Electronic Supplementary Material (ESI) for Organic Chemistry Frontiers. This journal is © the Partner Organisations 2019

Electronic supplementary information for

Innate Pharmacophore Assisted Selective C-H Functionalization to

Therapeutically Important Nicotinamides

Zehua Song,[†] Guotong Wang,[†] Wei Li,[†] Shengkun Li *,[†]

[†] Department of Pesticide Science, College of Plant Protection, Nanjing Agricultural

University, Weigang 1, Xuanwu District, Nanjing 210095, People's Republic of China.

*Corresponding Author (Email: <u>SKL505@outlook.com</u>)

Content

General Information	2
General Procedure for the Preparation of Nicotinamides	2
Optimization of the C-H functionalization of Nicotinamides	4
General Procedure for N-ortho-amination of Nicotinamides	11
General Procedure for N-para-amination of Nicotinamides	11
General Procedure for N-ortho-etherification of Nicotinamides	12
General Procedure for N-para-etherification of Nicotinamides	13
General Procedure for di-etherification of Nicotinamides	14
Typical Characteristic Data in Amination	15
Typical Characteristic Data in Etherification	32
X-ray Crystallographic Data	69

General Information

Unless otherwise mentioned, all solvents and reagents were purchased from commercial sources (Energy or Meryer Chemicals etc.), they were analytically pure and used without further purification. Anhydrous solvents were dried and distilled by standard techniques before use. Silica gel GF₂₅₄ and column chromatography silica gel for isolation (200-300 mesh) were both purchased from Qingdao Broadchem Industrial Co., Ltd. Reaction progress was monitored by thin-layer chromatography (TLC) on silica gel GF254 with phosphomolybdic acid and ultraviolet (UV_{254nm}) detection. ¹HNMR and ¹³CNMR spectra were recorded on a Bruker AV 400 or 600 spectrometers with CDCl₃ as solvent and tetramethylsilane as the internal standard. The chemical shifts (δ) were recorded in parts per million (ppm). Data for ¹H NMR are reported as follows: chemical shift (δ : ppm), multiplicity (s, singlet; d, doublet; t, triplet; q, quartet; and m, multiplet), coupling constant (Hz), integration and assignment (H). Data for ^{13}C NMR are reported in terms of chemical shift (δ : ppm), with (C) standing for quaternary carbon, (CH) standing for tertiary carbon, (CH_2) standing for secondary carbon, and (CH_3) standing for primary carbon. Elemental analyses were performed on Elementar Vairo EL instrument (Germany). Melting points (m.p.) were recorded on Shenguang WRS-1B melting point apparatus and are uncorrected. Electrospray ionization mass spectrometry (ESI-MS) data were obtained with Waters Xevo TQ-S Micro-Spectrometer. The single crystal diffraction was carried out on Bruker SMART APEX CCD diffractometer.

General Procedure for the Preparation of Nicotinamides

The synthesis of the nicotinamides in Tables 1~3 was carried out according to the previous methods reported by us and others^[1-3].

Step 1, general synthesis of amino alcohol

A three-neck round-bottom Schlenk flask fitted with a magnetic stir bar, a reflux condenser, and an addition funnel was charged with sodium borohydride (0.95 g, 25 mmol) and 50 mL of anhydrous tetrahydrofuran (THF) under a N₂ atmosphere, and then specific amino acid (10 mmol) was added in one portion and cooled to 0 °C with an ice bath. A solution of iodine (2.54 g, 10 mmol) in dry THF (25 mL) was added slowly and dropwise with an addition funnel under vigorous stirring. After completion of the iodine addition, the whole system was put into a preheated oil bath (80 °C) and stirred vigorously. The progress of the reaction was monitored by TLC until the reaction was complete (~12 h). The flask was then cooled to room temperature, and cold water was added cautiously to quench the reaction. The solvent was removed under vacuum; 20 mL of 20% aqueous KOH was added to the white paste; and the solution was stirred for 1 h and extracted by dichloromethane (DCM, 30 mL × 5), The organic extracts were combined and dried over sodium sulfate, concentrated in vacuum to afford amino alcohol intermediate, and used for the next step without further purification.

Step 2, general synthesis of 2-(2-Oxazolinyl)aniline

To an oven-dried tube under a nitrogen atomosphere was added 2-aminobenzonitrile (118 mg, 1 mmol), specific amino alcohols (1.2 mmol) and freshly flame-dried $ZnCl_2$ (13 mg, 10% mmol). The mixture was sealed with Teflon tape and stirred at 150 °C, and the reaction progress was monitored by TLC until the consumption of aminobenzonitrile (6–8 h). The reaction mixture was quenched and suspended with ethyl acetate (50 mL); NaOH (30%, 5 mL) was added; and the organic phase was washed with H₂O (10 mL × 2) and saturated aqueous NaCl (10 mL), then dried over anhydrous sodium sulfate, filtered, and concentrated by evaporation under vacuum to give the crude product, which was subject to flash chromatography purification on silica gel (hexane/EtOAc) to give the desired 2-(2-Oxazolinyl)anilines in moderate to good yields.

Step 3, general synthesis of nicotinamides

To a dried Schlenk flask charged with the 2-(4,5-dihydrooxazol-2-yl)anilines (1 mmol) and the pyridyl acid (1.05 mmol) were added anhydrous DCM (8 mL) and *N*,*N*-diisopropylethylamine (DIPEA, 1.5 mmol). The mixture was vigorously stirred and was added N-(3-(dimethylamino)propyl)-N-ethylcarbodiimide hydrochloride (EDCI-HCI, 0.211 g, 1.1 mmol) and 4-dimethylaminopyridine (DMAP, 0.012 g, 0.1 mmol). Then, the mixture was stirred overnight at room temperature until the full consumption of 2-(2-Oxazolinyl)aniline detected by TLC. The mixture was quenched by the addition of a saturated aqueous solution of NH₄CI (20 mL) and separated. The water phase was extracted with DCM (15 mL × 3), and the combined organic phase was washed with water (10 mL × 2) and saturated aqueous NaCI (10 mL) successively, dried over anhydrous sodium sulfate, concentrated under vacuum, and purified by chromatography on silica gel (hexane/EtOAc) to give the desired nicotinamides for C-H functionalization.

Optimization of the C-H functionalization of Nicotinamides

General procedure

To a 10 mL sealed tube was added N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide **1a** (100 mg, 0.376 mmol, 1 equiv), metal salts (100 mol%), morpholine (300 mol%), base (200 mol%), solvent (2 mL). The reaction mixture was put into a preheated oil bath (80 °C) and stirred for 6 h under air. NH₃-H₂O (28%, 4 mL) were added to the mixture and stirred vigorously for 15 min, then the mixture was poured to EtOAc (30 mL) and the tube was rinsed by EtOAc (2 mL × 3), the combined organic phase was with water (10 mL × 2), and saturated NaCl (10 mL) successively, dried over anhydrous sodium sulfate, concentrated under vacuum, and purified by chromatography on silica gel (V_{hexane}/ V_{EtOAc} = 1 : 1 to EtOAc) to give the desired products. NOTE: All the data was based on isolated products and starting materials

Table 1, Optimization of metal salts

Entry	Metal Source	Conv. (%)		Selectivity		
			2a	3a	4a	2a/4a
1	Cu(OAc) ₂	100	5	16	56	1:11.2
2	CuCl ₂	45	13	11	46	1:3.5
3	CuCl	68	8	trace	50	1:6.3
4	CuBr ₂	40	15	trace	57	1:3.8
5	CuBr	83	8	5	63	1:7.9
6	CuSO4·5H ₂ O	100	30	trace	17	1.8:1
7	Cu(NO ₃) ₂ ·3H ₂ O	93	63	5	trace	>20:1
8	Cu(OTf) ₂	80	47	trace	9	5.2:1
9	Cu(ClO ₄) ₂ ·6H ₂ O	100	45	2	12	3.8:1
10	$Cu_2(OH)_2CO_3$	<5	trace	trace	trace	
11	(C ₈ H ₁₅ O ₂) ₂ Cu	85	trace	trace	61	<1:20
12	Cu(BF ₄) ₂ ·6H ₂ O	93	34	3	7	4.9:1
13	Cu	<5	trace	trace	trace	
14	CuO	<5	trace	trace	trace	
15	Zn(OAc) ₂	8	trace	trace	trace	
16	FeCl ₂ ·4H ₂ O	<5	trace	trace	trace	
17	NiCl ₂ ·6H ₂ O	<5	trace	trace	trace	
18	CoCl ₂ ·6H ₂ O	<5	trace	trace	trace	

