Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Supporting Information

Synthesis of α-Aminoketone from *N*-Sulfonyl-1,2,3-Triazole via *N*-Sulfinyl Imine Generated by Intramolecular Oxygen Transfer

Ze-Feng Xu, Lihong Shan, Wan Zhang, Mengjie Cen, and Chuan-Ying Li*

Table of Contents

 General comments			
		5. Reaction scope	S5
		6. Procedure for derivation of products.	S16
		7. References	S19
8. ¹ H and ¹³ C NMR spectra for new compounds			

1. General comments

Analytical thin layer chromatography (TLC) was performed using Silica Gel HSGF254 pre-coated plates. Flash column chromatography was performed using 200-300 Mesh silica gel. Proton nuclear magnetic resonance (¹H-NMR) spectra were recorded using Brucker Avance IIDMX 400MHz spectrometers. Chemical shift (δ) is reported in parts per million (ppm) downfield relative to tetramethylsilane (TMS, 0.00 ppm) or solvent residual signal in CDCl₃ (7.26 ppm). Coupling constants (*J*) are reported in Hz. Multiplicities are reported using the following abbreviations: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad; Carbon-13 nuclear magnetic resonance (¹³C-NMR) spectra were recorded using a Brucker Avance II DMX 400 spectrometer at 100 MHz. Chemical shift is reported in ppm relative to the carbon resonance of CDCl₃ (77.00 ppm). High resolution mass spectra (HRMS) were obtained by Center for Instrumental Analysis of Zhejiang Sci-Tech University using a Waters TOFMS GCT Premier instrument. The results are reported as m/e (relative ratio). Accurate masses are reported for the molecular ion (M⁺) or a suitable fragment ion. The solvents 1,2-DCE, CHCl₃, DCM were distilled from CaH₂ and kept under nitrogen atmosphere; THF and toluene were distilled over sodium and kept under nitrogen atmosphere before used.

2. Results and discussion on the failure of PIDA and selectfluor

It's confirmed from ¹H NMR that PIDA could react with $Rh_2(piv)_4$ but the newly formed rhodium species could not react with triazole **1a** and most of **1a** could be recovered. It's assumed that OAc group might coordinate with rhodium, which would deactivate the catalyst.

When selectfluor replacing NFSI, ¹H NMR monitor illustrated that selectfluor could accelerate the decomposition of **1a**, but neither **11aa** nor **9a** was detected. If $Rh_2(piv)_4$ (5 mol%) was treated with NFSI (5 mol%) in refluxing DCE for 15 min first, then triazole **1a** (1 equiv) and selectfluor (1 equiv) were added together. The reaction was kept in refluxing DCE until **1a** was disappeared, then **10a** was added and the reaction mixture was stirred for one hour. Only 2.5% yield of the desired product **11aa** was observed from ¹H NMR of the crude mixture with 1,3,5-trimethoxybenzene as internal standard. This indicated that selectfluor was not involved in the desired reaction at all.

3. Synthetic procedures of N-sulfonyl-1,2,3-triazoles

3.1 General procedures for preparation of alkynes

3.1.1 Synthesis of polysubstituted (2,2-dibromovinyl)benzenes (S2)^[1]

General Procedure: To a solution of **S1** (10 mmol) and CBr_4 (6.63 g, 20 mmol) in CH_2Cl_2 (10 mL) was added the solution of PPh₃ (10.48 g, 40 mmol) in CH_2Cl_2 (10 mL) via syringe at 0 °C. After stirring for 30 min, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE) to afford **S2**.

3.1.2 Synthesis of polysubstituted-ethynylbenzene (S3)^[1]

General Procedure: To a solution of **S2** (10 mmol) in THF (10 mL) *n*-BuLi (20 mmol, 8.3 mL, 2.4 M in hexane) was added drop wise at -78 °C. After stirring for 4.0 h, MeOH (8 mL) was added and the mixture was stirred for an additional 1.0 h, then the reaction was quenched with saturated aqueous NH₄Cl solution at 0 °C, and the aqueous phase was extracted with Et₂O. The combined organic extracts were dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE) to afford **S3**.

3.2 General procedure for synthesis of N-sulfonyl-1,2,3-triazoles

$$R^{1} + N_{3} - S^{-} R^{2} \xrightarrow{\text{CuTc, (10 mol \%)}}_{\text{toluene, N}_{2}, 0 \circ \text{C-rt}} R^{1} + N_{3} - S^{-} R^{2} \xrightarrow{\text{CuTc, (10 mol \%)}}_{\text{toluene, N}_{2}, 0 \circ \text{C-rt}}$$

Under a nitrogen atmosphere, dry toluene was added to a flask charged with copper (I) thiophene-2-carboxylate (CuTC, 0.1 equiv in regards to alkyne) and the alkyne **S3** (1 equiv, 0.33 M). The reaction mixture was cooled in an ice-water bath. Subsequently, the sulfonyl azide (1.2 equiv) was added slowly as the limiting reagent to avoid a run-away exotherm, and the reaction mixture was allowed to warm to room temperature and stirred until TLC analysis showed that alkyne was completely consumed. The reaction mixture filtered through a short plug of silica gel. The filtrate was concentrated and then purified by flash chromatography with PE/EtOAc (3:1) as eluent to give the corresponding product **1**.

1a-c, 1e-i and 1k-p were reported in ref 2, 1d was reported in ref 3, 1j was reported in ref 4, 1q was reported in ref 5.

4-(3-bromophenyl)-1-tosyl-1H-1,2,3-triazole (1n): white solid, yield: 68%;

¹H NMR(400 MHz, CDCl₃) δ 8.33 (s, 1H), 8.02 (d, *J* = 8.3 Hz, 2H), 7.98 (t, *J* = 1.6 Hz, 1H), 7.75 (d, *J* = 7.8 Hz, 1H), 7.49 (d, *J* = 8.9 Hz, 1H), 7.40 (d, *J* = 8.3 Hz, 2H), 7.30 (t, *J* = 7.9 Hz, 1H), 2.45 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 147.53, 145.93, 132.97, 132.03, 130.93, 130.53, 129.06, 128.76, 124.62, 123.09, 119.37, 21.84.

HRMS (ESI) calcd for C₁₈H₁₉N₂O₃S⁺ 377.9906, found 377.9910.

