1)-C(5)	1.479(5)
N(1)-H(2)	0.8800
N(2)-C(7)	1.358(5)
N(2)-C(6)	1.439(5)
N(2)-H(11)	0.8800
C(1)-C(10)	1.373(6)
C(1)-C(2)	1.381(6)
C(2)-C(3)	1.386(6)
С(2)-Н(21)	0.9500
C(3)-C(4)	1.390(5)
С(3)-Н(22)	0.9500
C(4)-C(11)	1.384(5)
C(5)-C(17)	1.505(5)
C(5)-C(6)	1.528(5)
C(5)-H(19)	1.0000
C(6)-C(14)	1.519(5)
C(6)-H(18)	1.0000
C(8)-C(13)	1.475(7)
C(8)-C(12)	1.504(7)

Table 3.	Bond lengths [Å] and angles [°] for	cu_qsgl359b2_0m.

S59

 C(8)-C(9)	1.523(7)
C(9)-H(1)	0.9800
C(9)-H(6)	0.9800
C(9)-H(7)	0.9800
C(10)-C(11)	1.390(6)
С(10)-Н(24)	0.9500
С(11)-Н(23)	0.9500
С(12)-Н(5)	0.9800
C(12)-H(3)	0.9800
C(12)-H(4)	0.9800
C(13)-H(8)	0.9800
С(13)-Н(10)	0.9800
С(13)-Н(9)	0.9800
C(14)-C(21)	1.385(5)
C(14)-C(15)	1.407(5)
C(15)-C(18)	1.401(5)
C(15)-C(16)	1.455(6)
C(16)-C(17)	1.332(6)
С(16)-Н(13)	0.9500
С(17)-Н(12)	0.9500
C(18)-C(19)	1.377(6)
C(18)-H(17)	0.9500
C(19)-C(20)	1.382(6)
С(19)-Н(16)	0.9500
C(20)-C(21)	1.387(5)
С(20)-Н(15)	0.9500
C(21)-H(14)	0.9500

O(4)-S(1)-O(3) 120.09(17)

S60

O(4)-S(1)-N(1)	106.85(16)
O(3)-S(1)-N(1)	109.60(16)
O(4)-S(1)-C(4)	108.05(18)
O(3)-S(1)-C(4)	106.24(17)
N(1)-S(1)-C(4)	105.05(15)
C(7)-O(1)-C(8)	122.4(3)
C(5)-N(1)-S(1)	119.5(2)
C(5)-N(1)-H(2)	120.3
S(1)-N(1)-H(2)	120.3
C(7)-N(2)-C(6)	123.8(3)
C(7)-N(2)-H(11)	118.1
C(6)-N(2)-H(11)	118.1
C(10)-C(1)-C(2)	123.1(3)
C(10)-C(1)-Br(1)	118.3(3)
C(2)-C(1)-Br(1)	118.5(3)
C(1)-C(2)-C(3)	118.6(4)
C(1)-C(2)-H(21)	120.7
C(3)-C(2)-H(21)	120.7
C(2)-C(3)-C(4)	119.2(3)
C(2)-C(3)-H(22)	120.4
C(4)-C(3)-H(22)	120.4
C(11)-C(4)-C(3)	121.1(3)
C(11)-C(4)-S(1)	119.3(3)
C(3)-C(4)-S(1)	119.6(3)
N(1)-C(5)-C(17)	110.9(3)
N(1)-C(5)-C(6)	111.1(3)
C(17)-C(5)-C(6)	110.5(3)
N(1)-C(5)-H(19)	108.1
C(17)-C(5)-H(19)	108.1

