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Experimental Section

1. Materials

Unless otherwise noted, chemical reagents and solvents were purchased from commercial suppliers
(Tokyo Chemical Industry (TCI) and Sigma-Aldrich) and used without further purification.

2. Instruments and Methods (Characterization)

The 'H and '*C NMR spectra were recorded on a Bruker DRX 300 spectrometer, and mass spectroscopy
was performed on a JEOL JMS-700 mass spectrometer. A UV—visible spectrophotometer (Thermo
Evolution 600) was used to obtain the absorption spectra. IR spectra were obtained using KBr pellets,
in the range 4004000 cm™!, with a Shimadzu FTIR 8400S instrument. Fluorescence spectra were
obtained using a RF-5301PC spectrophotometer.

2.1 AFM Observation

AFM imaging was performed with an XE-100 instrument and a PPP-NCHR 10 M cantilever (Park
Systems). Samples of supramolecular polymer for AFM were prepared by spin-coating (1,500 rpm)
onto freshly cleaved muscovite mica. Images were recorded in a non-contact mode in the air at RT with
a resolution of 1,024 X 1,024 pixels, using moderate scan rates (0.3 Hz).

2.2 Circular Dichroism (CD) Studies

CD spectra were recorded on a Jasco J-815 CD spectrophotometer. CD spectra were recorded over the
range of 280—400 nm using a quartz cell with a 1 cm path length. Scans were taken at a rate of 100
nm/min with a sampling interval of 1.0 nm and a response time of 1 s.

2.3 Self-Assembled Supramolecular Polymer Preparation

The self-assembled supramolecular polymer (TPAs) were used as an example to describe the
preparation procedure. TPAs (8 X 10 M) were suspended in a septum-capped 5.0 mL glass vial and
heated (~100 °C) until a homogeneous solution was obtained. The solution was sonicated in a bath
sonicator for a few seconds and cooled to ambient temperature to afford the self-assembled
supramolecular polymer.



2.4 DFT

Quantum chemical calculations were performed with the Gaussian 09 program3' Computations of TPA-
1 and TPA-3 are so challenging for the full geometry optimization that the pentamers of TPA-1 and
TPA-3 have been used in the theoretical calculations of current studies to reduce the computational
cost. Unless otherwise specified, the calculations regarding TPA-1 and TPA-3 reported hereafter were
performed out with the pentamers of TPA-1 and TPA-3 by employing density functional theory (DFT)
Becke’s three parameter hybrid functions with the nonlocal correlation of Lee—Yang—Parr (B3LYP)
method in the absence of symmetry constraints. The energies include zero-point energy corrections
using the B3LYP/6-31G levels of theory. Further details about the calculations are reported in the
Supporting Information.

25VCD

VCD and IR spectra were measured on an FT/IR-4100 spectrometer with VFT-4000 attachment
(JASCO, Japan) using KBr pellets. The KBr pellet (13 mm diameter) of each sample was inserted
between two BaF2 plates together with 100 um teflon spacer. The signal was accumulated by 2,000
scans (ca. 22 min) at every 90 degrees and averaged. The resolution was 4 cm’!.

2.6 Linear dichroism (LD) Studies

Linear dichroism (LD) spectra were recorded on a Jasco J-815 Spectropolarimeter (150-L Type).
Temperature—dependent spectra were recorded over the range of 280—500 nm using a quartz cell with
a 1 cm path length. Scans were taken at a rate of 100 nm/min with a sampling interval of 1.0 nm and a
response time of 1 s.
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Scheme S1. Synthetic methods for (a) 1, 2 and (b) TPAs.



Supplementary Figures
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Fig. S1 UV-Vis absorption spectra of TPA-1 (black line and black dash), TPA-2 (red line and
red dash) and TPA-3 (blue line and blue dash) in (a) DMSO and (b) toluene at 298 K
(concentrations of all samples were 8.0 x 105 M).
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Fig. S2 Temperature-dependent electronic absorption spectra of (a) TPA-1, (b) TPA-2 and (c)
TPA-3 in toluene at 8.0 x 10> M (electronic absorption spectra were measured every 2 K in
the range from 293 K (blue line) to 363 K (red line)). Plots of electronic absorption intensities
at the absorption maxima (A = 320 nm) of (d) TPA-1, (¢) TPA-2 and (f) TPA-3 as a function

of temperatures.
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Fig. S3 Natural logarithm of the reciprocal of concentration (Cr) as a function of the reciprocal
of elongation temperature T, (van’t Hoff plot) obtained through the heating experiments of (A)
TPA-1, (B) TPA-2 and (C) TPA-3 in toluene under different concentrations.5?-53
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Fig. S4 Temperature-dependent UV-Vis spectra of supramolecular polymer TPA-1 prepared
at (a) 2x 10°M, (b) 3x 10°M, (¢) 6 x 10 M, and (d) 8 x 10> M in toluene (from 293 K to