4. Synthetic procedures of N-methylindoles^[6]

$$\begin{array}{c} R^{3} \\ \hline \\ R^{3} \\ \hline \\ R^{3} \\ \hline \\ R^{3} \\ \hline \\ 2) CH_{3}I \end{array} \qquad \begin{array}{c} R^{3} \\ \hline \\ R^{3} \\ \\ R^{3} \\ \hline \\ R^{{3$$

General procedure: Under a nitrogen atmosphere, a solution of indole (5.0 mmol) in dry THF (10 mL) was added to a flask charged with NaH (6.0 mmol) at 0 °C. After the mixture was stirred for15 min, a solution of CH₃I (5.0 mmol) in 5 mL THF was added dropwise at 0 °C. The reaction mixture was stirred overnight. Then 10 mL saturated NH₄Cl solution was added. The mixture was extracted with EtOAc (3×20 mL). The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The crude product was purified by column chromatography with PE/EtOAc (20:1) as eluent to afford *N*-methylindole.

5. Reaction scope

General procedure: Under a nitrogen atmosphere, DCE (10 mL) was added to a reaction flask charged with *N*-sulfonyl-1,2,3-triazole **1** (0.5 mmol), NFSI (0.5 mmol), Rh₂(piv)₄ (0.025 mmol) and AgF (0.05 mmol). The reaction was stirred at reflux until TLC indicated the total consumption of the triazole. The reaction mixture was then cooled to rt, and *N*-methylindole **10** (1.5 mmol) was added. After the reaction was completed (monitored by TLC), the reaction mixture was filtered through a short plug of silica gel. The filtrate was concentrated and then purified by flash column chromatography with PE/EtOAc (2:1) as eluent to afford **11**.

4-methyl-N-(1-(1-methyl-1H-indol-3-yl)-2-oxo-2-phenylethyl)benzenesulfonamide (11aa): 180.0 mg, white solid, m.p.: 116-118 °C, yield: 86%;

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.3 Hz, 2H), 7.61 (d, *J* = 7.9 Hz, 1H), 7.49 – 7.41 (m, 3H), 7.29 (t, *J* = 7.8 Hz, 2H), 7.23 – 7.15 (m, 1H), 7.15 – 7.06 (m, 2H), 6.90 (d, *J* = 8.1 Hz, 2H), 6.76 (s, 1H), 6.31 (d, *J* = 8.0 Hz, 1H), 6.13 (d, *J* = 8.0 Hz, 1H), 3.55 (s, 3H), 2.23 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.64, 142.71, 137.39, 137.14, 134.23, 133.61, 128.84, 128.75, 128.68, 128.54, 126.97, 125.95, 122.37, 120.16, 119.13, 109.34, 108.76, 54.62, 32.70, 21.33.

HRMS (ESI) calcd for $C_{24}H_{23}N_2O_3S^+$ 419.1424, found 419.1436.

4-methoxy-*N***-(1-(1-methyl-1***H***-indol-3-yl)-2-oxo-2-phenylethyl)benzenesulfonamide (11ba):** 156.4 mg, light yellow solid, m.p.: 157-159 °C, yield: 72%;

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.5 Hz, 2H), 7.63 (d, *J* = 7.9 Hz, 1H), 7.51 (d, *J* = 8.8 Hz, 2H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.30 (t, *J* = 7.7 Hz, 2H), 7.23 – 7.06 (m, 3H), 6.76 (s, 1H), 6.57 (d, *J* = 8.8 Hz, 2H), 6.30 (d, *J* = 8.1 Hz, 1H), 6.10 (br, 1H), 3.71 (s, 3H), 3.56 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.70, 162.39, 137.17, 134.24, 133.62, 132.04, 129.09, 128.70, 128.56, 126.01, 122.39,

120.17, 119.16, 113.36, 109.35, 108.80, 55.44, 54.58, 32.71.

HRMS (ESI) calcd for $C_{24}H_{23}N_2O_4S^+$ 435.1373, found 435.1367.

4-bromo-*N***-(1-(1-methyl-1***H***-indol-3-yl)-2-oxo-2-phenylethyl)benzenesulfonamide (11ca):** 158.7 mg, white solid, m.p.: 165-166 °C, yield: 66%;

¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 7.7 Hz, 2H), 7.58 (d, *J* = 7.9 Hz, 1H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.35 – 7.29 (m, 4H), 7.24 – 7.18 (m, 1H), 7.17 – 7.06 (m, 4H), 6.77 (s, 1H), 6.34 (d, *J* = 7.4 Hz, 1H), 6.29 (d, *J* = 7.4 Hz, 1H), 3.56 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.95, 139.44, 137.02, 133.94, 133.82, 131.04, 128.84, 128.77, 128.67, 128.30, 126.59, 125.80, 122.57, 120.35, 118.98, 109.56, 108.33, 54.83, 32.74.

HRMS (ESI) calcd for $C_{23}H_{20}BrN_2O_3S^+$ 483.0373, found 483.0382.

2,4,6-triisopropyl-*N***-(1-(1-methyl-1***H***-indol-3-yl)-2-oxo-2-phenylethyl)benzenesulfonamide (11da):** 147.0 mg, white solid, m.p.: 244-246 °C, yield: 55%;

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, J = 7.2 Hz, 2H), 7.49 – 7.39 (m, 2H), 7.30 (t, J = 7.8 Hz, 2H), 7.25 – 7.15 (m, 2H), 7.10-7.03 (m, 3H), 6.72 (s, 1H), 6.33 (d, J = 8.4 Hz, 1H), 5.98 (d, J = 8.4 Hz, 1H), 4.13 (hept, J = 6.8 Hz, 2H), 3.61 (s, 3H), 2.86 (hept, J = 6.8 Hz, 1H), 1.22 (d, J = 6.8 Hz, 12H), 1.05 (d, J = 6.8 Hz, 6H).

¹³C NMR (100 MHz, CDCl₃) δ 195.39, 152.72, 150.26, 137.22, 134.46, 133.52, 133.11, 128.67, 128.56, 128.34, 126.07, 123.54, 122.44, 120.09, 118.96, 109.49, 109.37, 53.53, 34.15, 32.84, 29.89, 24.83, 24.69, 23.68, 23.58.

HRMS (ESI) calcd for $C_{32}H_{39}N_2O_3S^+$ 531.2676, found 531.2683.