C(6)-C(5)-H(19)	108.1
N(2)-C(6)-C(14)	113.6(3)
N(2)-C(6)-C(5)	109.6(3)
C(14)-C(6)-C(5)	111.9(3)
N(2)-C(6)-H(18)	107.1
С(14)-С(6)-Н(18)	107.1
С(5)-С(6)-Н(18)	107.1
O(2)-C(7)-O(1)	126.2(3)
O(2)-C(7)-N(2)	124.8(3)
O(1)-C(7)-N(2)	109.0(3)
O(1)-C(8)-C(13)	110.2(4)
O(1)-C(8)-C(12)	109.2(4)
C(13)-C(8)-C(12)	114.2(6)
O(1)-C(8)-C(9)	101.5(3)
C(13)-C(8)-C(9)	112.1(5)
C(12)-C(8)-C(9)	108.9(4)
C(8)-C(9)-H(1)	109.5
C(8)-C(9)-H(6)	109.5
H(1)-C(9)-H(6)	109.5
С(8)-С(9)-Н(7)	109.5
H(1)-C(9)-H(7)	109.5
H(6)-C(9)-H(7)	109.5
C(1)-C(10)-C(11)	118.1(4)
С(1)-С(10)-Н(24)	121.0
С(11)-С(10)-Н(24)	121.0
C(4)-C(11)-C(10)	119.9(3)
С(4)-С(11)-Н(23)	120.1
С(10)-С(11)-Н(23)	120.1
C(8)-C(12)-H(5)	109.5

C(8)-C(12)-H(3)	109.5
H(5)-C(12)-H(3)	109.5
C(8)-C(12)-H(4)	109.5
H(5)-C(12)-H(4)	109.5
H(3)-C(12)-H(4)	109.5
C(8)-C(13)-H(8)	109.5
C(8)-C(13)-H(10)	109.5
H(8)-C(13)-H(10)	109.5
C(8)-C(13)-H(9)	109.5
H(8)-C(13)-H(9)	109.5
H(10)-C(13)-H(9)	109.5
C(21)-C(14)-C(15)	119.8(3)
C(21)-C(14)-C(6)	122.7(3)
C(15)-C(14)-C(6)	117.4(3)
C(18)-C(15)-C(14)	118.7(4)
C(18)-C(15)-C(16)	122.0(3)
C(14)-C(15)-C(16)	119.3(3)
C(17)-C(16)-C(15)	121.8(3)
С(17)-С(16)-Н(13)	119.1
С(15)-С(16)-Н(13)	119.1
C(16)-C(17)-C(5)	120.3(3)
С(16)-С(17)-Н(12)	119.8
С(5)-С(17)-Н(12)	119.8
C(19)-C(18)-C(15)	120.9(4)
С(19)-С(18)-Н(17)	119.6
С(15)-С(18)-Н(17)	119.6
C(18)-C(19)-C(20)	120.0(3)
С(18)-С(19)-Н(16)	120.0
C(20)-C(19)-H(16)	120.0

C(19)-C(20)-C(21)	120.2(4)
С(19)-С(20)-Н(15)	119.9
С(21)-С(20)-Н(15)	119.9
C(14)-C(21)-C(20)	120.4(4)
C(14)-C(21)-H(14)	119.8
C(20)-C(21)-H(14)	119.8

Symmetry transformations used to generate equivalent atoms:

