Supporting Information

Transition-metal-free decarboxylative C3-difluoroarylmethylation of

quinoxalin-2(1*H*)-ones with α , α -difluoroarylacetic acids

Guangfeng Hong,^{a,b} Jinwei Yuan,^{c,*} Junhao Fu,^c Guoyong Pan,^c Zhengwang Wang,^c

Liangru Yang,^c Yongmei Xiao,^c Pu Mao,^c Xiangmin Zhang^{a,*}

^a Department of Chemistry, Fudan University, Shanghai 200433, PR China

^b Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, PR China

^c School of Chemistry and Chemical Engineering, Henan University of Technology; Academician

Workstation for Natural Medicinal Chemistry of Henan Province, Zhengzhou 450001, PR China

*Corresponding authors:

E-mail: yuanjinweigs@126.com (Jinwei Yuan); xmzhang@fudan.edu.cn (Xiangmin Zhang)

Contents

- 1. Screening the reaction conditions
- 2. Copies of spectra of products
- 3. HR MS of the adduct of TEMPO and α, α -difluorophenylmethyl radical

1. Screening the reaction conditions

Table S1 Screening the leading amount of $(NH_4)_2S_2O_8^a$

Entry	The leading amount of (NH ₄) ₂ S ₂ O ₈ (eq)	Yields (%) ^b
1	1.0	10
2	2.0	20
3	2.5	42
4	3.0	60
5	4.0	57

^{a)} Reaction conditions: 1-methylquinoxalin-2(1*H*)-one **1a** (0.2 mmol, 32.0 mg), α , α -difluorophenylacetic acid **2a** (0.24 mmol, 41.3 mg), and (NH₄)₂S₂O₈ in DMSO (2.0 mL) at 60 °C for 3 h under N₂ atmosphere.

^{b)} Isolated yield.

Table S2 Screening the reaction temperature^a

Entry	The reaction temperature	Yields (%) ^b
1	20	0
2	50	21
3	60	60
4	70	58
5	80	50
6	90	46

^{a)} Reaction conditions: 1-methylquinoxalin-2(1*H*)-one **1a** (0.2 mmol, 32.0 mg), 2,2-difluoro-2phenylacetic acid **2a** (0.24 mmol, 41.3 mg), and $(NH_4)_2S_2O_8$ (0.6 mmol, 136.8 mg) in DMSO (2.0 mL) for 3 h under N₂ atmosphere.

^{b)} Isolated yield.

Table S3 Screening the molar ratio of 1a with 2a^a

Entry	The molar ratio of 1a and 2a	Yields (%) ^b
1	1:1	37
2	1:1.2	60
3	1:1.5	56
4	1:2	50
5	1:2.5	42

^{a)} Reaction conditions: 1-methylquinoxalin-2(1*H*)-one **1a** (0.2 mmol, 32.0 mg), 2,2-difluoro-2phenylacetic acid **2a**, and $(NH_4)_2S_2O_8$ (0.6 mmol, 136.8 mg) in DMSO (2.0 mL) at 60 °C for 3 h under N₂ atmosphere.

^{b)} Isolated yield.