5

Table 2, Optimization of solvents with Cu(NO₃)₂·3H₂O

Entry	Solvent	Conv. (%)	Products Distribution			Selectivity
			2a	3a	4a	2a/4a
1	DMSO	93	63	5	trace	>20:1
2	DMF	75	61	trace	trace	>20:1
3	DMAc	77	61	trace	trace	>20:1
4	NMP	82	44	trace	trace	>20:1
5	1,4-dioxane	38	54	trace	14	3.9:1
6	MeCN	46	39	trace	trace	>20:1
7	EtOH	53	24	trace	trace	>20:1
8	H ₂ O	15	trace	trace	trace	
9	<i>n-</i> BuOH	48	24	trace	trace	>20:1
10	<i>t</i> -Am-OH	56	46	trace	trace	>20:1
11	DCE	13	trace	trace	trace	
12	Toluene	18	trace	trace	trace	

Table 3, Optimization of solvents with $(C_8H_{15}O_2)_2Cu$

Entry	Solvent	Conv. (%)	Proc	Selectivity		
			2a	3a	4a	2a/4a
1	DMSO	85	Trace	Trace	61	<1:20
2	DMAc	85	Trace	Trace	65	<1:20
3	NMP	63	Trace	Trace	73	<1:20
4	1,4-dioxane	38	Trace	Trace	22	<1:20
5	MeCN	23	Trace	Trace	26	<1:20
6	EtOH	51	10	Trace	Trace	>20:1
7	H ₂ O	12	Trace	Trace	Trace	N.A.
8	<i>n</i> -BuOH	43	16	Trace	Trace	>20:1
9	<i>t</i> -Am-OH	56	Trace	Trace	12	<1:20
10	DCE	19	Trace	Trace	48	<1:20
11	Toluene	15	Trace	Trace	Trace	N.A.

Table 4, Optimization of bases with $Cu(NO_3)_2 \cdot 3H_2O$

	_	a (84)	Pro	Selectivity		
Entry	Base	Conv. (%)	2a	3a	4a	<mark>2a</mark> /4a
1	Na ₂ CO ₃	93	63	5	trace	>20:1
2	CS ₂ CO ₃	91	60	trace	14	4.3:1
3	NaHCO₃	93	45	trace	trace	>20:1
4	K ₃ PO ₄	50	54	trace	trace	>20:1
5	DBU	20	34	trace	trace	>20:1
6	Morpholine	35	39	trace	trace	>20:1
7	N-Methylmorpholine	33	53	Trace	34	1.6:1
8	NEt ₃	28	46	Trace	27	1.7:1
9	Pyridine	31	37	Trace	17	2.2:1
10	t-BuOK	30	33	trace	trace	>20:1
11	NaOH	28	30	trace	trace	>20:1
12	K ₂ CO ₃	93	56	trace	trace	>20:1

Table 5, Optimization of bases with (C₈H₁₅O₂)₂Cu

Entry	Solvent	Conv. (%)	Proc	Selectivity		
			2a	3a	4a	2a/4a
1	Na ₂ CO ₃	85	5	5	65	<1:20
2	CS ₂ CO ₃	60	trace	trace	trace	
3	NaHCO₃	70	6	trace	52	1:8.7
4	K ₃ PO ₄	71	29	trace	23	1.2:1
5	Morpholine	64	13	trace	67	1:5.2
6	N-Methylmorpholine	60	9	trace	65	1:7.2
7	NEt ₃	76	13	6	70	1:5.4
8	Pyridine	73	17	trace	56	1:3.3
9	t-BuOK	55	trace	trace	25	<1:20
10	NaOH	95	trace	trace	6	<1:20
11	K ₂ CO ₃	63	trace	trace	36	<1:20

Table 6, Optimization of other parameters

	Na ₂ CO ₃	Na ₂ CO ₃ Temp	CO Terrer Merrikeline (Yield (%)			$C_{\text{energy}}(0/)$	20/40
entry			Morpholine	t	2a	3 a	4 a	- Conv.(%)	28/48	
1	2eq	80	3eq	6h	63	trace	trace	93	>20:1	
2	2eq	80	leq	6h	56	trace	trace	47	>20:1	
3	2eq	80	5eq	6h	60	trace	trace	95	>20:1	
4	2eq	40	3eq	6h	56	trace	trace	67	>20:1	
5 ^{<i>a</i>}	2eq	80	3eq	6h	64	trace	trace	53	>20:1	
6	2eq	120	3eq	6h	53	trace	trace	93	>20:1	
7	2eq	100	3eq	6h	57	trace	trace	93	>20:1	
8	2eq	60	3eq	6h	55	trace	trace	89	>20:1	
9	2eq	80	3eq	3h	50	trace	trace	86	>20:1	
10	2eq	80	3eq	12h	57	trace	trace	93	>20:1	
11	3eq	80	3eq	6h	61	trace	trace	89	>20:1	
12	1eq	80	3eq	6h	53	trace	trace	85	>20:1	

General Procedure for N-ortho-amination of Nicotinamides

To a 10 mL sealed tube was added nicotinamide **1** (0.376 mmol, 1 equiv.), Cu(NO₃)₂·3H₂O (90 mg, 0.376 mmol), secondary amine (300 mol%), Na₂CO₃ (80 mg, 0.752 mmol) and DMSO (2 mL). The reaction mixture was put into a preheated oil bath (80 °C) and stirred for 6 h under air. NH₃-H₂O (28%, 4 mL) were added to the mixture and stirred vigorously for 15 min, then the mixture was poured to EtOAc (30 mL) and the tube was rinsed by EtOAc (2 mL × 3), the combined organic phase was with water (10 mL × 2), and saturated NaCl (10 mL) successively, dried over anhydrous sodium sulfate, concentrated under vacuum, and purified by chromatography on silica gel (V_{hexane}/ V_{EtOAc} = 1 : 1 to EtOAc) to give the desired products.

NOTE: All the data were isolated yields

General Procedure for N-para-amination of Nicotinamides

To a 10 mL sealed tube was added nicotinamide **1** (0.376 mmol, 1 equiv), $Cu(C_8H_{15}O_2)_2$ (131 mg, 0.376 mmol), secondary amine (300 mol%), Na₂CO₃ (80 mg, 0.752 mmol) and DMAc (2

mL). The reaction mixture was put into a preheated oil bath (80 °C) and stirred for 6 h under air. NH_3 - H_2O (28%, 4 mL) were added to the mixture and stirred vigorously for 15 min, then the mixture was poured to EtOAc (30 mL) and the tube was rinsed by EtOAc (2 mL × 3), the combined organic phase was with water (10 mL × 2), and saturated NaCl (10 mL) successively, dried over anhydrous sodium sulfate, concentrated under vacuum, and purified by chromatography on silica gel ($V_{hexane}/V_{EtOAc} = 1 : 1$ to EtOAc) to give the desired products.

NOTE: All the data were isolated yields

General Procedure for N-ortho-etherification of Nicotinamides

To a 10 mL sealed tube was added nicotinamide **1** (0.187 mmol, 1 equiv), $Cu(NO_3)_2 \cdot 3H_2O$ (11.3 mg, 0.047 mmol), phenol (300 mol%), Na_2CO_3 (40 mg, 0.374 mmol) and DMSO (1.9 mL). The reaction mixture was put into a preheated oil bath (80 °C) and stirred for 6 h under air. NH_3 - H_2O (28%, 2 mL) were added to the mixture and stirred vigorously for 15 min, then the mixture was poured to EtOAc (15 mL) and the tube was rinsed by EtOAc (2 mL × 3), the combined organic phase was with water (10 mL × 2), and saturated NaCl (10 mL) successively, dried over anhydrous sodium sulfate, concentrated under vacuum, and purified by chromatography on silica gel ($V_{hexane}/V_{EtOAc} = 1 : 1$ to EtOAc) to give the desired products.

