Supporting Information

Copper-catalyzed direct C-3 oxidative amidation of quinoxalin-

2(1H)-ones with amidates under microwave irradiation

Jinwei Yuan,^{a,*} Junliang Zhu,^a Junhao Fu,^a Liangru Yang,^a Yongmei Xiao,^a

Pu Mao,^{a,*} Xue Du,^a and Lingbo Qu^{a,b}

^a School of Chemistry and Chemical Engineering, Henan University of Technology; Academician

Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, PR China

^b College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, PR

China

*Corresponding authors:

E-mail: yuanjinweigs@126.com (Jinwei Yuan); maopu@haut.edu.cn (Pu Mao)

List of Contents

- 1. Optimization of reaction conditions
- 2. Copies of spectra of products 3
- 3. NMR and HR MS of the adduct **4** of BHT and benzamide radical

1. Optimization of reaction conditions

Table S1 Screening the loading amount of 1a and 2a^a

Entry	The molar ratio of 1a and 2a (equiv.)	Yields (%) ^b
1	2:1	35
2	1:1	63
3	1:1.5	68
4	1:2	73
5	1:2.5	75

^a Reaction conditions: 1-methylquinoxalin-2(1H)-one 1a (0.2 mmol, 32.0 mg), benzamide 2a, CuBr (0.04 mmol,

5.7 mg), $K_2S_2O_8$ (0.6 mmol, 162 mg) in CH₃CN (2.0 mL) at 100 °C for 0.5 h under microwave irradiation.

^b Isolated yield.

	H ₂ N_O +	catalyst oxidant
1a	2a	3aa

Table S2 Screening the reaction tempearature^a

Entry	Temperature (°C)	Yields (%) ^b
1	20	0
2	60	58
3	70	65
4	80	78
5	90	78
6	100	78

^a Reaction conditions: 1-methylquinoxalin-2(1H)-one 1a (0.2 mmol, 32.0 mg), benzamide 2a (0.5 mmol, 60.5 mg),

CuBr (0.04 mmol, 5.7 mg), $K_2S_2O_8$ (0.6 mmol, 162 mg) in CH₃CN (2.0 mL) for 0.5 h under microwave irradiation.

^b Isolated yield.

	H ₂ N_O +	catalyst oxidant
1a	2a	3aa

Table S3 Screening the reaction times ^a				
Entry	Times (min)	Yields (%) ^b		
1	10	63		
2	20	70		
3	30	78		
4	40	76		

^a Reaction conditions: 1-methylquinoxalin-2(1H)-one 1a (0.2 mmol, 32.0 mg), benzamide 2a (0.5 mmol, 60.5 mg),

CuBr (0.04 mmol, 5.7 mg), $K_2S_2O_8$ (0.6 mmol, 162 mg) in CH₃CN (2.0 mL) under microwave irradiation.

^b Isolated yield.