363 K).
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Fig. S5 Temperature-dependent UV-Vis spectra of supramolecular polymer TPA-2 prepared
at(a)3x 10°M, (b) 4 x 10°M, (c) 6 x 10°M and (d) 8 x 10> M in toluene (from 293 K to 363

K).
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Fig. S6 Temperature-dependent UV-Vis spectra of supramolecular polymer TPA-3 prepared
at (a) 2x 10°M, (b) 3 x 10° M, (¢) 6 x 10° M, and (d) 8 x 10> M in toluene (from 293 K to
363 K).
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Fig. S7 Temperature-dependent degree of (a) TPA-1, (b) TPA-2 and (c) TPA-3 (a4g)
calculated from the apparent absorption coefficients at A = 320 nm observed in the cooling
(blue) and heating (pink) processes in toluene.5% 57
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Fig. S8 Temperature-dependent LD spectra of supramolecular polymer (a) TPA-1, (b) TPA-2
and (c¢) TPA-3 in toluene.5-510 Plot for LD intensity of (d) TPA-1, (¢) TPA-2 and (f) TPA-3
against temperature.
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Fig. S9 DFT calculation of dimeric structures of (a) TPA-1(AA), (b) TPA-1(AG) and TPA-
1(GA).
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Fig. S10 Three-dimensional structures and hydrogen bond length (dy) and interdiscotic angle (
@) and interdiscotic distance (dp) of TPA-1(AA) for (a) anti-parallel (2:1) and (b) parallel (3:0)
conformations.
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Fig. S11 Three-dimensional structures and hydrogen bond length (dy) and interdiscotic angle (
@) and interdiscotic distance (dp) of TPA-3(AA) for (a) anti-parallel (2:1) and (b) parallel (3:0)
conformations.
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Fig. S12 Three-dimensional structures and the carbonyl-phenyl dihedral angles (¢) of
monomer of (A) TPA-1(AA) and (B) TPA-3(AA) for (a) anti-parallel (2:1) and (b) parallel
(3:0) conformations.
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Fig. S13 AFM images of supramolecular polymers (a and b) TPA-1, (c and d) TPA-2 and (e
and f) TPA-3 formed at 298 K (a, ¢ and ¢) and 333 K (b, d, and f).
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Fig. S14 Fiber width distribution of supramolecular polymers (a) TPA-1 (b) TPA-2 and (c)
TPA-3.
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Fig. S15 Temperature-dependent 'H NMR spectra of (a) TPA-1, (b) TPA-2 and (c) TPA-3 in
toluene-dg/CDCl5 (3:7 v/v) (the concentration of samples was 1 x 1073 M). (d) Plot for chemical
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Fig. S16 Temperature-dependent 'H NMR spectra of (a) TPA-1, (b) TPA-2 and (c) TPA-3 in
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Table

Table S1. Comparison of the relative energies between parallel (3:0) and anti-parallel (2:1)
conformations of TPA-1 and TPA-3

TPA-1 TPA-3
. Anti-parallel . Anti-parallel
Parallel (3:0) 2:1) Parallel (3:0) 2:1)
Relative
energy 14.76 0 14.61 0
(kJ/mol)
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Table S2. Calculated carbonyl-phenyl dihedral angle () of TPA-1 and TPA-3 for parallel
(3:0) and anti-parallel (2:1) conformations

TPA-1 TPA-3
Anti-
Parallel . Parallel Anti-parallel _.
(3:0) parallel Difference (3:0) 2:1) Difference

(2:1)

carbonyl- R, 35.08 32.09 2.99 35.72 32.96 2.76

phenyl R, 3155 35.92 437 35.16 39.74 4.58

dihedral angle
@) R; 32.13 39.38 7.25 34.59 33.87 0.72
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Table S3. Calculated hydrogen bond length (dy), angle (%), and interdiscotic distance (dp) of