NOTE: All the data were isolated yields

General Procedure for N-para-etherification of Nicotinamides

To a 10 mL sealed tube was added nicotinamide **1** (0.187 mmol, 1 equiv), $Cu(OAc)_2$ (3.4 mg, 0.0187 mmol), phenol (300 mol%), Na₂CO₃ (40 mg, 0.374 mmol) and DMSO (1.9 mL). The reaction mixture was put into a preheated oil bath (80 °C) and stirred for 6 h under air. NH₃-H₂O (28%, 2 mL) were added to the mixture and stirred vigorously for 15 min, then the mixture was poured to EtOAc (15 mL) and the tube was rinsed by EtOAc (2 mL × 3), the combined organic phase was with water (10 mL × 2), and saturated NaCl (10 mL) successively, dried over anhydrous sodium sulfate, concentrated under vacuum, and purified by chromatography on silica gel (V_{hexane}/ V_{EtOAc} = 1 : 1 to EtOAc) to give the desired products.

NOTE: All the data were isolated yields

General Procedure for di-etherification of Nicotinamides

To a 10 mL sealed tube was added nicotinamide **1** (0.187 mmol, 1 equiv), Cu(OAc)₂ (34 mg, 0.187 mmol), phenol (300 mol%), Na₂CO₃ (40 mg, 0.374 mmol) and DMSO (1.9 mL). The reaction mixture was put into a preheated oil bath (80 °C) and stirred for 6 h under air. NH₃-H₂O (28%, 2 mL) were added to the mixture and stirred vigorously for 15 min, then the mixture was poured to EtOAc (15 mL) and the tube was rinsed by EtOAc (2 mL × 3), the combined organic phase was with water (10 mL × 2), and saturated NaCl (10 mL) successively, dried over anhydrous sodium sulfate, concentrated under vacuum, and purified by chromatography on silica gel (V_{hexane}/ V_{EtOAc} = 1 : 1 to EtOAc) to give the desired products.

NOTE: All the data were isolated yields; Di-etherification of Nicotinamides was also observed in method 3, when some phenols with electron-withdrawing groups were used.

Typical Characteristic Data in Amination

Amination of Nicotinamide 1a with Morpholine to produce 2a, 3a or 4a

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-morpholinonicotinamide (**2a**), white solid, yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 3.41 (t, *J* = 4.72 Hz, 4H, N*CH*₂ × 2), 3.71 (t, *J* = 4.72 Hz, 4H, O*CH*₂ × 2), 4.04 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂ O), 4.37 (t, *J* = 9.52 Hz, 2H, NCH₂-CH₂ O), 6.91 (dd, *J*₁ = 7.48 Hz, *J*₂ = 4.8 Hz, 1H, *Aromatic H*), 7.14 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.91 (dd, *J*₁ = 7.96 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 7.95 (dd, *J*₁ = 7.48 Hz, *J*₂ = 1.96 Hz, 1H, *Aromatic H*), 8.32 (dd, *J*₁ = 4.8 Hz, *J*₂ = 1.92 Hz, 1H, *Aromatic H*), 8.89 (d, *J* = 8.4 Hz, 1H, *Aromatic H*), 12.85 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 49.9 (2 × *CH*₂), 54.8 (*CH*₂), 66.2 (*CH*₂), 66.6 (2 ×

*CH*₂), 113.6 (*C*), 116.0 (*CH*), 119.9 (*CH*), 121.4 (*C*), 122.8 (*CH*), 129.5 (*CH*), 132.7 (*CH*), 139.4 (*CH*), 139.6 (*C*), 149.5 (*CH*), 158.5 (*C*), 164.3 (*C*), 166.9 (*C*).

ESI-MS: calcd for $C_{19}H_{21}N_4O_3$ [M+ H]⁺: 353.16, found: 353.18.

The structure of compound **2a** was unambiguously confirmed by X-ray diffraction and was deposited at the CCDC with the number 1864263.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2,4-dimorpholinonicotinamide (**3a**), white solid, ¹H NMR (400 MHz, CDCl₃) δ 3.17 (t, *J* = 4.64 Hz, 4H, N*CH*₂ × 2), 3.30 (t, *J* = 4.48 Hz, 4H, N*CH*₂ × 2), 3.64 (t, *J* = 4.64 Hz, 4H, O*CH*₂ × 2), 3.69 (t, *J* = 4.48 Hz, 4H, O*CH*₂ × 2), 3.97 (t, *J* = 9.44 Hz, 2H, N*CH*₂-CH₂O), 4.36 (t, *J* = 9.44 Hz, 2H, N*C*H₂-CH₂O), 6.55 (d, *J* = 5.72 Hz, 1H, *Aromatic H*), 7.14 (dd, *J*₁ = 8.24 Hz, *J*₂ = 8.24 Hz, 1H, *Aromatic H*), 7.53 (m, 1H, *Aromatic H*), 7.92 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.64 Hz, 1H, *Aromatic H*), 12.54 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 50.5 (2 × *CH*₂), 51.4 (2 × *CH*₂), 54.8(*CH*₂), 66.1 (*CH*₂), 66.8 (2 × *CH*₂), 67.0 (2 × *CH*₂), 107.8 (*CH*), 113.2 (*C*), 116.6 (*C*), 119.4 (*CH*), 122.7 (*CH*), 129.5 (*CH*), 132.8 (*CH*), 140.0 (*C*), 149.1 (*CH*), 158.1 (*C*), 160.5 (*C*), 164.4 (*C*), 167.3 (*C*).

ESI-MS: calcd for C₂₃H₂₈N₅O₄ [M+ H]⁺: 438.21, found: 438.22.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-morpholinonicotinamide (**4a**), White solid, yield 65%. ¹H NMR (400 MHz, CDCl₃) δ 3.26 (t, *J* = 4.76 Hz, 4H, N*CH*₂ × 2), 3.75 (t, *J* = 4.76 Hz, 4H, O*CH*₂ × 2), 4.05 (t, *J* = 9.44 Hz, 2H, N*CH*₂-CH₂O), 4.38 (t, *J* = 9.44 Hz, 2H, NCH₂-CH₂O), 6.82 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 7.15 (m, 1H, *Aromatic H*), 7.53 (m, 1H, *Aromatic H*), 7.92 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.44 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 8.68 (s, 1H, *Aromatic H*), 8.88 (d, *J* = 8.48 Hz, 1H, *Aromatic H*), 12.85 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 50.5 (2 × *CH*₂), 54.7 (*CH*₂), 66.2 (*CH*₂), 66.3 (2 × *CH*₂), 111.4 (*CH*), 113.5 (*C*), 119.8 (*CH*), 122.9 (*CH*), 123.1 (*C*), 129.4 (*CH*), 132.7 (*CH*), 139.6 (*C*), 151.0 (*CH*), 151.9 (*CH*), 155.1 (*C*), 164.5 (*C*), 166.3 (*C*).

ESI-MS: calcd for $C_{19}H_{21}N_4O_3$ [M+ H]⁺: 353.16, found: 353.17.