2. Copies of spectra of products

Fig. 2¹³C NMR spectrum of compound 3aa

Fig. 3 ¹H NMR spectrum of compound 3ab

Fig. 4¹³C NMR spectrum of compound 3ab

Fig. 5 ¹H NMR spectrum of compound **3ac**

Fig. 6¹³C NMR spectrum of compound 3ac

Fig. 7 ¹H NMR spectrum of compound 3ad

Fig. 8 ¹³C NMR spectrum of compound 3ad

Fig. 9¹H NMR spectrum of compound 3ae

Fig. 10¹³C NMR spectrum of compound 3ae

60 50

30 20

ppm

100 90

Fig. 11 ¹⁹F NMR spectrum of compound 3ae

Fig. 12 ¹H NMR spectrum of compound 3af

Fig. 13 ¹³C NMR spectrum of compound 3af

Fig. 14 ¹H NMR spectrum of compound 3ag

Fig. 15 ¹³C NMR spectrum of compound 3ag

Fig. 16 ¹H NMR spectrum of compound 3ah

Fig. 17 ¹³C NMR spectrum of compound 3ah

Fig. 18 ¹H NMR spectrum of compound 3ai

Fig. 19 ¹³C NMR spectrum of compound 3ai

Fig. 20 ¹H NMR spectrum of compound 3ak

Fig. 21 ¹³C NMR spectrum of compound 3ak

Fig. 22 ¹H NMR spectrum of compound 3al

Fig. 23 ¹³C NMR spectrum of compound 3al

Fig. 24 ¹H NMR spectrum of compound 3am

Fig. 25 ¹³C NMR spectrum of compound 3am

Fig. 26 ¹H NMR spectrum of compound 3an

Fig. 27 ¹³C NMR spectrum of compound 3an

Fig. 28 ¹H NMR spectrum of compound 3ao

Fig. 29 ¹³C NMR spectrum of compound 3ao

Fig. 30 ¹H NMR spectrum of compound 3ap

Fig. 31 ¹³C NMR spectrum of compound 3ap

Fig. 32 ¹H NMR spectrum of compound 3aq

Fig. 33 ¹³C NMR spectrum of compound 3aq

Fig. 34 ¹H NMR spectrum of compound 3ar

Fig. 35 ¹³C NMR spectrum of compound 3ar

Fig. 36 ¹H NMR spectrum of compound 3as

Fig. 37 ¹³C NMR spectrum of compound 3as

Fig. 38 ¹H NMR spectrum of compound 3at

Fig. 39 ¹³C NMR spectrum of compound 3at

Fig. 40 ¹H NMR spectrum of compound 3au

Fig. 41 ¹³C NMR spectrum of compound 3au

Fig. 42 ¹H NMR spectrum of compound 3av

Fig. 43 ¹³C NMR spectrum of compound 3av

Fig. 44 ¹H NMR spectrum of compound 3aw

Fig. 45 ¹³C NMR spectrum of compound 3aw

Fig. 46 ¹H NMR spectrum of compound 3ax

Fig. 47 ¹³C NMR spectrum of compound 3ax

Fig. 48 ¹H NMR spectrum of compound 3ay

Fig. 49 ¹³C NMR spectrum of compound 3ay

Fig. 50 ¹H NMR spectrum of compound 3az

Fig. 51 ¹³C NMR spectrum of compound 3az

Fig. 52 ¹H NMR spectrum of compound 3az'

Fig. 53 ¹³C NMR spectrum of compound 3az'

Fig. 54 ¹H NMR spectrum of compound 3az"

Fig. 55 ¹³C NMR spectrum of compound 3az"

Fig. 56 ¹H NMR spectrum of compound 3ba

Fig. 57 ¹³C NMR spectrum of compound 3ba

Fig. 58 ¹H NMR spectrum of compound 3ca

Fig. 59 ¹³C NMR spectrum of compound 3ca

Fig. 60 ¹H NMR spectrum of compound 3da

Fig. 61 ¹³C NMR spectrum of compound 3da

Fig. 62 ¹H NMR spectrum of compound 3ea

Fig. 63 ¹³C NMR spectrum of compound 3ea

Fig. 64 ¹H NMR spectrum of compound 3fa

Fig. 65 ¹³C NMR spectrum of compound 3fa

Fig. 66 ¹H NMR spectrum of compound 3ga

Fig. 67 ¹³C NMR spectrum of compound 3ga

Fig. 68 ¹H NMR spectrum of compound 3ha

Fig. 69 ¹³C NMR spectrum of compound 3ha

Fig. 70 ¹H NMR spectrum of compound 3ia

Fig. 71 ¹³C NMR spectrum of compound 3ia

Fig. 72 ¹H NMR spectrum of compound 3ja

Fig. 73 ¹³C NMR spectrum of compound 3ja

Fig. 74 ¹H NMR spectrum of compound 3ka

Fig. 75 ¹H NMR spectrum of compound 4

3. NMR and HR MS of the adduct 4 of BHT and benzamide radical

Fig. 77 ¹H NMR spectrum of compound 4

Fig. 78 HR MS of the adduct 4 of BHT and benzamide radical