TPA-1 TPA-3
Parallel  Anti-parallel . Parallel  Anti-parallel .
Differ Differenc
3:0) @1 ifference 3:0) @:1) ifference
deg 1.76 1.78 0.02 1.76 1.78 0.02
R,
dur 1.87 1.89 0.02 1.88 1.89 0.01
Hydrogen dy, 1.77 1.78 0.01 1.76 1.76 0
bond length R,
(@x) s 1.89 1.88 0.01 1.88 1.87 0.01
dm 1.78 1.79 0.01 1.76 1.80 0.02
R,
dur 1.88 1.90 0.02 1.88 1.90 0.02
R, 9.23 9.03 0.2 9.11 8.85 0.26
Smaller
interdiscotic R, 10.48 9.38 1.1 9.01 8.71 0.3
angle (a)
R, 9.61 7.93 1.68 9.10 8.33 0.77
R, 4.85 4.85 0 4.85 4.84 0.01
Interdiscotic
distance (dp) R, 4.81 4.82 0.01 4.84 4.86 0.02
R, 4.81 4.82 0.01 4.85 4.83 0.02

TPA-1 and TPA-3 for parallel (3:0) and anti-parallel (2:1) conformations
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Table S4. Distribution ratios of right- and left-handed helical fibers of supramolecular
polymers TPA-1, TPA-2 and TPA-3 obtained at different temperatures

Temperature [K] Left Right Diameters [nm]

298 K 73% 27% 45
TPA-1

333K 25% 75% 90

298 K 55% 45% 65
TPA-2

333K 22% 78% 100

298 K 75% 25% 100
TPA-3

333K - - 100
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Synthesis of Chain

Synthetic methods for 4

Glycine methyl ester hydrochloride (3.2 g, 25.5 mmol) was dissolved in DCM (80 mL) before
adding TEA (5.4 mL, 38.5 mmol). After stirring for 15 min, the solution was cooled to 0°C,
and undecanoyl chloride (4 g, 19.5 mmol) was added slowly over one hour. The solution was
allowed to warm to RT and was stirred overnight. HC1 (10%, 10 mL) was added and the
mixture was extracted with DCM (3 x 10 mL). The combined organic extracts were washed
with HCI (10%, 10 mL) and brine (10 mL). The solution was dried over Na,SOy, filtered, and
the solvent was evaporated to dryness under reduced pressure. The crude product was dried
under vacuum to give 6 as a white solid in 91% yield. mp 63 — 64 °C; 'H NMR (300 MHz,
DMSO-dg) & ppm 0.86 (t, J = 6.7 Hz, 3H), 3.62 (s, 3H), 8.23 (dd, J = 8.6, 3.4 Hz, 1H), 1.24
(m, 14H), 1.48 (m, 2H), 3.81 (d, /= 5.9 Hz, 2H), 2.11 (t,J= 7.3 Hz, 2H); 3C NMR (75 MHz
DMSO-dy) 6 ppm 173.14, 170.92, 51.95, 35.45, 31.82, 29.50, 25.64, 22.59, 14.33 ESI-MS
(m/z): Calculated for C,4H,;NO; [M+H]" 258.19, Found [M+H]" 258.08.

Synthetic methods for 2

A solution of 4 (4.5 g, 17.5 mmol) in a mixture with MeOH (100 mL) was heated to reflux.
The reaction mixture was then added to aqueous 1 M NaOH.S!!-812 After refluxing for 7 h, the
organic solvents were removed in vacuo, and water (10 mL) was added. The remaining aqueous
solution was acidified to pH 3 by adding 3 N HCI. The resulting precipitate was filtered and
washed with water. The precipitate was dried under vacuum to give 4 as a white solid in 82%
yield. mp 118 — 119 °C; '"H NMR (300 MHz, DMSO-dj) 6 ppm 1.24 (m, 14H), 1.48 (m, 2H),
2.10 (t,J=7.4Hz,2H), 3.72 (d,J=5.9 Hz, 2H), 8.09 (t, /= 5.8 Hz, 1H), 12.46 (d, /= 0.9 Hz,
1H), 0.86 (t, J = 6.7 Hz, 1H); 13C NMR (75 MHz DMSO-dj) 8 ppm 173.14, 170.92, 51.95,
35.45, 31.82, 29.50, 25.64, 22.59, 14.33 ; ESI-MS (m/z): Calculated for C3HsNO; [M+H]*
243.18, Found [M+H]" 244.17.
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Synthetic methods for 3

