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Experimental 

Synthesis of the ammonium salts 6a and 6b. 
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Synthesis of the bulky aniline derivative 7a. 
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Synthesis of the bulky aniline derivative 7b. 
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1,4-Benzodioxan-2-one (4) 

1,4-Benzodioxan-2-one was prepared according to a literature procedure.1 

Chloroacetyl chloride (8.73 mL, 110 mmol) was added to a solution of catechol (11.0 g, 

100 mmol) and Et3N (27.7 mL, 200 mmol) in CH2Cl2 (100 mL) at 0 °C and then the 

O
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mixture was heated under reflux for 1 day. The reaction mixture was diluted with AcOEt 

(300 mL). The organic phase was washed sequentially with H2O, 10% NaHCO3, and sat. 

NaCl, dried (MgSO4), and concentrated. The residue was purified through gel column 

chromatography (SiO2; hexane/AcOEt, 10:1) to give colorless crystals (9.04 g, 60%). 1H 

NMR (500 MHz, CDCl3) δ: 4.67 (s, 2H), 7.01–7.12 (m, 4H). 13C NMR (125 MHz, CDCl3) 

δ: 64.8, 117.3, 117.5, 123.4, 125.4, 141.0, 142.4, 163.2. 

The 1H and 13C NMR spectra of 6a were identical to those reported previously.1 

 

 

Mono-ammonium salt (6a)2 

 

Et3N (3 drops) was added to a solution of 4-(dimethoxymethyl)benzylamine (1.20 g, 6.62 

mmol) and terephthalaldehyde mono(diethyl acetal) (2.07 g, 9.93 mmol) in CH2Cl2 (23 

mL) at room temperature and then the mixture was stirred for 18 h at the same temperature. 

After addition of Na2SO4 and filtration of the reaction mixture, the filtrate was 

concentrated. The residue was dissolved in EtOH (43 mol). NaBH4 (0.345 g, 17.1 mmol) 

was added to the solution at room temperature. After stirring overnight, 1 N NaOH was 

added to the mixture and then the EtOH was evaporated. The residue was diluted with 

water. The aqueous phase was extracted with CH2Cl2. The combined extracts were dried 

(Na2SO4) and concentrated. The residue was purified chromatographically (SiO2; AcOEt) 

to give a crude product (2.14 g), which was used without further purification.  

A solution of the crude amine in THF (40 mL) and 10% HCl (10 mL) was stirred for 22 

h. The acidic solution was neutralized with sat. Na2CO3 and then the THF was evaporated. 

CH2Cl2 was added. The organic phase was separated, washed with sat. NaCl, dried 

(Na2SO4), and concentrated. The residue was dissolved in Et2O (40 mL). A solution of 

HCl in dioxane (4.2 M, 2.03 mL, 8.59 mmol) was added and then the precipitate was 

collected through filtration and washed with iPr2O. The solid was suspended in acetone 

(35 mL) and H2O (35 mL). NH4PF6 (4.67 g, 28.6 mmol) was added and then the mixture 

was stirred for 3.5 h. After evaporation of the acetone, the precipitate was filtered off and 

washed with water to give a white powder (1.83 g, 47%). 1H NMR (500 MHz, DMSO-

d6, 30 °C) δ: 4.33 (s, 4H), 7.69–7.74 (m, 2H), 7.69–8.01 (m, 4H), 9.38 (br s, 2H), 10.04 

(s, 2H). 13C NMR (125 MHz, DMSO-d6, 30 °C) δ: 50.0, 129.7, 130.6, 136.4, 138.1, 192.8. 

The 1H and 13C NMR spectra of 6a were identical to those reported previously.2 

 

 

Bis-ammnonium salt (6b) 
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Compound 6b (white powder, 4.79 g, 40%) was synthesized from ethylenediamine (0.860 

mL, 12.8 mol) and 4-(dimethoxymethyl)benzylamine (5.60 g, 26.9 mmol), using the 

procedure described above. IR (KBr, νmax, cm–1): 3617, 3549, 3381, 2918, 2763, 1694, 

1612, 1445, 1216, 1179, 1021, 836, 562. 1H NMR (500 MHz, DMSO-d6) δ: 3.25 (br s, 

4H), 4.34 (br s, 4H), 7.69 (d, J = 7.0 Hz, 4H), 8.01 (d, J = 7.0 Hz, 4H), 8.96 (br s, 4H), 

10.05 (s, 2H). 13C NMR (125 MHz, DMSO-d6): δ: 42.5, 49.9, 129.9, 130.4, 192.8. HRMS 

(FAB) calcd. for C18H21N2O2
+ [M – HCl – Cl]+ m/z 297.1598, found 297.1623. 

 

 

 

3,5-Diphenylnitrobenzene (S3)3 

 

Tetrakis(triphenylphosphine) palladium (46.2 mg, 0.040 mmol) was added to a two-phase 

solution of 3,5-dibromonitrobenzene (S2, 1.12 g, 4.00 mmol), phenylboronic acid (1.22 

g, 10.0 mmol), and triphenylphosphine (0.105 g, 0.40 mmol) in toluene (15 mL), EtOH 

(7.5 mL), and 2 M aqueous Na2CO3 (10 mL, 20.0 mmol) and then the mixture was heated 

under reflux for 40 h. After evaporation of the organic solvent, water was added to the 

residue. The aqueous phase was extracted with AcOEt. The combined organic phases 

were washed with sat. Na2CO3 and sat. NaCl, dried (MgSO4), filtered, and concentrated. 