N-(1-(1-methyl-1*H*-indol-3-yl)-2-oxo-2-phenylethyl)naphthalene-2-sulfonamide (11ea): 126.8 mg, white solid, yield: 56%;

¹H NMR (400 MHz, CDCl₃) δ 7.86 (s, 1H), 7.78 (d, *J* = 7.6 Hz, 2H), 7.71 (d, *J* = 8.0 Hz, 1H), 7.68 – 7.63 (m, 1H), 7.62

-7.36 (m, 7H), 7.29 - 7.19 (m, 1H), 7.09 (dd, J = 5.8, 2.8 Hz, 2H), 6.86 (dd, J = 5.8, 2.8 Hz, 1H), 6.62 (s, 1H), 6.41 (d, J = 7.4 Hz, 1H), 6.28 (d, J = 7.4 Hz, 1H), 3.21 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.16, 137.33, 136.78, 134.24, 134.01, 133.63, 131.51, 129.34, 129.04, 128.65, 128.53, 128.38, 128.29, 128.09, 127.52, 126.88, 125.96, 122.35, 122.28, 120.21, 118.94, 109.26, 108.43, 54.71, 32.30.
HRMS (ESI) calcd for C₂₇H₂₃N₂O₃S⁺ 455.1424, found 455.1423.

N-(1-(1-methyl-1*H*-indol-3-yl)-2-oxo-2-phenylethyl)methanesulfonamide (11fa): 108.3 mg, white solid, m.p.: 189-190 °C, yield: 63%;

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 2H), 7.79 (d, *J* = 7.8 Hz, 1H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.31 – 7.23 (m, 2H), 7.20 (t, *J* = 6.8 Hz, 1H), 7.02 (s, 1H), 6.46 (d, *J* = 6.8 Hz, 1H), 5.87 (d, *J* = 6.8 Hz, 1H), 3.71 (s, 3H), 2.64 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.56, 137.25, 134.06, 133.80, 128.94, 128.76, 128.71, 125.77, 122.73, 120.59, 119.09, 109.74, 109.21, 54.95, 42.17, 33.01.

HRMS (ESI) calcd for C₁₈H₁₉N₂O₃S⁺ 343.1111, found 343.1110.

N-(1-(1-methyl-1*H*-indol-3-yl)-2-oxo-2-phenylethyl)propane-1-sulfonamide (11ga): 136.5 mg, light yellow solid, m.p.: 138-140 °C, yield: 74%;

¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 7.7 Hz, 2H), 7.77 (d, *J* = 7.8 Hz, 1H), 7.47 (t, *J* = 7.2 Hz, 1H), 7.34 (t, *J* = 7.5 Hz, 2H), 7.30 – 7.21(m, 2H), 7.18 (t, *J* = 6.8 Hz, 1H), 7.03 (s, 1H), 6.44 (d, *J* = 6.7 Hz, 1H), 5.84 (d, *J* = 6.7 Hz, 1H), 3.70 (s, 3H), 2.79 – 2.64(m, 1H), 2.57 – 2.42 (m, 1H), 1.82 – 1.48 (m, 2H), 0.69 (t, *J* = 7.3 Hz, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.78, 137.26, 134.15, 133.72, 128.92, 128.81, 128.68, 125.75, 122.67, 120.48, 119.10, 109.69, 109.41, 55.89, 54.85, 32.98, 17.32, 12.63.

HRMS (ESI) calcd for $C_{20}H_{23}N_2O_3S^+$ 371.1424, found 371.1428.

4-methyl-N-(1-(1-methyl-1*H*-indol-3-yl)-2-oxo-2-(*p*-tolyl)ethyl)benzenesulfonamide (11ha): 107.5 mg, white solid, m.p.: 95-97 °C, yield: 50%;

¹H NMR (400 MHz, CDCl₃) δ 7.72 (d, *J* = 8.2 Hz, 2H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.22 – 7.04 (m, 5H), 6.91 (d, *J* = 8.1 Hz, 2H), 6.74 (s, 1H), 6.28 (d, *J* = 8.0 Hz, 1H), 6.10 (d, *J* = 8.0 Hz, 1H), 3.56 (s, 3H), 2.30 (s, 3H), 2.24 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.16, 144.67, 142.63, 137.45, 137.11, 131.66, 129.26, 128.82, 128.69, 126.94, 125.97, 122.30, 120.10, 119.19, 109.29, 109.07, 54.51, 21.66, 21.34.

HRMS (ESI) calcd for $C_{25}H_{25}N_2O_3S^+$ 433.1580, found 433.1594.

N-(2-(4-methoxyphenyl)-1-(1-methyl-1*H*-indol-3-yl)-2-oxoethyl)-4-methylbenzenesulfonamide (11ia): 95.2 mg, light yellow solid, m.p.: 149-151 °C, yield: 42%;

¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 8.8 Hz, 2H), 7.63 (d, *J* = 7.9 Hz, 1H), 7.45 (d, *J* = 8.1 Hz, 2H), 7.22 – 7.06 (m, 3H), 6.90 (d, *J* = 8.0 Hz, 2H), 6.81 – 6.72 (m, 3H), 6.25 (d, *J* = 8.0 Hz, 1H), 6.18 – 6.07 (m, 1H), 3.77 (s, 3H), 3.56 (s, 3H), 2.23 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 192.99, 163.90, 142.58, 137.50, 137.09, 131.07, 128.77, 128.59, 127.06, 126.94, 125.98, 122.28, 120.08, 119.21, 113.79, 109.35, 109.26, 55.45, 54.28, 32.67, 21.32.

HRMS (ESI) calcd for $C_{25}H_{24}N_2NaO_4S^+$ 471.1349, found 471.1349.

N-(2-(4-(tert-butyl)phenyl)-1-(1-methyl-1*H*-indol-3-yl)-2-oxoethyl)-4-methylbenzenesulfonamide (11ja): 169.2 mg, yellow solid, m.p.: 91-93 °C, yield: 71%;

¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 8.4 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 1H), 7.45 (d, *J* = 8.2 Hz, 2H), 7.31 (d, *J* = 8.4 Hz, 2H), 7.22 – 7.05 (m, 3H), 6.90 (d, *J* = 8.0 Hz, 2H), 6.77 (s, 1H), 6.29 (d, *J* = 7.8 Hz, 1H), 6.12 (d, *J* = 7.8 Hz, 1H), 3.56 (s, 3H), 2.23 (s, 3H), 1.25 (s, 9H).

¹³C NMR (100 MHz, CDCl₃) δ 194.11, 157.55, 142.57, 137.48, 137.11, 131.54, 128.77, 128.70, 126.96, 126.01, 125.52, 122.30, 120.11, 119.18, 109.27, 109.07, 54.46, 35.13, 32.70, 30.95, 21.33.