D-alanine methyl ester hydrochloride (3.5 g, 25 mmol) was dissolved in DCM (80 mL) before
adding TEA (4.8 mL, 39 mmol). After stirring for 15 min, the solution was cooled to 0°C and
undecanoyl chloride (4 g, 19.5 mmol) was added slowly over one hour. The solution was
allowed to warm to RT and stirred overnight. HCI (10%, 10 mL) was added and the mixture
was extracted with DCM (3 x 10 mL). The combined organic extracts were washed with 10%
HCI (10 mL) and brine (10 mL). The solution was dried over Na,SOy, filtered, and the solvent
was evaporated to dryness under reduced pressure. The crude product was dried under vacuum
to give 4 as a white solid in 83% yield. mp 63 — 64 °C; 'H NMR (300 MHz, DMSO-ds) 6 ppm
1.48 0 (m, 2H), 2.09 (t,J= 7.3 Hz, 2H), 3.61 (s, 3H), 4.24 (p, /= 7.3 Hz, 1H), 0.86 (t,J=6.7
Hz, 3H), 8.20 (d, /= 6.9 Hz, 1H), 1.24 (dd, /= 9.4, 3.2 Hz, 17H); *C NMR (75 MHz, DMSO-
ds) & ppm 173.75,172.60, 52.19,47.87, 35.35, 31.78, 29.44, 29.26, 29.18, 29.02, 25.60, 22.57,
17.41, 14.42; ESI-MS (m/z): Calculated for C,sH,oNO; [M+H]" 271.81, Found [M+H]*
272.17.

Synthetic methods for 1

A solution of 3 (3 g, 11 mmol) in a mixture with MeOH (50 mL) was heated to reflux. The
reaction mixture was then added to aqueous 1 M NaOH.5!!- 812 After refluxing for 7 h, the
organic solvents were removed in vacuo, and water (10 mL) was added. The remaining aqueous
solution was acidified to pH 3 by adding 3 N HCI. The resulting precipitate was filtered and
washed with water. The precipitate was dried under vacuum to give 3 as a white solid in 85%
yield. We confirmed the racemization of alanine-appended 1 by HPLC with chiral columns,
which resulted in the presence of pure D-alanine-appended 1. mp 118 — 119 °C; 'TH NMR (300
MHz, DMSO-ds) 6 ppm 2.09 (t,J = 7.3 Hz, 2H), 4.19 (m, 1H), 8.06 (d, J= 6.5 Hz, 1H), 12.42
(dd,J=2.2,1.0 Hz, 1H), 1.25 (d, J= 3.3 Hz, 17H), 0.86 (d, /= 6.9 Hz, 3H), 1.48 (d,J=5.2
Hz, 2H); 3C NMR (75 MHz DMSO-d;) 6 ppm 175.47, 172.46, 47.77, 35.45, 31.78, 29.45,
29.28, 29.18, 29.07, 25.65, 22.57, 17.66, 14.43; ESI-MS (m/z): Calculated for C;4H,7NO5
[M+H]+ 257.20, Found [M+H]+ 257.92.
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Synthesis of TPAs

Synthetic methods for C1

A mixture of 2 (1.67 g, 6.8 mmol), EDC (1.45 g, 7.6 mmol), and HOBt (1.02 g, 7.6 mmol) was
dried in vacuo for 8 h then dissolved in DMF (50 mL). TEA (1.1 mL, 7.5 mmol) was added
after the solution was cooled to 0 °C, then, it was stirred for 1 h. To the mixed solution, tris(4-
aminophenyl)amine (1.0 g, 3.4 mmol) dissolved in DMF (10 mL) was added, and it was stirred
for 36 h at room temperature. The solvent was removed by evaporation. The crude product was
dissolved in DCM and washed with brine three times. The solution was dried over Na,SOy,
filtered, and the solvent was evaporated to dryness under reduced pressure. The crude material
was purified by column chromatography (CDCl;:MeOH = 95:5, R¢= 0.25) and concentrated
under reduced pressure. The crude product was obtained and recrystallized from THF/Hexane
(1:9) to give a orange solid. The orange solid was dissolved in ACN by heating at 80 °C, and
the solution was cooled to RT to afford a beige powder by recrystallization (0.7 g, 27.5%,
yield). mp 190 °C; '"H NMR (300 MHz, DMSO-dy) & ppm 6.85 (dddd, J = 65.0, 9.3, 8.7, 2.5
Hz, 12H), 8.08 (t,J = 5.7 Hz, 2H), 9.80 (s, 2H), 5.02 (s, 2H), 2.14 (t,J = 7.3 Hz, 4H), 1.49 (m,
4H), 0.85 (t, J = 6.6 Hz, 6H), 1.25 (s, 28H), 3.83 (d, J = 5.7 Hz, 4H); 13C NMR (75 MHz
DMSO-ds) & ppm173.12, 167.87, 146.24, 144.18, 133.04, 127.76, 124.10, 122.23, 120.74,
115.39, 43.00, 35.61, 31.78, 29.44, 25.67, 22.57, 14.43; ESI-MS (m/z): Calculated for
C44H64N604 [M+H]+ 74075, Found [M+H]+ 740.49.