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
Br(1)	66(1)	97(1)	40(1)	44(1)	-16(1)	-22(1)	
S(1)	37(1)	14(1)	18(1)	0(1)	1(1)	2(1)	
O(1)	39(2)	50(2)	16(1)	6(1)	3(1)	15(1)	
O(2)	36(1)	31(1)	26(1)	3(1)	6(1)	11(1)	
O(3)	52(2)	20(1)	23(1)	0(1)	-11(1)	-4(1)	
O(4)	49(2)	25(1)	28(1)	4(1)	12(1)	9(1)	
N(1)	29(2)	16(1)	25(1)	2(1)	2(1)	-2(1)	
N(2)	30(2)	27(1)	20(1)	7(1)	3(1)	10(1)	
C(1)	39(2)	31(2)	28(2)	11(2)	-4(2)	-2(2)	
C(2)	33(2)	31(2)	30(2)	4(2)	-10(2)	-3(2)	
C(3)	29(2)	22(2)	30(2)	2(2)	0(2)	-6(1)	
C(4)	33(2)	12(1)	17(2)	0(1)	0(2)	2(1)	
C(5)	27(2)	16(1)	27(2)	0(1)	-3(2)	-1(1)	
C(6)	27(2)	17(1)	19(2)	4(1)	-1(1)	4(1)	
C(7)	31(2)	15(1)	20(2)	3(1)	1(1)	-1(1)	
C(8)	37(2)	43(2)	16(2)	-1(2)	3(2)	2(2)	
C(9)	60(3)	116(5)	25(2)	12(3)	0(2)	28(4)	
C(10)	33(2)	34(2)	27(2)	6(2)	1(2)	-4(2)	
C(11)	25(2)	26(2)	26(2)	5(2)	-3(2)	0(2)	
C(12)	52(3)	110(5)	32(2)	30(3)	-1(2)	-20(3)	
C(13)	194(9)	49(3)	42(3)	-16(3)	-27(5)	-14(5)	
C(14)	25(2)	17(1)	22(2)	0(1)	2(1)	5(1)	
C(15)	31(2)	19(2)	23(2)	5(1)	6(2)	8(1)	
C(16)	43(2)	28(2)	18(2)	4(2)	-1(2)	10(2)	

Table 4.Anisotropic displacement parameters $(Å^2x \ 10^3)$ for cu_qsgl359b2_0m. Theanisotropic displacement factor exponent takes the form: $-2\pi^2$ [$h^2a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

Supporting ir	nformation
---------------	------------

C(17)	34(2)	29(2)	25(2)	-7(2)	-8(2)	5(2)
C(18)	38(2)	21(2)	34(2)	10(2)	14(2)	11(2)
C(19)	30(2)	13(1)	60(3)	8(2)	11(2)	2(1)
C(20)	28(2)	20(2)	49(2)	-6(2)	2(2)	-1(1)
C(21)	27(2)	22(2)	29(2)	-2(2)	0(2)	7(2)

e 5. Hydrogen coordinates ($x \ 10^4$) and isotropic		displacement parameters (Å ² x 10 ³)		
for cu_qsgl359b	o2_0m.			
	х	v	Z	U(eq)
		5		
H(2)	6317	8647	10584	28
H(11)	7316	8590	9502	31
H(21)	4605	11696	8788	38
H(22)	4693	10844	9783	32
H(19)	9191	9289	10467	28
H(18)	9648	7449	10000	26
H(1)	6275	8984	7689	100
H(6)	7281	9244	7109	100
H(7)	7327	10143	7693	100
H(24)	8821	12466	8876	38
H(23)	8900	11648	9880	31
H(5)	9821	9874	7990	97
H(3)	9904	9302	7312	97
H(4)	10547	8557	7883	97
H(8)	9155	6762	7770	143
H(10)	8274	7196	7178	143
H(9)	7454	6806	7793	143
H(13)	8994	6553	11686	35
H(12)	9411	8567	11475	35
H(17)	7419	4705	11459	37
H(16)	6251	3472	10747	41

S67

Supporting information

H(15)	6158	4058	9716	39
H(14)	7165	5920	9401	31

_

Table 6.Torsion angles [°] for cu_qsgl359b2_0m.