HRMS (ESI) calcd for $C_{28}H_{31}N_2O_3S^+$ 475.2050, found 475.2052.

N-(2-(4-fluorophenyl)-1-(1-methyl-1*H*-indol-3-yl)-2-oxoethyl)-4-methylbenzenesulfonamide (11ka): 136.5 mg, white solid, m.p.: 90-92 °C, yield: 62%;

¹H NMR (400 MHz, CDCl₃) δ 7.89 – 7.80 (m, 2H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 7.9 Hz, 2H), 7.25 – 7.06 (m, 3H), 6.97 (t, *J* = 8.4 Hz, 2H), 6.93 (d, *J* = 7.9 Hz, 2H), 6.76 (s, 1H), 6.25 (d, *J* = 8.0 Hz, 1H), 6.07 (d, *J* = 8.0 Hz, 1H), 3.58 (s, 3H), 2.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.09, 165.89 (d, *J* = 256.5 Hz), 142.75, 137.28 (d, *J* = 25.8 Hz), 131.40 (d, *J* = 9.5 Hz), 130.60, 128.84, 128.66, 126.96, 125.84, 122.48, 120.25, 119.03, 115.89, 115.67, 109.38, 108.64, 54.59, 32.74, 21.33.

HRMS (ESI) calcd for $C_{24}H_{22}FN_2O_3S^+$ 437.1330, found 437.1331.

N-(2-(4-chlorophenyl)-1-(1-methyl-1*H*-indol-3-yl)-2-oxoethyl)-4-methylbenzenesulfonamide (11la): 164.9 mg, brown solid, m.p.: 69-71 °C, yield: 75%;

¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 8.6 Hz, 2H), 7.56 (d, *J* = 8.0 Hz, 1H), 7.46 (d, *J* = 8.2 Hz, 2H), 7.26 (d, *J* = 8.3 Hz, 2H), 7.22 – 7.06 (m, 3H), 6.92 (d, *J* = 8.1 Hz, 2H), 6.77 (s, 1H), 6.25 (d, *J* = 8.0 Hz, 1H), 6.10 (d, *J* = 8.0 Hz, 1H), 3.56 (s, 3H), 2.24 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.47, 142.78, 140.10, 137.37, 137.15, 132.52, 130.06, 128.92, 128.86, 128.78, 126.95, 125.79, 122.48, 120.27, 118.98, 109.42, 108.42, 54.69, 32.74, 21.35.

HRMS (ESI) calcd for $C_{24}H_{21}CIN_2NaO_3S^+$ 475.0854, found 475.0851.

N-(2-(4-bromophenyl)-1-(1-methyl-1*H*-indol-3-yl)-2-oxoethyl)-4-methylbenzenesulfonamide (11ma): 201.5 mg, white solid, m.p.: 153-155 °C, yield: 81%;

¹H NMR (400 MHz, CDCl₃) δ 7.67 (d, *J* = 8.5 Hz, 2H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.46 (d, *J* = 8.3 Hz, 2H), 7.43 (d, *J* = 8.5 Hz, 2H), 7.22 – 7.05 (m, 3H), 6.92 (d, *J* = 8.1 Hz, 2H), 6.76 (s, 1H), 6.24 (d, *J* = 8.0 Hz, 1H), 6.08 (d, *J* = 8.0 Hz, 1H), 3.57 (s, 3H), 2.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.68, 142.80, 137.37, 137.15, 132.94, 131.92, 130.12, 128.87, 128.75, 128.73, 126.94, 125.79, 122.50, 120.29, 118.97, 109.42, 108.40, 54.65, 32.75, 21.35.

HRMS (ESI) calcd for $C_{24}H_{21}BrN_2NaO_3S^+$ 519.0348, found 519.0351.

N-(2-(3-bromophenyl)-1-(1-methyl-1*H*-indol-3-yl)-2-oxoethyl)-4-methylbenzenesulfonamide (11na): 185.1 mg, brown solid, m.p.: 135-137 °C, yield: 74%;

¹H NMR (400 MHz, CDCl₃) δ 7.93 (t, *J* = 1.6 Hz, 1H), 7.70 (d, *J* = 7.9 Hz, 1H), 7.57 (d, *J* = 8.0 Hz, 2H), 7.47 (d, *J* = 8.2 Hz, 2H), 7.24 – 7.07 (m, 4H), 6.94 (d, *J* = 8.2 Hz, 2H), 6.76 (s, 1H), 6.23 (d, *J* = 8.1 Hz, 1H), 6.02 (d, *J* = 8.1 Hz, 1H), 3.59 (s, 3H), 2.27 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.51, 142.93, 137.25, 137.20, 136.42, 136.01, 131.53, 130.11, 128.92, 128.75, 127.15, 127.00, 125.79, 122.91, 122.55, 120.34, 119.00, 109.43, 108.10, 54.74, 32.78, 21.37.

HRMS (ESI) calcd for $C_{24}H_{21}BrN_2NaO_3S^+$ 519.0348, found 519.0353.

4-methyl-*N***-(1-(1-methyl-1***H***-indol-3-yl)-2-(naphthalen-2-yl)-2-oxoethyl)benzenesulfonamide (11oa): 153.9 mg, brown solid, m.p.: 81-93 °C, yield: 66%;**

¹H NMR (400 MHz, CDCl₃) δ 8.36 (s, 1H), 7.89 – 7.65 (m, 5H), 7.59 – 7.43 (m, 4H), 7.24 – 7.08 (m, 3H), 6.90 (d, J = 8.0 Hz, 2H), 6.79 (s, 1H), 6.47 (d, J = 8.0 Hz, 1H), 6.15 (d, J = 8.0 Hz, 1H), 3.55 (s, 3H), 2.20 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.64, 142.74, 137.43, 137.16, 135.72, 132.23, 131.54, 130.63, 129.71, 128.88, 128.70, 128.67, 128.42, 127.68, 127.00, 126.88, 126.01, 123.99, 122.41, 120.22, 119.19, 109.35, 108.99, 54.72, 32.71, 21.30.
HRMS (ESI) calcd for C₂₈H₂₄N₂NaO₃S⁺ 491.1400, found 491.1405.