Synthetic methods for TPA-1

A mixture of 1 (0.2 g, 0.77 mmol), EDC (0.16 g, 0.83 mmol), and HOBt (0.11 g, 0.81 mmol)
was dried in vacuo for 8 h, then dissolved in DMF (40 mL). TEA (0.13 mL, 1.0 mmol) was
added after the solution was cooled to 0 °C, then, it was stirred for 1 h. To the mixed solution,
C2 (0.5 g, 0.67 mmol) dissolved in DMF (10 mL) was added, and it was stirred for 36 h at
room temperature. The solvent was removed by evaporation. The crude product was dissolved
in DCM and washed with brine three times. The solution was dried over Na,SO,, filtered, and
the solvent was evaporated to dryness under reduced pressure. The crude material was purified
by column chromatography (CDCl;:MeOH = 95:5, R¢y= 0.28) and concentrated under reduced
pressure. The crude product was obtained and recrystallized from THF/Hexane (1:9) to give a
orange solid. The orange solid was dissolved in ACN by heating at 80 °C, and the solution was
cooled to RT to afford a beige powder by recrystallization (0.32 g, 48%, yield). mp 200 °C; 'H
NMR (300 MHz, DMSO-d) & ppm 9.88 (m, 3H), 1.49 (dd, J = 1.3, 0.69 Hz, 6H), 8.11 (m,
3H), 7.49 (d, J = 1.6 Hz, 6H), 6.92 (m, 6H), 2.14 (m, 6H), 3.84 (s, 4H), 0.85 (d, J = 4.2 Hz,
9H), 1.25 (s, 45H), 4.38 (m, 1H); *C NMR (75 MHz DMSO-dy) 6 ppm 14.42, 18.58, 22.57,
25.68, 29.12, 29.20, 29.30, 29.44, 31.78, 35.47, 35.51, 43.06, 49.33, 120.84, 124.04, 124.10,
124.20, 134.50, 143.27, 168.04, 171.62, 172.60, 173.15; ESI-MS (m/z): Calculated for
C58H89N706 [M—H+]_ 97875, Found [M—H]_ 978.69.
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Synthetic methods for C2

A mixture of 1 (2.04 g, 7.92 mmol), EDC (1.6 g, 8.3 mmol), and HOBt (0.9 g, 6.6 mmol) was
dried in vacuo for 8 h, then dissolved in DMF (50 mL). TEA (1.1 mL, 7.5 mmol) was added
after the solution was cooled to 0 °C, then, it was stirred for 1 h. To the mixed solution, tris(4-
aminophenyl)amine (1.0 g, 3.4 mmol) dissolved in DMF (10 mL) was added, and it was stirred
for 36 h at room temperature. The solvent was removed by evaporation. The crude product was
dissolved in DCM and washed with brine three times. The solution was dried over Na,SOy,,
filtered, and the solvent was evaporated to dryness under reduced pressure. The crude material
was purified by column chromatography (CDCl;:MeOH = 95:5, Ry = 0.26) and concentrated
under reduced pressure. The crude product was obtained and recrystallized from THF/Hexane
(1:9) to give an orange solid. The orange solid was dissolved in ACN by heating at 80 °C, and
the solution was cooled to RT to afford a beige powder by recrystallization (0.8 g, 30%, yield).
mp 187 °C; 'H NMR (300 MHz, DMSO-ds) 8 ppm 7.40 (m, 12H), 8.02 (d, J = 7.3 Hz, 2H),
9.83 (s, 2H), 5.02 (s, 2H), 1.48 (m, 4H), 2.12 (t, J = 7.4 Hz, 4H), 0.85 (dd, J = 8.5, 4.8 Hz,
6H), 1.24 (d, J = 9.4 Hz, 34H), 4.38 (t,J= 7.1 Hz, 2H); 3C NMR (75 MHz, DMSO-d,) 6 ppm
14.42, 18.58, 22.57, 25.68, 29.10, 29.19, 29.29, 29.44, 31.78, 35.47, 49.32, 115.37, 120.86,
122.28,124.10, 127.58, 133.17, 134.42, 143.29, 171.60, 172.58; ESI-MS (m/z): Calculated for
C46H68N6O4 [1\/I'+‘H]+ 76908, Found [1\/I'+‘H:|Jr 768.53.