The structure of compound **4a** was unambiguously confirmed by X-ray diffraction and was deposited at the CCDC with the number 1864265.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(piperidin-1-yl)nicotinamide (**2b**), white solid, yield 64%. ¹H NMR (400 MHz, CDCl₃) δ 1.54-1.61 (m, 6H, NCH₂-*CH*₂*CH*₂*CH*₂*CH*₂),

3.31-3.36 (m, 4H, N*CH*² × 2), 4.06 (t, *J* = 9.40 Hz, 2H, N*CH*²-CH₂ O), 4.36 (t, *J* = 9.40 Hz, 2H, NCH²-*CH*² O), 6.84 (dd, *J*₁ = 7.48 Hz, *J*₂ = 4.84 Hz, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.89 (dd, *J*₁ = 7.96 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 7.93 (dd, *J*₁ = 7.44 Hz, *J*₂ = 1.92 Hz, 1H, *Aromatic H*), 8.30 (dd, *J*₁ = 4.8 Hz, *J*₂ = 1.96 Hz, 1H, *Aromatic H*), 8.91 (d, *J* = 8.4 Hz, 1H, *Aromatic H*), 12.75 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 24.4 (*CH*₂), 25.6 (2 × *CH*₂), 51.0(2 × *CH*₂), 54.9 (*CH*₂), 66.2 (*CH*₂), 113.7 (*C*), 115.2 (*CH*), 120.1 (*CH*), 121.3 (*C*), 122.5 (*CH*), 129.3 (*CH*), 132.5 (*CH*), 139.3 (*CH*), 139.8 (*C*), 149.4 (*CH*), 159.5 (*C*), 164.1 (*C*), 167.3 (*C*). ESI-MS: calcd for C₂₀H₂₃N₄O₂ [M+ H]⁺: 351.18, found: 351.20.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(pyrrolidin-1-yl)nicotinamide (**2c**), white solid, yield 63%. ¹H NMR (400 MHz, CDCl₃) δ 1.89-1.92 (m, 4H, NCH₂-*CH*₂*CH*₂*H*₂), 3.48-3.52 (m, 4H, N-*CH*₂ × 2), 4.07 (t, *J* = 9.48 Hz, 2H, N*CH*₂-CH₂ O), 4.38 (t, *J* = 9.48 Hz, 2H, NCH₂-*CH*₂ O), 6.63 (dd, *J*₁ = 7.52 Hz, *J*₂ = 4.96 Hz, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.78 (dd, *J*₁ = 7.44 Hz, *J*₂ = 1.88 Hz, 1H, *Aromatic H*), 7.89 (dd, *J*₁ = 7.96 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.25 (dd, *J*₁ = 4.8 Hz, *J*₂ = 1.84 Hz, 1H, *Aromatic H*), 8.91 (d, *J* = 8.44 Hz, 1H, *Aromatic H*), 12.61 (s, 1H, *CONH*). ¹³C NMR (100 MHz, CDCl₃) δ 25.7 (2 × *CH*₂), 49.2 (2 × *CH*₂), 54.7 (*CH*₂), 66.2 (*CH*₂), 111.1 (*CH*), 113.2 (*C*), 117.4 (*C*), 119.6 (*CH*), 122.4 (*CH*), 129.2 (*CH*), 132.7 (*CH*), 137.8 (*CH*), 140.1 (*C*), 149.4 (*CH*), 155.1 (*C*), 164.6 (*C*), 167.8 (*C*). ESI-MS: calcd for C₁₉H₂₁N₄O₂ [M+ H]⁺: 337.17, found: 337.18.

2-(azepan-1-yl)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (2d), white solid, yield 50%. ¹H NMR (400 MHz, CDCl₃) δ 1.49-1.54 (m, 4H, NCH₂CH₂-*CH*₂ × 2), 1.76-1.84 (m, 4H, NCH₂-*CH*₂ CH₂ × 2), 3.52-3.57 (m, 4H, N-*CH*₂CH₂CH₂ × 2), 4.07 (t, *J* = 9.40 Hz, 2H, N*C*H₂-CH₂ O), 4.37 (t, *J* = 9.40 Hz, 2H, NCH₂-*CH*₂ O), 6.66 (dd, *J*₁ = 7.44 Hz, *J*₂ = 4.72 Hz, 1H, *Aromatic H*), 7.11 (m, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.81 (dd, *J*₁ = 7.44 Hz, *J*₂ = 1.92 Hz, 1H, *Aromatic H*), 7.89 (dd, *J*₁ = 7.96 Hz, *J*₂ = 1.64 Hz, 1H, *Aromatic H*), 8.23 (dd, *J*₁ = 4.76 Hz, *J*₂ = 1.92 Hz, 1H, *Aromatic H*), 8.93 (d, *J* = 8.48 Hz, 1H, *Aromatic H*), 12.57 (s, 1H, CON*H*).

¹³C NMR (100 MHz, CDCl₃) δ 28.1 (2 × *CH*₂), 28.4 (2 × *CH*₂), 50.4 (2 × *CH*₂), 54.8 (*CH*₂), 66.2 (*CH*₂), 111.9 (*CH*), 113.3 (*C*), 117.6 (*C*), 119.6 (*CH*), 122.3 (*CH*), 129.3 (*CH*), 132.7 (*CH*), 138.7 (*CH*), 140.1, 148.8 (*CH*), 157.7 (*C*), 164.5 (*C*), 168.2 (*C*).

ESI-MS: calcd for C₂₁H₂₅N₄O₂ [M+ H]⁺: 365.20, found: 365.24.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(3-methylpiperidin-1-yl)nicotinamide (**2e**), white solid, yield 64%. ¹H NMR (400 MHz, CDCl₃) δ 0.82 (d, *J* = 6.72 Hz, 3H, *CH*₃-CH), 1.45-1.77 (m, 5H), 2.52 (dd, *J*₁ = 12.64 Hz, *J*₂ = 10.68 Hz, 1H), 2.83 (m, 1H), 3.69-3.78 (m, 2H), 4.01-4.08 (m, 2H), 4.35 (t, *J* = 9.40 Hz, 2H, NCH₂-*CH*₂O), 6.84 (dd, *J*₁ = 7.44 Hz, *J*₂ = 4.76 Hz, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.89 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 7.93 (dd, *J*₁ = 7.44 Hz, *J*₂ = 1.96 Hz, 1H, *Aromatic H*), 8.30 (dd, *J*₁ = 4.8 Hz, *J*₂ = 1.92 Hz, 1H, *Aromatic H*), 8.89 (d, *J* = 8.0 Hz, 1H, *Aromatic H*), 12.73 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 19.3, 25.3, 30.9, 33.1, 50.6, 54.8, 57.6, 66.1, 113.7, 115.1, 120.0, 121.3, 122.5, 129.3, 132.5, 139.3, 139.8, 149.4, 159.3, 164.1, 167.3. ESI-MS: calcd for C₂₁H₂₅N₄O₂ [M+ H]⁺: 365.20, found: 365.22.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(4-methylpiperidin-1-yl)nicotinamide (**2f**), white solid, yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 0.87 (d, *J* = 6.52 Hz, 3H, *CH*₃-CH), 1.13-1.26 (m, 2H), 1.50 (m, 1H), 1.56-1.66 (m, 2H), 2.85-2.97 (m, 2H), 3.77-3.86 (m, 2H), 4.06 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 4.36 (t, *J* = 9.52 Hz, 2H, NCH₂-*CH*₂O),

6.83 (dd, *J*₁ = 7.08 Hz, *J*₂ = 4.80 Hz, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.89 (dd, *J*₁ = 7.96 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 7.93 (dd, *J*₁ = 7.44 Hz, *J*₂ = 1.96 Hz, 1H, *Aromatic H*), 8.29 (dd, *J*₁ = 4.84 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.92 (d, *J* = 8.44 Hz, 1H, *Aromatic H*), 12.72 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 22.0, 30.8, 33.9 (2 × *CH*₂), 50.2 (2 × *CH*₂), 54.9, 66.2, 113.7, 115.0, 120.0, 121.1, 122.5, 129.3, 132.5, 139.3, 139.8, 149.3, 159.2, 164.1, 167.3. ESI-MS: calcd for C₂₁H₂₅N₄O₂ [M+ H]⁺: 365.20, found: 365.22.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-thiomorpholinonicotinamide (**2g**), yield 57%. ¹H NMR (400 MHz, CDCl₃) δ 2.62-2.70 (m, 4H, S*CH*₂ × 2), 3.65-3.73 (m, 4H, N*CH*₂ × 2), 4.06 (t, *J* = 9.44 Hz, 2H, N*CH*₂-CH₂ O), 4.38 (t, *J* = 9.44 Hz, 2H, N*C*H₂-*CH*₂ O), 6.90 (dd, *J*₁ = 7.48 Hz, *J*₂ = 4.8 Hz, 1H, *Aromatic H*), 7.14 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.91 (dd, *J*₁ = 7.96 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 7.94 (dd, *J*₁ = 7.52 Hz, *J*₂ = 1.96 Hz, 1H, *Aromatic H*), 8.31 (dd, *J*₁ = 4.84 Hz, *J*₂ = 1.96 Hz, 1H, *Aromatic H*), 12.77 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 27.0 (2 × *CH*₂), 52.3 (2 × *CH*₂), 54.8, 66.2, 113.6, 115.9, 120.0, 121.6, 122.8, 129.5, 132.6, 139.5, 139.6, 149.4, 158.9, 164.3, 166.9. ESI-MS: calcd for C₁₉H₂₁N₄O₂S [M+ H]⁺: 369.14, found: 369.17.