The residue was washed with MeOH to afford a white solid (0.562 g, 55%). 1H NMR 

(500 MHz, CDCl3) δ: 7.43–7.49 (m, 2H), 7.50–7.55 (m, 4H), 7.67–7.71 (m, 4H), 8.12 (t, 

J = 1.5 Hz, 1H), 8.43 (t, J = 1.5 Hz, 4H). 

The 1H NMR spectrum of S3 was identical to that reported previously.3  

 

 

3,5-Diphenylaniline (7a)3 

 

Raney Ni (W-2, catalytic amount) was added to a solution of the nitrobenzene S3 (0.652 

g, 11.2 mmol) and hydrazine monohydrate (0.95 mL, 19.5 mmol) in THF (10 mL) and 

EtOH (10 mL) and then the mixture was heated under reflux overnight. The reaction 

mixture was filtered through Celite and the filtrate was concentrated. The residue was 

washed with AcOEt and hexane to afford a white solid (0.480 g, 83%). 1H NMR (500 

MHz, CDCl3) δ: 3.83 (br s, 2H), 6.90 (d, J = 1.5 Hz, 2H), 7.21 (t, J = 1.5 Hz, 2H), 7.32–

7.38 (m, 2H), 7.41–7.47 (m, 4H), 7.59–7.64 (m, 4H). 

The 1H NMR spectrum of S3 was identical to that reported previously.3 
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Figure S1. VT 1H NMR spectra (600 MHz, DMSO-d6) of the cyclic tetraamide 1, 

recorded at (a) 25, (b) 50, (c) 75, (d) 100, and (e) 125 °C. 
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Figure S2. VT 1H NMR spectra [600 MHz, CDCl3/CD3CN (1:1)] of a mixture of the 

cyclic tetraamide 1 (2.0 mM) and the mono-ammonium salt 6a (1.4 eq), recorded at (a) 

20, (b) 10, (c) 0, and (d) –10 °C. 
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Figure S3a. COSY spectrum (600 MHz, CDCl3, 25 °C) of the [2]rotaxane 8a. 
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Figure S3b. ROESY spectrum (600 MHz, CDCl3, 25 °C) of the [2]rotaxane 8a. 
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Figure S4a. COSY spectrum (600 MHz, CDCl3, 25 °C) of the [2]rotaxane 8b.  
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Figure S4b. ROESY spectrum (600 MHz, CDCl3, 25 °C) of the [2]rotaxane 8b. 
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Figure S5. VT 1H NMR spectra (600 MHz, DMSO-d6) of the [2]rotaxane 8a, recorded 

at (a) 25, (b) 50, (c) 75, (d) 100, and (e) 125 °C. 
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Figure S6. 1H NMR spectra (600 MHz) of the [2]rotaxane 8b in (a) CDCl3 and (b) 

DMSO-d6. 
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Figure S7a. COSY spectrum (600 MHz, DMSO-d6, 25 °C) of the [2]rotaxane 8a. 
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Figure S7b. ROESY spectrum (600 MHz, DMSO-d6, 25 °C) of the [2]rotaxane 8a. 
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Figure S8a. 1H NMR spectrum (500 MHz, CDCl3, 50 °C) of 2a. 

 

 

Figure S8b. 13C NMR spectrum (125 MHz, CDCl3) of 2a. 
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Figure S9a. 1H NMR spectrum (500 MHz, D2O/DMSO-d6, 5:1, 30 °C) of 2b. 

 

 

Figure S9b. 13C NMR spectrum (125 MHz, D2O/DMSO-d6, 5:1, 30 °C) of 2b. 
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Figure S10a. 1H NMR spectrum (500 MHz, CDCl3, 55 °C) of 3.  

 

 

Figure S10b. 13C NMR spectrum (125 MHz, CDCl3, 55 °C) of 3. 
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Figure S11a. 1H NMR spectrum (500 MHz, CDCl3) of 4. 

 

 

Figure S11b. 13C NMR spectrum (125 MHz, CDCl3) of 4. 
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Figure S12a. 1H NMR spectrum (500 MHz, DMSO-d6, 110 °C) of 5. 

 

 

Figure S12b. 13C NMR spectrum (150 MHz, CDCl3) of 5. 
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Figure S13a. 1H NMR spectrum (500 MHz, DMSO-d6, 110 °C) of 1. 

 

Figure S13b. 1H NMR spectrum (500 MHz, CDCl3) of 1. 
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Figure S14a. 1H NMR spectrum (500 MHz, DMSO-d6, 30 °C) of 6a. 

 

 

Figure S14b. 13C NMR spectrum (125 MHz, DMSO-d6, 30 °C) of 6a. 
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Figure S15a. 1H NMR spectrum (500 MHz, DMSO-d6) of 6b. 

 

 

Figure S15b. 13C NMR spectrum (125 MHz, DMSO-d6) of 6b. 
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Figure S16. 1H NMR spectrum (500 MHz, CDCl3) of S3. 

 

 

Figure S17. 1H NMR spectrum (500 MHz, CDCl3) of 7a. 
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Figure S18. 1H NMR spectrum (500 MHz, CDCl3) of 7b. 
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Figure S19a. 1H NMR spectrum (600 MHz, CDCl3) of the [2]rotaxane 8a. 

 

 

Figure S19b. 13C NMR spectrum (150 MHz, CDCl3, 40 °C) of the [2]rotaxane 8a. 
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Figure S20a. 1H NMR spectrum (600 MHz, CDCl3) of the [2]rotaxane 8b. 

 

 

Figure S20b. 13C NMR spectrum (150 MHz, CDCl3) of the [2]rotaxane 8b. 
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