Synthetic methods for TPA-2

A mixture of 2 (0.18 g, 0.74 mmol), EDC (0.15 g, 0.78 mmol), and HOBt (0.1 g, 0.74 mmol)
was dried in vacuo for 8 h, then dissolved in DMF (50 mL). TEA (0.13 mL, 1.0 mmol) was
added after the solution was cooled to 0 °C, then, it was stirred for 1 h. To the mixed solution,
C2 (0.5 g, 0.5 mmol) dissolved in DMF (10 mL) was added, and it was stirred for 36 h at room
temperature. The solvent was removed by evaporation. The crude product was dissolved in
DCM and washed with brine three times. The solution was dried over Na,SQ,, filtered, and the
solvent was evaporated to dryness under reduced pressure. The crude material was purified by
column chromatography (CDCIl;:MeOH = 95:5, R¢= 0.28) and concentrated under reduced
pressure. The crude product was obtained and recrystallized from THF/Hexane (1:9) to give a
white solid. The orange solid was dissolved in ACN by heating at 80 °C, and the solution was
cooled to RT to afford a beige powder by recrystallization (0.32 g, 48%, yield). mp 204 °C; 'H
NMR (300 MHz, DMSO-dg) 6 ppm 6.90 (d, J = 8.8 Hz, 6H), 7.48 (m, 6H), 4.38 (t,J = 7.1 Hz,
2H), 3.83 (d, J = 5.7 Hz, 2H), 2.13 (q, J = 7.3, 7.2 Hz, 48H), 1.48 (m, 6H), 1.26 (d, J = 12.1
Hz, 48H), 0.84 (m, 9H), 9.89 (d, J = 10.5 Hz, 3H), 8.07 (dd, J = 10.6, 6.6 Hz, 3H) 3C NMR
(75 MHz DMSO-dg) 6 ppm 14.43, 18.58, 22.57, 25.68, 29.09, 29.18, 29.27, 29.43, 31.77,
35.47, 35.61, 43.06, 49.32, 120.83, 120.86, 123.98, 124.13, 134.27, 134.45, 143.29, 168.03,
171.61, 172.59, 173.15 ESI-MS (m/z): Calculated for CsoHg;N;O¢ [M-H"]- 992.75, Found [M-
H] 993.42.
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Synthetic methods for TPA-3

A mixture of 3 (2.75 g, 10.7 mmol), Tris(4-aminophenyl)amine (1.0 g, 3.4 mmol), EDC (3.3
g, 17.2 mmol), and HOBt (1.4 g, 10.5 mmol) was dried in vacuo for 8 h, then dissolved in DMF
(50 mL) before adding TEA (4.8 mL, 34.4 mmol). The solution was stirred for 48 h at room
temperature, and the solvent was removed by evaporation. The crude product was dissolved in
chloroform and washed with brine three times. The solution was dried over Na,SO,, filtered,
and the solvent was evaporated to dryness under reduced pressure. The crude material was
purified by column chromatography (CDCl;:MeOH = 95:5, R¢ = 0.3) and concentrated under
reduced pressure. The crude product was obtained and recrystallized from THF/Hexane (1:9)
to give a white solid. (1.8 g, 52%, yield). ; mp 233 °C; 'H NMR (300 MHz, DMSO-d,) 4 ppm
2.12 (t,J=7.3 Hz, 6H), 4.39 (t, J= 7.1 Hz, 3H), 6.90 (d, J = 8.9 Hz, 6H), 7.49 (d, J = 8.9 Hz,
6H), 8.04 (d, J=7.2 Hz, 3H), 9.91 (s, 3H), 0.85 (t, /= 6.6 Hz, 3H), 1.23 (m, 51H), 1.49 (dd, J
= 9.5, 3.4 Hz, 6H); 13C NMR (75 MHz DMSO-d;) 6 ppm 14.42, 18.58, 22.57, 25.68, 29.09,
29.18, 29.28,29.43, 31.77, 25.47, 49.33, 120.87, 124.06, 134.42, 143.29, 171.61, 172.59. HR-
MS (m/z): Calculated for C¢oHosN,Og [M+H]" 1007.7187, Found [M+H]* 1007.6835.
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Fig. S25 HPLC chromatogram of 1 on the chiralpack IA-3 column using
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