2. Copies of spectra of products

Fig. S1 ¹H NMR spectrum of compound 3aa

Fig. S2 ¹³C NMR spectrum of compound 3aa

Fig. S3 ¹⁹F NMR spectrum of compound 3aa

Fig. S4 ¹H NMR spectrum of compound 3ab

Fig. S5 ¹³C NMR spectrum of compound 3ab

Fig. S6 ¹⁹F NMR spectrum of compound 3ab

Fig. S7 ¹H NMR spectrum of compound **3ac**

Fig. S8 ¹³C NMR spectrum of compound 3ac

Fig. S9 ¹⁹F NMR spectrum of compound 3ac

Fig. S10 ¹H NMR spectrum of compound 3ad

Fig. S11 ¹³C NMR spectrum of compound 3ad

Fig. S12 ¹⁹F NMR spectrum of compound 3ad

Fig. S13 ¹H NMR spectrum of compound 3ae

Fig. S14 ¹³C NMR spectrum of compound 3ae

Fig. S15¹⁹F NMR spectrum of compound 3ae

Fig. S16 ¹H NMR spectrum of compound 3af

Fig. S17 ¹³C NMR spectrum of compound 3af

Fig. S18 ¹⁹F NMR spectrum of compound 3af

Fig. S19 ¹H NMR spectrum of compound 3ag

Fig. S20 ¹³C NMR spectrum of compound 3ag

Fig. S21 ¹⁹F NMR spectrum of compound 3ag

Fig. S22 ¹H NMR spectrum of compound 3ah

Fig. S23 ¹³C NMR spectrum of compound 3ah

Fig. S24 ¹⁹F NMR spectrum of compound 3ah

Fig. S25 ¹H NMR spectrum of compound 3ai

Fig. S26 ¹³C NMR spectrum of compound 3ai

Fig. S27 ¹⁹F NMR spectrum of compound 3ai

Fig. S28 ¹H NMR spectrum of compound 3aj

Fig. S29¹³C NMR spectrum of compound 3aj

Fig. S30 ¹⁹F NMR spectrum of compound 3aj

Fig. S31 ¹H NMR spectrum of compound 3ak

Fig. S32 ¹³C NMR spectrum of compound 3ak

Fig. S33 ¹⁹F NMR spectrum of compound 3ak

Fig. S34 ¹H NMR spectrum of compound 3al

Fig. S35 ¹³C NMR spectrum of compound 3al

Fig. S36 ¹⁹F NMR spectrum of compound 3al

Fig. S37 ¹H NMR spectrum of compound 3am

Fig. S38 ¹³C NMR spectrum of compound 3am

Fig. S39 ¹⁹F NMR spectrum of compound 3am

Fig. S40 ¹H NMR spectrum of compound 3an

Fig. S41 ¹³C NMR spectrum of compound 3an

Fig. S42 ¹⁹F NMR spectrum of compound 3an

Fig. S43 ¹H NMR spectrum of compound 3ao

Fig. S44 ¹³C NMR spectrum of compound 3ao

Fig. S45 ¹⁹F NMR spectrum of compound 3ao

Fig. S46 ¹H NMR spectrum of compound 3ap

Fig. S47 ¹³C NMR spectrum of compound 3ap

Fig. S48 ¹⁹F NMR spectrum of compound 3ap

Fig. S50 ¹³C NMR spectrum of compound 3ba

Fig. S51 ¹⁹F NMR spectrum of compound 3ba

Fig. S52 ¹H NMR spectrum of compound 3ca

Fig. S53 ¹³C NMR spectrum of compound 3ca

Fig. S54 ¹⁹F NMR spectrum of compound 3ca

Fig. S55 ¹H NMR spectrum of compound 3da

Fig. S56 ¹³C NMR spectrum of compound 3da

Fig. S57 ¹⁹F NMR spectrum of compound 3da

Fig. S58 ¹H NMR spectrum of compound 3ea

Fig. S59 ¹³C NMR spectrum of compound 3ea

Fig. S60 ¹⁹F NMR spectrum of compound 3ea

Fig. S61 ¹H NMR spectrum of compound 3fa

Fig. S62 ¹³C NMR spectrum of compound 3fa

Fig. S63 ¹⁹F NMR spectrum of compound 3fa

Fig. S64 ¹H NMR spectrum of compound 3ga

10 ppm

Fig. S65 ¹³C NMR spectrum of compound 3ga

Fig. S66 ¹⁹F NMR spectrum of compound 3ga

Fig. S67 ¹H NMR spectrum of compound 3ha

Fig. S68 ¹³C NMR spectrum of compound 3ha

Fig. S69¹⁹F NMR spectrum of compound 3ha

Fig. S71 ¹³C NMR spectrum of compound 3ia

Fig. S72 ¹⁹F NMR spectrum of compound 3ia

Fig. S73 ¹H NMR spectrum of compound 3ja

Fig. S74 ¹³C NMR spectrum of compound 3ja

Fig. S75 ¹⁹F NMR spectrum of compound 3ja

Fig. S77 ¹³C NMR spectrum of compound 3ka

Fig. S78 ¹⁹F NMR spectrum of compound 3ka

Fig. S80 ¹³C NMR spectrum of compound 3la

Fig. S81 ¹⁹F NMR spectrum of compound 3la

Fig. S82 ¹H NMR spectrum of compound 3ma

Fig. S83 ¹³C NMR spectrum of compound 3ma

Fig. S84 ¹⁹F NMR spectrum of compound 3ma

Fig. S86 ¹³C NMR spectrum of compound 3na

Fig. S87 ¹⁹F NMR spectrum of compound 3na

Fig. S89 ¹³C NMR spectrum of compound 3nh

Fig. S90 ¹⁹F NMR spectrum of compound 3nh

Fig. S91 ¹H NMR spectrum of compound 3nf

Fig. S93 ¹⁹F NMR spectrum of compound 3nf

Fig. S94 HR MS of the adduct of TEMPO and $\alpha,\alpha\text{-difluorobenzyl radical}$