N-(2-(6-methoxynaphthalen-2-yl)-1-(1-methyl-1*H*-indol-3-yl)-2-oxoethyl)-4-methylbenzenesulfonamide (11pa): 124.2 mg, white solid, yield: 50%;

¹H NMR (400 MHz, CDCl₃) δ 8.28 (s, 1H), 7.80 (dd, J = 8.7, 1.6 Hz, 1H), 7.75 – 7.65 (m, 2H), 7.61 (d, J = 8.7 Hz, 1H), 7.49 (d, J = 8.2 Hz, 2H), 7.23 – 7.09 (m, 4H), 7.05 (d, J = 2.3 Hz, 1H), 6.90 (d, J = 8.2 Hz, 2H), 6.78 (s, 1H), 6.43 (d, J = 8.2 Hz, 1H), 6.14 (d, J = 8.2 Hz, 1H), 3.90 (s, 3H), 3.56 (s, 3H), 2.21 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.28, 160.12, 142.68, 137.53, 137.45, 137.14, 131.30, 130.48, 129.50, 128.85, 128.61,

127.57, 127.04, 126.99, 126.05, 124.77, 122.36, 120.16, 119.83, 119.25, 109.30, 105.71, 55.43, 54.53, 32.69, 21.29. HRMS (ESI) calcd for C₂₉H₂₆N₂NaO₄S⁺ 521.1505, found 521.1508.

N-(1-(5-fluoro-1-methyl-1*H*-indol-3-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11ab): 148.3 mg, brown solid, m.p.: 152-153 °C, yield: 68%;

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.3 Hz, 2H), 7.50 – 7.43 (m, 3H), 7.32 (t, *J* = 7.8 Hz, 2H), 7.16 (dd, *J* = 9.5, 2.3 Hz, 1H), 7.02 (dd, *J* = 8.9, 4.3 Hz, 1H), 6.95 – 6.87 (m, 3H), 6.85 (s, 1H), 6.23 (d, *J* = 7.8 Hz, 1H), 6.16 (d, *J* = 7.8 Hz, 1H), 3.56 (s, 3H), 2.24 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.38, 158.13 (d, *J* = 236.1 Hz), 142.86, 137.31, 134.07, 133.75, 130.37, 128.86, 128.69, 128.61, 126.97, 126.16 (d, *J* = 10.3 Hz), 110.78 (d, *J* = 26.5 Hz), 110.13 (d, *J* = 9.7 Hz), 108.69 (d, *J* = 4.0 Hz), 104.15 (d, *J* = 24.3 Hz), 54.50, 32.99, 21.31.

HRMS (ESI) calcd for C₂₄H₂₁FN₂NaO₃S⁺ 459.1149, found 459.1149.

N-(1-(5-chloro-1-methyl-1*H*-indol-3-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11ac): 140.7 mg, brown solid, m.p.: 165-166 °C, yield: 62%;

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.3 Hz, 2H), 7.50 – 7.44 (m, 3H), 7.38 (d, *J* = 1.8 Hz, 1H), 7.33 (t, *J* = 7.8 Hz, 2H), 7.10 (dd, *J* = 8.7, 1.8 Hz, 1H), 7.02 (d, *J* = 8.7 Hz, 1H), 6.95 (d, *J* = 8.1 Hz, 2H), 6.84 (s, 1H), 6.21 (d, *J* = 7.9 Hz, 1H), 6.13 (d, *J* = 7.9 Hz, 1H), 3.56 (s, 3H), 2.25 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.38, 142.97, 137.21, 135.52, 134.03, 133.79, 130.13, 128.93, 128.72, 128.65, 127.00, 126.80, 126.11, 122.71, 118.52, 110.43, 108.48, 54.33, 32.96, 21.38.

HRMS (ESI) calcd for C₂₄H₂₁ClN₂NaO₃S⁺ 475.0854, found 475.0861.

N-(1-(5-bromo-1-methyl-1*H*-indol-3-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11ad): 166.7 mg, brown solid, m.p.:169-171 °C, yield: 67%;

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, J = 7.3 Hz, 2H), 7.52 (d, J = 1.7 Hz, 1H), 7.50 – 7.45 (m, 3H), 7.33 (t, J = 7.8

Hz, 2H), 7.23 (dd, *J* = 8.7, 1.7 Hz, 1H), 7.00 – 6.92 (m, 3H), 6.82 (s, 1H), 6.21 (d, *J* = 7.8 Hz, 1H), 6.12 (d, *J* = 7.8 Hz, 1H), 3.56 (s, 3H), 2.26 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.37, 142.95, 137.20, 135.78, 134.03, 133.78, 129.96, 128.93, 128.71, 128.64, 127.42, 126.98, 125.28, 121.58, 113.67, 110.83, 108.42, 54.28, 32.92, 21.39.

HRMS (ESI) calcd for $C_{24}H_{21}BrN_2NaO_3S^+$ 519.0348, found 519.0356.

N-(1-(1,5-dimethyl-1*H*-indol-3-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11ae): 157.4 mg, light yellow solid, m.p.: 166-168 °C, yield: 73%;

¹H NMR (400 MHz, CDCl₃) δ 7.81 (d, *J* = 7.4 Hz, 2H), 7.50 (d, *J* = 8.2 Hz, 2H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.35 – 7.26 (m, 3H), 7.07 – 6.98 (m, 2H), 6.95 (d, *J* = 8.1 Hz, 2H), 6.70 (s, 1H), 6.25 (d, *J* = 8.2 Hz, 1H), 6.03 (d, *J* = 8.2 Hz, 1H), 3.54 (s, 3H), 2.42 (s, 3H), 2.26 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.73, 142.76, 137.40, 135.63, 134.31, 133.55, 129.48, 128.90, 128.68, 128.53, 127.08, 126.19, 124.03, 118.61, 109.06, 108.09, 54.59, 32.75, 21.46, 21.35.

HRMS (ESI) calcd for $C_{25}H_{24}N_2NaO_3S^+$ 455.1400, found 455.1417.

N-(1-(5-(benzyloxy)-1-methyl-1*H*-indol-3-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11af): 163.5 mg, white solid, m.p.: 174-176 °C, yield: 62%;

¹H NMR (400 MHz, CDCl₃) δ 7.80 (d, *J* = 7.4 Hz, 2H), 7.54 (d, *J* = 7.3 Hz, 2H), 7.49 – 7.26 (m, 8H), 7.12 (d, *J* = 2.2 Hz, 1H), 7.00 (d, *J* = 8.9 Hz, 1H), 6.95 – 6.83 (m, 3H), 6.72 (s, 1H), 6.24 (d, *J* = 7.9 Hz, 1H), 6.05 (d, *J* = 7.9 Hz, 1H), 5.16 – 5.05 (m, 2H), 3.53 (s, 3H), 2.20 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.51, 153.58, 142.62, 137.56, 137.38, 134.23, 133.59, 132.55, 129.15, 128.72, 128.67, 128.55, 127.90, 127.82, 126.90, 126.26, 113.51, 110.14, 108.10, 102.23, 70.72, 54.75, 32.85, 21.31.