(S)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-2-morpholinonicotinamide (**2h**), yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 1.24 (d, *J* = 6.52 Hz, 3H, NCH-*CH*₃), 3.39-3.48 (m, 4H, N*CH*₂-CH₂O × 2), 3.68-3.78 (m, 4H, NCH₂*CH*₂-O × 2), 3.88 (dd, *J*₁ = 7.92 Hz, *J*₂ = 7.92 Hz, 1H), 4.37 (m, 1H), 4.47 (dd, *J*₁ = 8.16 Hz, *J*₂ = 7.92 Hz, 1H), 6.89 (dd, *J*₁ = 7.48 Hz, *J*₂ = 4.8 Hz, 1H, *Aromatic H*), 7.13 (dd, *J*₁ = 7.60 Hz, *J*₂ = 7.60 Hz, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.89 (dd, *J*₁ = 7.88 Hz, *J*₂ = 1.64 Hz, 1H, *Aromatic H*), 7.92 (dd, *J*₁ = 7.52 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.31 (dd, *J*₁ = 4.80 Hz, *J*₂ = 1.88 Hz, 1H, *Aromatic H*), 8.85 (d, *J* = 8.44 Hz, 1H, *Aromatic H*), 12.84 (s, 1H, CO*NH*).

¹³C NMR (100 MHz, CDCl₃) δ 21.4, 49.8 (2 × *CH*₂), 62.1, 66.6 (2 × *CH*₂), 72.7, 113.7, 115.6, 119.9, 121.2, 122.8, 129.4, 132.6, 139.1, 139.6, 149.4, 158.4, 163.1, 167.0. ESI-MS: calcd for C₂₀H₂₃N₄O₃ [M+ H]⁺: 367.18, found: 367.21.

(R)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-2-morpholinonicotinamide(2m), yield 53%. Similar NMR Data to that of compound 2h.

(S)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(piperidin-1-yl)nicotinamide (**2i**), yield 52%. ¹H NMR (400 MHz, CDCl₃) δ 1.25 (d, *J* = 6.44 Hz, 3H, NCH-*CH*₃), 1.50-1.59 (m, 6H, NCH₂*CH*₂ *CH*₂ *CH*₂), 3.31-3.42 (m, 4H, N*CH*₂ × 2), 3.86 (dd, *J*₁ = 7.80 Hz, *J*₂ = 7.80 Hz, 1H), 4.38 (m, 1H), 4.45 (dd, *J*₁ = 9.44 Hz, *J*₂ = 7.80 Hz, 1H), 6.81 (dd, *J*₁ = 7.52 Hz, *J*₂ = 4.88 Hz, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 7.92 (dd, *J*₁ = 7.44 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.29 (dd, *J*₁ = 4.88 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.85 (d, *J* = 8.40 Hz, 1H, *Aromatic H*), 12.71 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 21.4, 24.5, 25.7 (2 × CH₂), 50.9 (2 × CH₂), 62.1, 72.7,
113.8, 114.8, 120.1, 121.1, 122.5, 129.3, 132.4, 139.1, 139.8, 149.3, 159.3, 162.8, 167.4.
ESI-MS: calcd for C₂₁H₂₅N₄O₂ [M+ H]⁺: 365.20, found: 365.22.

(R)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(piperidin-1-yl)nicotinamide(2n), yield 42%. Similar NMR Data to that of compound 2i.

N-(2-((S)-4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(3-methylpiperidin-1-

yl)nicotinamide (**2j**), 1:1 dr, white solid, yield 48%. ¹H NMR (400 MHz, CDCl₃) δ 0.82 (d, *J* = 6.40 Hz, 1.5H, *CH*₃-CH), 0.83 (d, *J* = 6.48 Hz, 1.5H, *CH*₃-CH), 1.01 (m, 1H), 1.50-1.62 (m, 2H), 1.65-1.77 (m, 2H), 2.53 (m, 1H), 2.84 (m, 1H), 3.72-3.82 (m, 2H), 3.85 (dd, *J*₁ = 7.96 Hz, *J*₂ = 7.88 Hz, 1H), 4.35 (m, 1H), 4.44 (dd, *J*₁ = 9.44 Hz, *J*₂ = 7.96 Hz, 1H), 6.81 (dd, *J*₁ = 7.52 Hz, *J*₂ = 4.88 Hz, 1H, *Aromatic H*), 7.11 (m, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.84 Hz, *J*₂ = 1.52 Hz, 1H, *Aromatic H*), 7.90 (m, 1H, *Aromatic H*), 8.28 (dd, *J*₁ = 4.88 Hz, *J*₂ = 1.84 Hz, 1H, *Aromatic H*), 8.83 (d, *J* = 8.48 Hz, 1H, *Aromatic H*), 12.65 and 12.68 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 19.2 (19.3), 21.3 (21.4), 25.3 (25.4), 30.8 (30.9), 33.1, 50.5, 57.5, 62.1, 72.7, 113.8, 114.7, 120.1, 121.0, 122.5, 129.3, 132.4, 139.1, 139.8, 149.3, 159.2, 162.8, 167.4.

ESI-MS: calcd for C₂₂H₂₇N₄O₂ [M+ H]⁺: 379.21, found: 379.24.

N-(2-((R)-4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(3-methylpiperidin-1-

yl)nicotinamide (20), 1:1 dr, white solid, yield 35%. Similar NMR Data to that of compound 2j.

(S)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(4-methylpiperidin-1yl)nicotinamide (**2k**), 1:1 dr, white solid, yield 57%. ¹H NMR (400 MHz, CDCl₃) δ 0.88 (d, *J* = 6.44 Hz, 3H, *CH*₃-CH), 1.16-1.26 (m, 2H), 1.25 (d, *J* = 6.44 Hz, 3H, *CH*₃-CH-N), 1.51 (m, 1H), 1.57-1.65 (m, 2H), 2.87-2.97 (m, 2H), 3.81-3.90 (m, 3H), 4.37 (m, 1H), 4.44 (m, 1H), 6.79 (dd, *J*₁ = 7.44 Hz, *J*₂ = 4.76 Hz, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.36 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 7.89 (dd, *J*₁ = 7.44 Hz, *J*₂ = 1.92 Hz, 1H, *Aromatic H*), 8.27 (dd, *J*₁ = 4.84 Hz, *J*₂ = 1.92 Hz, 1H, *Aromatic H*), 8.86 (d, *J* = 8.44 Hz, 1H, *Aromatic H*), 12.67 (s, 1H, CO*NH*).

¹³C NMR (100 MHz, CDCl₃) δ 21.4, 21.9, 30.9, 33.9 (34.0), 50.0 (50.2), 62.1, 72.7,
113.8, 114.5, 120.1, 120.9, 122.5, 129.3, 132.4, 139.0, 139.8, 149.3, 159.0, 162.9, 167.4.
ESI-MS: calcd for C₂₂H₂₇N₄O₂ [M+H]⁺: 379.21, found: 379.25.

(R)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(4-methylpiperidin-1yl)nicotinamide (**2p**), 1:1 dr, white solid, yield 47%. Similar NMR Data to that of compound **2k**.