O(4)-S(1)-N(1)-C(5)	-156.0(3)
O(3)-S(1)-N(1)-C(5)	-24.4(3)
C(4)-S(1)-N(1)-C(5)	89.4(3)
C(10)-C(1)-C(2)-C(3)	0.0(6)
Br(1)-C(1)-C(2)-C(3)	-177.6(3)
C(1)-C(2)-C(3)-C(4)	0.7(6)
C(2)-C(3)-C(4)-C(11)	-0.8(5)
C(2)-C(3)-C(4)-S(1)	177.6(3)
O(4)-S(1)-C(4)-C(11)	149.2(3)
O(3)-S(1)-C(4)-C(11)	19.1(3)
N(1)-S(1)-C(4)-C(11)	-97.0(3)
O(4)-S(1)-C(4)-C(3)	-29.3(3)
O(3)-S(1)-C(4)-C(3)	-159.4(3)
N(1)-S(1)-C(4)-C(3)	84.5(3)
S(1)-N(1)-C(5)-C(17)	100.9(3)
S(1)-N(1)-C(5)-C(6)	-135.9(3)
C(7)-N(2)-C(6)-C(14)	-97.2(4)
C(7)-N(2)-C(6)-C(5)	136.8(3)
N(1)-C(5)-C(6)-N(2)	52.4(4)
C(17)-C(5)-C(6)-N(2)	175.9(3)
N(1)-C(5)-C(6)-C(14)	-74.5(4)
C(17)-C(5)-C(6)-C(14)	48.9(4)
C(8)-O(1)-C(7)-O(2)	3.8(6)
C(8)-O(1)-C(7)-N(2)	-176.4(3)
C(6)-N(2)-C(7)-O(2)	-1.0(6)
C(6)-N(2)-C(7)-O(1)	179.2(3)
C(7)-O(1)-C(8)-C(13)	61.4(6)

C(7)-O(1)-C(8)-C(12)	-64.8(5)
C(7)-O(1)-C(8)-C(9)	-179.7(4)
C(2)-C(1)-C(10)-C(11)	-0.7(6)
Br(1)-C(1)-C(10)-C(11)	177.0(3)
C(3)-C(4)-C(11)-C(10)	0.2(5)
S(1)-C(4)-C(11)-C(10)	-178.3(3)
C(1)-C(10)-C(11)-C(4)	0.6(6)
N(2)-C(6)-C(14)-C(21)	22.6(5)
C(5)-C(6)-C(14)-C(21)	147.3(3)
N(2)-C(6)-C(14)-C(15)	-160.4(3)
C(5)-C(6)-C(14)-C(15)	-35.6(4)
C(21)-C(14)-C(15)-C(18)	-0.8(5)
C(6)-C(14)-C(15)-C(18)	-177.9(3)
C(21)-C(14)-C(15)-C(16)	179.7(3)
C(6)-C(14)-C(15)-C(16)	2.5(5)
C(18)-C(15)-C(16)-C(17)	-162.1(4)
C(14)-C(15)-C(16)-C(17)	17.4(6)
C(15)-C(16)-C(17)-C(5)	-0.9(6)
N(1)-C(5)-C(17)-C(16)	91.1(4)
C(6)-C(5)-C(17)-C(16)	-32.5(5)
C(14)-C(15)-C(18)-C(19)	-0.1(5)
C(16)-C(15)-C(18)-C(19)	179.4(3)
C(15)-C(18)-C(19)-C(20)	1.1(6)
C(18)-C(19)-C(20)-C(21)	-1.2(6)
C(15)-C(14)-C(21)-C(20)	0.7(5)
C(6)-C(14)-C(21)-C(20)	177.7(3)
C(19)-C(20)-C(21)-C(14)	0.3(6)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(13)-H(8)O(2)	0.98	2.55	3.047(7)	111.1
C(12)-H(4)O(2)	0.98	2.55	3.042(6)	110.8
C(10)-H(24)O(4)#1	0.95	2.49	3.253(5)	137.7
C(9)-H(7)Br(1)	0.98	3.10	4.040(7)	160.3
C(9)-H(6)O(3)#2	0.98	2.57	3.525(6)	166.1
N(1)-H(2)O(2)#3	0.88	2.17	2.922(4)	143.3
C(10)-H(24)O(4)#1	0.95	2.49	3.253(5)	137.7
C(9)-H(7)Br(1)	0.98	3.10	4.040(7)	160.3
C(9)-H(6)O(3)#2	0.98	2.57	3.525(6)	166.1
N(1)-H(2)O(2)#3	0.88	2.17	2.922(4)	143.3
С(13)-Н(8)О(2)	0.98	2.55	3.047(7)	111.1
C(12)-H(4)O(2)	0.98	2.55	3.042(6)	110.8
C(10)-H(24)O(4)#1	0.95	2.49	3.253(5)	137.7
C(9)-H(7)Br(1)	0.98	3.10	4.040(7)	160.3
C(9)-H(6)O(3)#2	0.98	2.57	3.525(6)	166.1
N(1)-H(2)O(2)#3	0.88	2.17	2.922(4)	143.3
C(13)-H(8)O(2)	0.98	2.55	3.047(7)	111.1
C(12)-H(4)O(2)	0.98	2.55	3.042(6)	110.8
C(10)-H(24)O(4)#1	0.95	2.49	3.253(5)	137.7
C(9)-H(7)Br(1)	0.98	3.10	4.040(7)	160.3
C(9)-H(6)O(3)#2	0.98	2.57	3.525(6)	166.1
N(1)-H(2)O(2)#3	0.88	2.17	2.922(4)	143.3
С(13)-Н(8)О(2)	0.98	2.55	3.047(7)	111.1
C(12)-H(4)O(2)	0.98	2.55	3.042(6)	110.8
C(10)-H(24)O(4)#1	0.95	2.49 S71	3.253(5)	137.7