HRMS (ESI) calcd for $C_{31}H_{28}N_2NaO_4S^+\,547.1662,$ found 547.1667.

N-(1-(4-bromo-1-methyl-1*H*-indol-3-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11ag): 143.1 mg, white solid, m.p.: 191-192 °C, yield: 67%;

¹H NMR (400 MHz, CDCl₃) δ 7.97 (d, *J* = 7.5 Hz, 2H), 7.60 (d, *J* = 8.2 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.38 – 7.29 (m, 3H), 7.13 (d, *J* = 8.0 Hz, 2H), 7.07 – 6.98 (m, 3H), 6.83 (s, 1H), 5.92 (d, *J* = 8.5 Hz, 1H), 3.56 (s, 3H), 2.28 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 195.24, 142.82, 138.24, 137.75, 134.33, 133.40, 130.79, 129.22, 128.94, 128.57, 127.37, 124.97, 123.88, 123.05, 113.81, 109.59, 108.95, 53.19, 33.10, 21.36.

HRMS (ESI) calcd for $C_{24}H_{21}BrN_2NaO_3S^+$ 519.0348, found 519.0349.

N-(1-(1,4-dimethyl-1*H*-indol-3-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11ah): 148.9 mg, light yellow solid, m.p.: 165-167 °C, yield: 69%;

¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 7.7 Hz, 2H), 7.54 (d, *J* = 8.2 Hz, 2H), 7.46 (t, *J* = 7.4 Hz, 1H), 7.31 (t, *J* = 7.7 Hz, 2H), 7.20 – 7.11 (m, 1H), 7.09 – 7.01 (m, 3H), 6.95 (d, *J* = 7.0 Hz, 1H), 6.62 (s, 1H), 6.57 (d, *J* = 9.0 Hz, 1H), 5.71 (br, 1H), 3.55 (s, 3H), 2.88 (s, 3H), 2.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 195.34, 143.04, 137.76, 137.55, 134.81, 133.34, 131.02, 129.33, 129.19, 128.72, 128.57, 127.25, 124.75, 122.59, 122.21, 108.91, 107.48, 55.31, 32.94, 21.42, 20.46.

HRMS (ESI) calcd for $C_{25}H_{25}N_2O_3S^+$ 433.1580, found 433.1585.

N-(1-(1,7-dimethyl-1*H*-indol-3-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11ai): 151.1 mg, light yellow solid, m.p.: 134-136 °C, yield: 70%;

¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 7.7 Hz, 2H), 7.52 – 7.40 (m, 4H), 7.30 (t, *J* = 7.6 Hz, 2H), 7.00 – 6.90 (m, 3H), 6.87 (d, *J* = 7.0 Hz, 1H), 6.63 (s, 1H), 6.25 (d, *J* = 8.1 Hz, 1H), 6.04 (br, 1H), 3.82 (s, 3H), 2.63 (s, 3H), 2.26 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.69, 142.65, 137.40, 135.86, 134.27, 133.58, 130.28, 128.80, 128.64, 128.53, 127.06, 127.02, 125.06, 121.30, 120.47, 117.12, 108.44, 54.51, 36.76, 21.31, 19.51.

HRMS (ESI) calcd for $C_{25}H_{24}N_2NaO_3S^+$ 455.1400, found 455.1407.

N-(1-(1,2-dimethyl-1H-indol-3-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11aj): 144.7 mg, yellow

solid, m.p.: 203-204 °C, yield: 67%;

¹H NMR (400 MHz, CDCl₃) δ 7.82 (d, *J* = 7.6 Hz, 2H), 7.45-7.34 (m, 2H), 7.33 – 7.19 (m, 4H), 7.13 – 6.93 (m, 3H), 6.74 (d, *J* = 8.0 Hz, 2H), 6.36 (d, *J* = 6.0 Hz, 1H), 6.27 (d, *J* = 6.0 Hz, 1H), 3.40 (s, 3H), 2.35 (s, 3H), 2.18 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.11, 142.12, 137.54, 136.58, 135.50, 134.30, 133.47, 128.50, 128.48, 128.17, 126.33, 125.53, 121.13, 120.00, 118.17, 108.54, 104.94, 55.27, 29.22, 21.27, 10.44.

HRMS (ESI) calcd for $C_{25}H_{24}N_2NaO_3S^+$ 455.1400, found 455.1399.

N-(1-(1,3-dimethyl-1*H*-indol-2-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11ak): 108.7 mg, light yellow solid, m.p.: 174-176 °C, yield: 50%;

¹H NMR (400 MHz, Chloroform-d) δ 7.79 (d, *J* = 7.4 Hz, 2H), 7.45 (t, *J* = 7.4 Hz, 1H), 7.40 (d, *J* = 7.9 Hz, 1H), 7.34 – 7.26 (m, 4H), 7.11 (t, *J* = 7.6 Hz, 1H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.94 (d, *J* = 8.2 Hz, 1H), 6.70 (d, *J* = 8.2 Hz, 2H), 6.37 (d, *J* = 4.0 Hz, 1H), 6.29 (d, *J* = 4.0 Hz, 1H), 3.36 (s, 3H), 2.36 (s, 3H), 2.05 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.57, 142.95, 137.17, 136.89, 134.08, 133.93, 128.77, 128.56, 127.65, 127.55, 126.32, 122.57, 119.07, 119.01, 111.72, 108.71, 55.25, 29.86, 21.16, 9.04.

HRMS (ESI) calcd for $C_{25}H_{25}N_2O_3S^+$ 433.1580, found 433.1585.