(S)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(pyrrolidin-1-

yl)nicotinamide (21), white solid, yield 28%.

¹H NMR (400 MHz, CDCl₃) δ 1.30 (d, *J* = 6.44 Hz, 3H, *CH*₃-CH), 1.87-1.99 (m, 4H, NCH₂-*CH*₂ × 2), 3.44-3.59 (m, 4H, N*CH*₂ × 2), 3.91 (dd, *J*₁ = 7.64 Hz, *J*₂ = 7.56 Hz, 1H), 4.37 (m, 1H), 4.46 (dd, *J*₁ = 9.28 Hz, *J*₂ = 7.64 Hz, 1H), 6.63 (dd, *J*₁ = 7.40 Hz, *J*₂ = 4.80 Hz, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.81 (dd, *J*₁ = 7.44 Hz, *J*₂ = 1.84 Hz, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.96 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.26 (dd, *J*₁ = 4.88 Hz, *J*₂ = 1.88 Hz, 1H, *Aromatic H*), 8.89 (d, *J* = 8.40 Hz, 1H, *Aromatic H*), 12.70 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 21.5, 25.7 (*CH*₂ × 2), 49.2 (*CH*₂ × 2), 61.9, 72.7, 110.9, 113.3, 117.4, 119.6, 122.4, 129.2, 132.6, 137.8, 140.1, 149.3, 155.0, 163.3, 167.7. 26 ESI-MS: calcd for C₂₀H₂₃N₄O₂ [M+H]⁺: 351.18, found: 351.22.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-morpholinonicotinamide (**4a**), White solid, yield 65%. ¹H NMR (400 MHz, CDCl₃) δ 3.26 (t, *J* = 4.76 Hz, 4H, N*CH*₂ × 2), 3.75 (t, *J* = 4.76 Hz, 4H, O*CH*₂ × 2), 4.05 (t, *J* = 9.44 Hz, 2H, N*CH*₂-CH₂O), 4.38 (t, *J* = 9.44 Hz, 2H, NCH₂-CH₂O), 6.82 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 7.15 (m, 1H, *Aromatic H*), 7.53 (m, 1H, *Aromatic H*), 7.92 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.44 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 8.68 (s, 1H, *Aromatic H*), 8.88 (d, *J* = 8.48 Hz, 1H, *Aromatic H*), 12.85 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 50.5 (2 × *CH*₂), 54.7 (*CH*₂), 66.2 (*CH*₂), 66.3 (2 × *CH*₂), 111.4 (*CH*), 113.5 (*C*), 119.8 (*CH*), 122.9 (*CH*), 123.1 (*C*), 129.4 (*CH*), 132.7 (*CH*), 139.6 (*C*), 151.0 (*CH*), 151.9 (*CH*), 155.1 (*C*), 164.5 (*C*), 166.3 (*C*).

ESI-MS: calcd for $C_{19}H_{21}N_4O_3$ [M+ H]⁺: 353.16, found: 353.17.

The structure of compound **4a** was unambiguously confirmed by X-ray diffraction and was deposited at the CCDC with the number 1864265.

¹³C NMR (100 MHz, CDCl₃) δ 24.0, 25.4 (2 × *CH*₂), 51.7 (2 × *CH*₂), 54.8, 66.2, 111.6, 113.5, 120.0, 122.6, 122.8, 129.3, 132.6, 139.8, 151.1, 151.6, 155.7, 164.3, 166.7. ESI-MS: calcd for C₂₀H₂₃N₄O₂ [M+ H]⁺: 351.18, found: 351.21.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(pyrrolidin-1-yl)nicotinamide (4c), white solid, yield 46%. ¹H NMR (400 MHz, CDCl₃) δ 1.94-1.97 (m, 4H, NCH₂*CH*₂*CH*₂), 3.36-3.40 (m, 4H, N-*CH*₂ × 2), 4.08 (t, *J* = 9.28 Hz, 2H, N*CH*₂-CH₂O), 4.38 (t, *J* = 9.28 Hz, 2H, N*CH*₂-CH₂O), 4.38 (t, *J* = 9.28 Hz, 2H, N*CH*₂-CH₂O), 6.56 (d, *J* = 6.12 Hz, 1H, *Aromatic H*), 7.14 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.91 (dd, *J*₁ = 7.84 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*),

8.23 (d, *J* = 6.08 Hz, 1H, *Aromatic H*), 8.52 (s, 1H, *Aromatic H*), 8.90 (dd, *J*₁ = 8.44 Hz, *J*₂ = 1.16 Hz, 1H, *Aromatic H*), 12.72 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 25.7 (2 × *CH*₂), 49.8 (2 × *CH*₂), 54.8, 66.3, 108.6, 113.4, 118.8, 119.6, 122.6, 129.3, 132.6, 140.0, 149.7, 150.0, 150.3, 164.6, 167.4. ESI-MS: calcd for C₁₉H₂₁N₄O₂ [M+ H]⁺: 337.17, found: 337.15.

(R)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-4-morpholinonicotinamide (4d), white solid, yield 61%. ¹H NMR (600 MHz, CDCl₃) δ 1.26 (d, *J* = 6.60 Hz, 3H, NCH*CH*₃), 3.24-3.27 (m, 4H, N*CH*₂ × 2), 3.74-3.77 (m, 4H, O*CH*₂ × 2), 3.90 (dd, *J*₁ = 8.04 Hz, *J*₂ = 7.98 Hz, 1H), 4.37 (m, 1H), 4.47 (dd, *J*₁ = 9.36 Hz, *J*₂ = 8.04 Hz, 1H), 6.80 (d, *J* = 5.88 Hz, 1H, *Aromatic H*), 7.15 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.89 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.08 Hz, 1H, *Aromatic H*), 8.44 (d, *J* = 5.88 Hz, 1H, *Aromatic H*), 8.68 (s, 1H, *Aromatic H*), 8.85 (d, *J* = 8.40 Hz, 1H, *Aromatic H*), 12.86 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 21.5, 50.4 (2 × *CH*₂), 62.0, 66.3 (2 × *CH*₂), 72.7, 111.2, 113.6, 119.8, 120.8, 122.9, 129.4, 132.7, 139.7, 150.8, 151.9, 155.1, 163.2, 166.3. ESI-MS: calcd for C₂₀H₂₃N₄O₃ [M+ H]⁺: 367.18, found: 367.16.

(R)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-4-(piperidin-1-yl)nicotinamide (4e), white solid, yield 58%. ¹H NMR (400 MHz, CDCl₃) δ 1.26 (d, J = 6.44 Hz, 3H, NCH*CH*₃), 1.52-1.65 (m, 6H, NCH₂*CH*₂ *CH*₂ *CH*₂), 3.19-3.29 (m, 4H, N*CH*₂ × 2), 3.87(dd, $J_1 = 7.76$ Hz, $J_2 = 7.76$ Hz, 1H), 4.37 (m, 1H), 4.46 (dd, $J_1 = 9.36$ Hz, $J_2 = 7.76$ Hz, 1H), 6.79 (d, J = 5.92 Hz, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.88 (dd, $J_1 = 7.88$ Hz, $J_2 = 1.64$ Hz, 1H, *Aromatic H*), 8.36 (d, J = 5.88 Hz, 1H, *Aromatic H*), 8.62 (s, 1H, *Aromatic H*), 8.86 (d, J = 8.40 Hz, 1H, *Aromatic H*), 12.72 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 21.4, 24.0, 25.4 (2 × CH₂), 51.5 (2 × CH₂), 62.0, 72.7,
113.3, 113.7, 119.9, 122.6, 129.2, 132.5, 139.8, 140.5, 150.8, 151.4, 155.7, 163.0, 166.7.
ESI-MS: calcd for C₂₁H₂₅N₄O₂ [M+ H]⁺: 365.20, found: 365.18.