Table 7. Hydrogen bonds for cu_qsgl359b2_0m [Å and °].

C(9)-H(7)Br(1)	0.98	3.10	4.040(7)	160.3
C(9)-H(6)O(3)#2	0.98	2.57	3.525(6)	166.1
N(1)-H(2)O(2)#3	0.88	2.17	2.922(4)	143.3
N(1)-H(2)O(2)#3	0.88	2.17	2.922(4)	143.3
C(9)-H(6)O(3)#2	0.98	2.57	3.525(6)	166.1
C(9)-H(7)Br(1)	0.98	3.10	4.040(7)	160.3
C(10)-H(24)O(4)#1	0.95	2.49	3.253(5)	137.7
C(12)-H(4)O(2)	0.98	2.55	3.042(6)	110.8
C(13)-H(8)O(2)	0.98	2.55	3.047(7)	111.1
N(1)-H(2)O(2)#3	0.88	2.17	2.922(4)	143.3
C(9)-H(6)O(3)#2	0.98	2.57	3.525(6)	166.1
C(9)-H(7)Br(1)	0.98	3.10	4.040(7)	160.3
C(10)-H(24)O(4)#1	0.95	2.49	3.253(5)	137.7
C(12)-H(4)O(2)	0.98	2.55	3.042(6)	110.8
C(13)-H(8)O(2)	0.98	2.55	3.047(7)	111.1
N(1)-H(2)O(2)#3	0.88	2.17	2.922(4)	143.3
C(9)-H(6)O(3)#2	0.98	2.57	3.525(6)	166.1
C(9)-H(7)Br(1)	0.98	3.10	4.040(7)	160.3
C(10)-H(24)O(4)#1	0.95	2.49	3.253(5)	137.7
C(12)-H(4)O(2)	0.98	2.55	3.042(6)	110.8
C(13)-H(8)O(2)	0.98	2.55	3.047(7)	111.1
N(1)-H(2)O(2)#3	0.88	2.17	2.922(4)	143.3
C(9)-H(6)O(3)#2	0.98	2.57	3.525(6)	166.1
C(9)-H(7)Br(1)	0.98	3.10	4.040(7)	160.3
C(10)-H(24)O(4)#1	0.95	2.49	3.253(5)	137.7

Symmetry transformations used to generate equivalent atoms:

#1 x+1/2,-y+5/2,-z+2 #2 -x+3/2,-y+2,z-1/2 #3 x-1/2,-y+3/2,-z+2