N-(1-(1*H*-indol-3-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11al): 147.1 mg, brown solid, m.p.: 77-79 °C, yield: 72%;

¹H NMR (400 MHz, CDCl₃) δ 8.31 (s, 1H), 7.76 (d, *J* = 7.6 Hz, 2H), 7.57 (d, *J* = 7.8 Hz, 1H), 7.49 (d, *J* = 8.2 Hz, 2H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.29 – 7.21 (m, 2H), 7.18 (d, *J* = 8.0 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 1H), 7.05 (t, *J* = 7.4 Hz, 1H), 6.90 (d, *J* = 8.0 Hz, 2H), 6.85 (d, *J* = 2.2 Hz, 1H), 6.30 (d, *J* = 8.0 Hz, 1H), 6.18 (d, *J* = 8.0 Hz, 1H), 2.20 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 194.81, 142.98, 137.11, 136.33, 134.15, 133.66, 129.09, 128.65, 128.54, 126.90, 125.31, 124.50, 122.69, 120.42, 118.89, 111.45, 110.20, 54.85, 21.33.

HRMS (ESI) calcd for $C_{23}H_{21}N_2O_3S^+$ 405.1267, found 405.1267.

4-methyl-*N***-(2-oxo-2-phenyl-1-(2,4,6-trimethoxyphenyl)ethyl)benzenesulfonamide (11am):** white solid, yield: 75%;

¹H NMR(400 MHz, CDCl₃) δ 7.78 (d, J = 7.4 Hz, 2H), 7.60 (d, J = 8.1 Hz, 2H), 7.40 (t, J = 7.4 Hz, 1H), 7.27 (t, J = 7.4

Hz, 2H), 7.10 (d, *J* = 8.1 Hz, 2H), 6.30 (d, *J* = 7.7 Hz, 1H), 6.23 (d, *J* = 7.7 Hz, 1H), 5.85 (s, 2H), 3.71 (s, 6H), 3.69 (s, 3H), 2.32 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 194.94, 161.71, 158.26, 142.53, 137.81, 134.77, 132.83, 128.97, 128.18, 128.16, 127.01, 106.68, 90.82, 55.72, 55.24, 53.93, 21.42.

HRMS (ESI) calcd for C₂₄H₂₆NO₆S⁺ 456.1475, found 456.1471.

N-(1-(furan-2-yl)-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (11an): white solid, yield: 62%

¹H NMR(400 MHz, CDCl₃) δ 7.84 (d, *J* = 7.4 Hz, 2H), 7.61 (d, *J* = 8.2 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.40 (t, *J* = 7.8 Hz, 2H), 7.18 (s, 1H), 7.14 (d, *J* = 8.2 Hz, 2H), 6.19 (d, *J* = 3.2 Hz, 1H), 6.16 (m, 2H), 6.11 (d, *J* = 7.6 Hz, 1H), 2.33 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 191.61, 148.16, 143.30, 143.25, 137.27, 134.19, 133.54, 129.46, 128.85, 128.75, 127.00, 110.86, 109.95, 55.47, 21.46.

HRMS (ESI) calcd for C₁₉H₁₈NO₄S⁺ 356.0951, found 356.0946.

4-methyl-*N***-(1-(1-methyl-***IH***-pyrrol-2-yl)-2-oxo-2-phenylethyl)benzenesulfonamide (11ao):** white solid, yield: 67% ¹H NMR(400 MHz, CDCl₃) δ 7.61 (d, *J* = 7.7 Hz, 2H), 7.56 (d, *J* = 8.1 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.35 (t, *J* = 7.7 Hz, 2H), 7.09 (d, *J* = 8.0 Hz, 2H), 6.59 (s, 1H), 6.02 (d, *J* = 8.9 Hz, 1H), 5.91 (t, *J* = 3.1 Hz, 1H), 5.80 (d, *J* = 8.7 Hz, 1H), 5.76 – 5.70 (m, 1H), 3.72 (s, 3H), 2.31 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 193.63, 143.44, 136.83, 134.38, 133.72, 129.52, 128.60, 128.42, 127.14, 124.76, 124.71, 110.73, 107.54, 54.74, 34.18, 21.45.

HRMS (ESI) calcd for $C_{20}H_{21}N_2O_3S^+$ 369.1267, found 369.1272.

N-(1-hydroxy-2-oxo-2-phenylethyl)-4-methylbenzenesulfonamide (9a): white solid, m.p.: 144-146 °C

¹H NMR (400 MHz, CDCl₃) δ 8.20 (d, *J* = 7.4 Hz, 2H), 7.90 (d, *J* = 8.2 Hz, 2H), 7.71 (t, *J* = 7.4 Hz, 1H), 7.57 (t, *J* = 7.4 Hz, 2H), 7.38 (d, *J* = 8.2 Hz, 2H), 6.23 (dd, *J* = 10.0, 7.4 Hz, 1H), 5.43 (d, *J* = 10.0 Hz, 1H), 4.27 (d, *J* = 7.4 Hz, 1H), 2.49 (s, 3H)..

¹³C NMR (100 MHz, CDCl₃) δ 193.15, 144.05, 138.03, 134.95, 131.89, 129.96, 129.77, 128.98, 127.25, 75.96, 21.59. HRMS (ESI) calcd for C₁₅H₁₅NNaO₄S⁺ 328.0614, found 328.0620.

6. Procedure for derivation of products

6.1 Synthesis of 12 & 13^[7]

General procedure: In a dry flask, **11aa** (0.10 mmol) and TsOH (0.10 mmol) were dissolved in DCE (2 mL) under air atmosphere operation. 1,3,5-Trimethoxybenzene (0.15 mmol) or *N*-methyl indole (0.15 mmol) was added and the solution was stirred for 30 minutes at 60 °C. After the completion of the reaction (monitored by TLC), the mixture was filtered through a short plug of silica gel. The filtrate was concentrated and then purified by flash column chromatography with PE/EtOAc (10:1~5:1) as eluent to afford the corresponding product **12** or **13**.

2-(1-methyl-1H-indol-3-yl)-1-phenyl-2-(2,4,6-trimethoxyphenyl)ethan-1-one (12): 38.1 mg, yield: 92%;

¹H NMR (400 MHz, CDCl₃) δ 7.85 (d, *J* = 7.9 Hz, 2H), 7.62 (d, *J* = 7.9 Hz, 1H), 7.38 (t, *J* = 7.3 Hz, 1H), 7.32 – 7.23 (m, 3H), 7.17 (t, *J* = 7.5 Hz, 1H), 7.08 (t, *J* = 7.4 Hz, 1H), 6.83 (s, 1H), 6.26 (s, 1H), 6.06 (s, 2H), 3.74 (s, 3H), 3.72 (s, 6H), 3.70 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 199.27, 160.36, 158.00, 137.74, 136.82, 131.59, 128.49, 128.28, 128.00, 127.87, 121.02, 119.53, 118.67, 112.05, 111.38, 109.07, 91.13, 55.68, 55.23, 41.64, 32.74.