N-(2-((R)-4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-4-(3-methylpiperidin-1yl)nicotinamide (**4f**), 1:1 dr, white solid, yield 51%. ¹H NMR (400 MHz, CDCl₃) δ 0.82 (d, *J* = 3.10 Hz, 1.5H, NCH₂CH*CH*₃), 0.84 (d, *J* = 3.10 Hz, 1.5H, NCH₂CH*CH*₃), 1.03 (m,1H), 1.26 (t, *J* = 6.52 Hz, 3H, NCH*CH*³), 1.55-1.79 (m, 4H), 2.53 (m, 1H), 2.84 (m, 1H), 3.45-3.57 (m, 2H), 3.87 (m, 1H), 4.36 (m, 1H), 4.46 (dd, *J*₁ = 9.32 Hz, *J*₂ = 7.84 Hz, 1H), 6.79 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.64 Hz, 1H, *Aromatic H*), 8.36 (d, *J* = 5.76 Hz, 1H, *Aromatic H*), 8.62 (s, 1H, *Aromatic H*), 8.85 (d, *J* = 8.40 Hz, 1H, *Aromatic H*), 12.68 and 12.69 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 19.0 (19.1), 21.4 (21.5), 24.9 (25.0), 30.7, 32.57 (32.62), 50.9 (51.0), 58.2 (58.3), 62.0, 72.7, 111.4, 113.7, 119.9, 122.6, 129.3, 132.6, 139.8, 150.8, 151.4, 155.3, 155.4, 163.0, 166.8.

ESI-MS: calcd for C₂₂H₂₇N₄O₂ [M+ H]⁺: 379.21, found: 379.20.

(R)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)-4-(4-methylpiperidin-1yl)nicotinamide (**4g**), 1:1 dr, white solid, yield 58%.

¹H NMR (400 MHz, CDCl₃) δ 0.91 (d, J = 6.48 Hz, 3H, CH_3 -CH), 1.23-1.31 (m, 2H), 1.27 (d, J = 7.16 Hz, 3H, CH_3 -CH-N), 1.53 (m, 1H), 1.61-1.67 (m, 2H), 2.87-2.96 (m, 2H), 3.54-3.64 (m, 2H), 3.89 (m, 1H), 4.37 (m, 1H), 4.44 (m, 1H), 6.79 (d, J = 5.96 Hz, 1H, *Aromatic H*), 7.13 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.88 (dd, $J_1 = 7.88$ Hz, $J_2 = 1.68$ Hz, 1H, *Aromatic H*), 8.35 (d, J = 5.72 Hz, 1H, *Aromatic H*),

8.62 (s, 1H, *Aromatic H*), 8.87 (d, *J* = 8.40 Hz, 1H, *Aromatic H*), 12.71 (s, 1H, CONH).

ESI-MS: calcd for $C_{22}H_{27}N_4O_2$ [M+ H]⁺: 379.21, found: 379.20.

Typical Characteristic Data in Etherification

Etherification of Nicotinamide 1a with 4-methoxyphenol to produce 5a, 6a or

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-morpholinonicotinamide (**5a**), white solid, yield 62%. ¹H NMR (400 MHz, CDCl₃) δ 3.69 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 3.83 (s, 3H, O*CH*₃), 4.23 (t, *J* = 9.52 Hz, 2H, NCH₂-*CH*₂O), 6.94~7.00 (m, 2H, *Aromatic H*), 7.10~7.19 (m, 4H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 8.24 (dd, *J*₁ = 4.88 Hz, *J*₂ = 2.04 Hz, 1H, *Aromatic H*), 8.49 (dd, *J*₁ = 7.56 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.94 (d, *J* = 8.44 Hz, 1H, *Aromatic H*), 12.92 (s, 1H, CO*NH*).

¹³C NMR (100 MHz, CDCl₃) δ 55.0, 55.6, 66.0, 114.6 (2 × *CH*), 114.7, 118.6, 119.0, 121.3, 123.0, 123.1 (2 × *CH*), 129.4, 132.2, 139.4, 142.1, 146.6, 150.0, 156.8, 160.4, 163.4, 163.7.

ESI-MS: calcd for C₂₂H₂₀N₃O₄ [M+ H]⁺: 390.15, found: 390.20.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(3-methoxyphenoxy)nicotinamide (**5b**), white solid, yield 70%. ¹H NMR (400 MHz, CDCl₃) δ 3.69 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 3.81 (s, 3H, O*CH*₃), 4.23 (t, *J* = 9.52 Hz, 2H, N*CH*₂-*CH*₂O), 6.78~6.84 (m, 3H, *Aromatic H*), 7.11~7.17 (m, 2H, *Aromatic H*), 7.34 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.84 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.26 (dd, *J*₁ = 4.84 Hz, *J*₂ = 2.04 Hz, 1H, *Aromatic H*), 8.49 (dd, *J*₁ = 7.56 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.93 (dd, *J*₁ = 8.52 Hz, *J*₂ = 1.08 Hz, 1H, *Aromatic H*), 12.92 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.9, 55.4, 66.0, 108.2, 110.9, 114.4, 114.6, 118.9, 119.3, 121.3, 123.0, 129.4, 129.9, 132.2, 139.4, 142.1, 150.1, 154.4, 160.0, 160.7, 163.3, 163.7.

ESI-MS: calcd for C₂₂H₂₀N₃O₄ [M+ H]⁺: 390.15, found: 390.20.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(2-methoxyphenoxy)nicotinamide (5c), white solid, yield 71%. ¹H NMR (400 MHz, CDCl₃) δ 3.61 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 3.72 (s, 3H, O*CH*₃), 4.20 (t, *J* = 9.52 Hz, 2H, NCH₂-*CH*₂O), 7.02~7.06 (m, 2H, *Aromatic H*), 7.10~7.14 (m, 2H, *Aromatic H*), 7.23~7.26 (m, 2H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.88 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.20 (dd, *J*₁ = 4.80 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.54 (dd, *J*₁ = 7.60 Hz, *J*₂ = 2.04 Hz, 1H, *Aromatic H*), 8.96 (dd, *J*₁ = 8.56 Hz, *J*₂ = 1.12 Hz, 1H, *Aromatic H*), 12.91 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 54.8, 55.9, 66.0, 112.9, 114.9, 118.2, 118.6, 121.0, 121.6, 122.9, 123.5, 126.4, 129.3, 132.1, 139.5, 142.1, 142.3, 150.0, 151.9, 160.1, 163.4, 163.6.

ESI-MS: calcd for C₂₂H₂₀N₃O₄ [M+ H]⁺: 390.15, found: 390.20.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(p-tolyloxy)nicotinamide (**5d**), white solid, yield 62%. ¹H NMR (400 MHz, CDCl₃) δ 2.38 (s, 3H, *CH*₃), 3.67 (t, *J* = 9.48 Hz, 2H, N*CH*₂-CH₂O), 4.22 (t, *J* = 9.48 Hz, 2H, N*C*H₂-*CH*₂O), 7.09-7.15 (m, 4H, *Aromatic H*), 7.23-7.26 (m, 2H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 8.24 (dd, *J*₁ = 4.84 Hz, *J*₂ = 2.04 Hz, 1H, *Aromatic H*), 8.49 (dd, *J*₁ = 7.56 Hz, *J*₂ = 2.04 Hz, 1H, *Aromatic H*), 8.94 (dd, *J*₁ = 8.56 Hz, *J*₂ = 1.12 Hz, 1H, *Aromatic H*), 12.93 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 21.0, 54.9, 66.0, 114.7, 118.6, 119.1, 121.3, 121.9 (2 × *CH*), 122.9, 129.3, 130.1 (2 × *CH*), 132.2, 134.8, 139.5, 142.0, 150.0, 151.0, 160.3, 163.4, 163.7.