HRMS (ESI) calcd for $C_{26}H_{25}NNaO_4{}^+$ 438.1676, found 438.1672.

2,2-bis(1-methyl-1H-indol-3-yl)-1-phenylethan-1-one (13): 35.3 mg, yield: 93%;

¹H NMR (400 MHz, CDCl₃) δ 8.10 (d, *J* = 7.7 Hz, 2H), 7.56 (d, *J* = 7.9 Hz, 2H), 7.50 (t, *J* = 7.4 Hz, 1H), 7.39 (t, *J* = 7.6 Hz, 2H), 7.28 (d, *J* = 8.2 Hz, 2H), 7.24 – 7.17 (m, 2H), 7.07 (t, *J* = 7.4 Hz, 2H), 6.88 (s, 2H), 6.52 (s, 1H), 3.68 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 198.67, 137.34, 137.10, 132.81, 128.81, 128.61, 128.57, 127.13, 121.76, 119.20, 119.04, 112.90, 109.40, 41.78, 32.79.

HRMS (ESI) calcd for $C_{26}H_{22}N_2NaO^+$ 401.1624, found 401.1628.

6.2 Synthesis of 14^[8]

Procedure: To a solution of Phenylacetylene (0.80 mmol) in THF (2 mL), *n*-BuLi (0.80 mmol, 0.33 mL, 2.4 M in hexane) was added dropwise at -78 °C under a nitrogen atmosphere. After stirring for 0.5 h, the reaction mixture was warmed to rt. A solution of **11aa** (0.40 mmol) in THF (2 mL) was added to the reaction mixture and the solution was stirred overnight. Then the reaction was quenched with saturated NH₄Cl aqueous at 0 °C, and the aqueous phase was extracted with EtOAc. The organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel with PE/EtOAc (3:1) as eluent to afford **14**.

N-((2S)-2-hydroxy-1-(1-methyl-1*H*-indol-3-yl)-2,4-diphenylbut-3-yn-1-yl)-4-methylbenzenesulfonamide (14): 174.3 mg, yield: 56%;

¹H NMR (400 MHz, CDCl₃) δ 7.62 (m, 2H), 7.47 (d, J = 8.0 Hz, 1H), 7.43 (m, 2H), 7.32 (m, 3H), 7.26 (m, 2H), 7.22 (m, 2H), 7.15 (m, 2H), 7.05 – 6.97 (m, 1H), 6.77 (d, J = 8.2 Hz, 2H), 6.75 (s, 1H), 5.38 (t, J = 8.9 Hz, 1H), 4.98 (d, J = 8.4 Hz, 1H), 3.59 (s, 3H), 2.98 (d, J = 2.2 Hz, 1H), 2.21 (s, 3H).

 $\label{eq:stars} {}^{13}\text{C NMR} \ (100 \ \text{MHz}, \text{CDCl}_3) \ \delta \ 142.38, \ 140.65, \ 136.91, \ 136.50, \ 131.91, \ 128.89, \ 128.84, \ 128.63, \ 128.36, \ 128.24, \ 128.00, \ 127.40, \ 126.87, \ 126.66, \ 121.96, \ 121.74, \ 119.76, \ 119.61, \ 109.74, \ 109.03, \ 89.24, \ 88.23, \ 76.40, \ 61.31, \ 32.68, \ 21.30. \ \text{HRMS} \ (\text{ESI}) \ \text{calcd for} \ \text{C}_{32}\text{H}_{28}\text{N}_2\text{NaO}_3\text{S}^+ \ 543.1713, \ \text{found} \ 543.1709. \ \ \text{Stars}^+ \ 128.84, \ 128.84$

6.3 Synthesis of 15^[9]

Procedure: Under air atmosphere, THF (0.5 mL) was added to an open tube containing substrate **14** (0.10 mmol) and AuCl (2 mol%) at 0°C. After TLC analysis showed the reaction to be complete, it was filtered through a short plug of silica with EtOAc and concentrated under reduced pressure. The residue was purified by flash column chromatography on silica gel (PE:EtOAc = 5:1) to afford the product **15**.

3-(3,5-diphenyl-1-tosyl-1H-pyrrol-2-yl)-1-methyl-1H-indole (15): 31.9 mg, yield: 63%;

¹H NMR (400 MHz, CDCl₃) δ 7.59 (br, 1H), 7.45 (m, 7H), 7.15 (m, 4H), 7.05 – 6.90 (m, 5H), 6.81 (s, 1H), 6.76 (d, *J* = 7.0 Hz, 2H), 4.40 (s, 3H), 2.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃) δ 143.21, 140.54, 138.78, 138.58, 137.82, 137.15, 135.61, 129.43, 129.22, 128.58, 128.48, 127.78, 127.27, 126.81, 126.17, 122.91, 122.75, 122.07, 121.89, 119.06, 114.68, 109.17, 32.87, 21.52.
HRMS (ESI) calcd for C₃₂H₂₆N₂NaO₂S⁺ 525.1607, found 525.1613.

7. References

- [1] Z.-F. Xu, X. Yu, D. Yang and C.-Y. Li, Org. Biomol. Chem., 2017, 15, 3161
- [2] W. Cheng, Y. Tang, Z.-F. Xu and C.-Y. Li, Org. Lett., 2016, 18, 6168.
- [3] R.-Q. Ran, J. He, S.-D. Xiu, K.-B. Wang and C.-Y. Li, Org. Lett., 2014, 16, 3704.
- [4] K. Wang, X. Bi, S. Xing, P. Liao, Z. Fang, X. Meng, Q. Zhang, Q. Liu and Y. Ji, Green Chem., 2011, 13, 562.
- [5] B. Chattopadhyay and V. Gevorgyan, Org. Lett., 2011, 13, 3746-3749.
- [6] L. Zheng, F. Gao. C. Yang, G.-L. Gao, Y. Zhao, Y. Gao and W. Xia, Org. Lett., 2017, 19, 5086.
- [7] Q.-L. He, F.-L. Sun, X.-J. Zheng and S.-L. You, Synlett, 2009, 1111.
- [8] D. Sarkar, S. Behera, S. Ashe, B. Nayak and S. K. Seth, Tetrahedron, 2017, 73, 7200.
- [9] A. Aponick, C.-Y. Li, J. Malinge and E. F. Marques, Org. Lett., 2009, 11, 4624.

8. ¹H and ¹³C NMR spectra for new compounds