ESI-MS: calcd for C₂₂H₂₀N₃O₃ [M+ H]⁺: 374.15, found: 374.13.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(m-tolyloxy)nicotinamide (**5e**), white solid, yield 62%. ¹H NMR (400 MHz, CDCl₃) δ 2.39 (s, 3H, *CH*₃), 3.65 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 4.22 (t, *J* = 9.52 Hz, 2H, NCH₂-*CH*₂O), 7.01-7.08 (m, 3H, *Aromatic H*), 7.10-7.15 (m, 2H, *Aromatic H*), 7.32 (dd, *J*₁ = *J*₂ = 7.64 Hz, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.88 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 8.25 (dd, *J*₁ = 4.80 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.49 (dd, *J*₁ = 7.56 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.93 (dd, *J*₁ = 8.60 Hz, *J*₂ = 1.12 Hz, 1H, *Aromatic H*), 12.91 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 21.5, 54.9, 66.0, 114.7, 118.8, 119.16, 119.18, 121.3, 122.7, 123.0, 126.0, 129.3, 129.4, 132.2, 139.4, 139.7, 142.1, 150.1, 153.3, 160.2, 163.4, 163.7.

ESI-MS: calcd for C₂₂H₂₀N₃O₃ [M+ H]⁺: 374.15, found: 374.13.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(3,4-dimethylphenoxy)nicotinamide (5f),

white solid, yield 58%. ¹H NMR (400 MHz, CDCl₃) δ 2.27 (s, 3H, *CH*₃), 2.28 (s, 3H, *CH*₃), 3.70 (t, *J* = 9.60 Hz, 2H, N*CH*₂-CH₂O), 4.22 (t, *J* = 9.60 Hz, 2H, N*CH*₂-*CH*₂O), 6.96 (dd, *J*₁ = 8.12 Hz, *J*₂ = 2.56 Hz, 1H, *Aromatic H*), 7.01 (d, *J* = 2.44 Hz, 1H, *Aromatic H*), 7.09-7.15 (m, 2H, *Aromatic H*), 7.19 (d, *J* = 8.08 Hz, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.88 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.25 (dd, *J*₁ = 4.84 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.48 (dd, *J*₁ = 7.56 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 12.91 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 19.3, 20.0, 54.9, 66.0, 114.7, 118.5, 119.0, 119.4, 121.3, 122.9, 123.2, 129.3, 130.5, 132.2, 133.4, 138.0, 139.5, 142.0, 150.1, 151.1, 160.5, 163.5, 163.7.

ESI-MS: calcd for C₂₃H₂₂N₃O₃ [M+ H]⁺: 388.17, found: 388.14.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(3,5-dimethylphenoxy)nicotinamide (**5g**), white solid, yield 82%. ¹H NMR (400 MHz, CDCl₃) δ 2.34 (s, 6H, 2 × *CH*₃), 3.67 (t, *J* = 9.56 Hz, 2H, N*CH*₂-CH₂O), 4.23 (t, *J* = 9.56 Hz, 2H, N*CH*₂-*CH*₂O), 6.84 (s, 2H, 2 × *Aromatic H*), 6.88 6.84 (s, 1H, *Aromatic H*), 7.10-7.14 (m, 2H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.88 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.26 (dd, *J*₁ = 4.84 Hz, *J*₂ = 2.04 Hz, 1H, *Aromatic H*), 8.48 (dd, *J*₁ = 7.60 Hz, *J*₂ = 2.04 Hz, 1H,
Aromatic H), 8.93 (dd, *J*₁ = 8.52 Hz, *J*₂ = 1.12 Hz, 1H, *Aromatic H*), 12.89 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 21.4 (2 × *CH*₃), 54.9, 66.0, 114.7, 118.6, 119.1, 119.8 (2 × *CH*), 121.3, 122.9, 127.0, 129.3, 132.2, 139.3 (2 × *C*), 139.4, 142.0, 150.2, 153.3, 160.3, 163.4, 163.7.

ESI-MS: calcd for C₂₃H₂₂N₃O₃ [M+ H]⁺: 388.17, found: 388.14.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(4-isopropylphenoxy)nicotinamide (**5h**), white solid, yield 52%. ¹H NMR (400 MHz, CDCl₃) δ 1.27 (d, *J* = 6.96 Hz, 6H, 2 × *CH*₃), 2.95 (q, *J* = 6.96 Hz, 1H, *CH*), 3.65 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 4.21 (t, *J* = 9.52 Hz, 2H, NCH₂-CH₂O), 7.10-7.16 (m, 4H, *Aromatic H*), 7.26-7.30 (m, 2H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.25 (dd, *J*₁ = 4.92 Hz, *J*₂ = 2.04 Hz, 1H, *Aromatic H*), 8.48 (dd, *J*₁ = 7.52 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.92 (dd, *J*₁ = 8.56 Hz, *J*₂ = 1.16 Hz, 1H, *Aromatic H*), 12.91 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 24.1 (2 × *CH*₃), 33.6, 54.8, 66.0, 114.7, 118.7, 119.3, 121.3, 121.7 (2 × *CH*), 122.9, 127.5 (2 × *CH*), 129.3, 132.2, 139.4, 142.1, 145.6, 150.0, 151.2, 160.2, 163.4, 163.7.

ESI-MS: calcd for C₂₄H₂₄N₃O₃ [M+ H]⁺: 402.18, found: 402.20.

2-(4-(tert-butyl)phenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (**5i**), white solid, yield 56%. ¹H NMR (400 MHz, CDCl₃) δ 1.34 (s, 9H, 3 × *CH*₃), 3.65 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 4.21 (t, *J* = 9.52 Hz, 2H, NCH₂-*CH*₂O), 7.10-7.16 (m, 4H, *Aromatic H*), 7.43-7.46 (m, 2H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.80 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 8.26 (dd, *J*₁ = 4.84 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.48 (dd, *J*₁ = 7.56 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.92 (dd, *J*₁ = 8.56 Hz, *J*₂ = 1.20 Hz, 1H, *Aromatic H*), 12.90 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 31.5 (3 × *CH*₃), 34.5, 54.8, 66.0, 114.7, 118.7, 119.3, 121.25 (2 × *CH*), 121.29, 122.9, 126.4 (2 × *CH*), 129.3, 132.2, 139.4, 142.0, 147.8, 150.0, 151.0, 160.1, 163.4, 163.7.

ESI-MS: calcd for C₂₅H₂₆N₃O₃ [M+ H]⁺: 416.20, found: 416.18.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(4-ethoxyphenoxy)nicotinamide (5j), white solid, yield 50%. ¹H NMR (400 MHz, CDCl₃) δ 1.43 (t, *J* = 7.0 Hz, 3H, *CH*₃), 3.65 (t, *J* = 9.64 Hz, 2H, N*CH*₂-CH₂O), 4.04 (q, *J* = 7.0 Hz, 2H, *CH*₂-O), 4.22 (t, *J* = 9.64 Hz, 2H, NCH₂-*CH*₂O), 6.96 (dd, J₁ = 6.72 Hz, J₂ = 2.32 Hz, 2H, 2 × Aromatic H),
7.09-7.17 (m, 4H, Aromatic H), 7.52 (m, 1H, Aromatic H), 7.87 (dd, J₁ = 7.84 Hz, J₂ = 1.72 Hz, 1H, Aromatic H), 8.24 (dd, J₁ = 4.84 Hz, J₂ = 2.00 Hz, 1H, Aromatic H), 8.49 (dd, J₁ = 7.56 Hz, J₂ = 2.00 Hz, 1H, Aromatic H), 8.94 (dd, J₁ = 8.60 Hz, J₂ = 1.20 Hz, 1H, Aromatic H), 12.93 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 14.9, 55.0, 63.8, 66.0, 114.7, 115.2 (2 × *CH*), 118.6, 118.9, 121.3, 122.95, 123.01 (2 × *CH*), 129.4, 132.2, 139.4, 142.1, 146.5, 150.0, 156.2, 160.5, 163.4, 163.7.

ESI-MS: calcd for C₂₃H₂₂N₃O₄ [M+ H]⁺: 404.16, found: 404.17.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(2-ethoxyphenoxy)nicotinamide (5k), white solid, yield 79%. ¹H NMR (400 MHz, CDCl₃) δ 1.03 (t, *J* = 6.96 Hz, 3H, *CH*₃), 3.59 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 3.93 (q, *J* = 6.96 Hz, 2H, *CH*₂-O), 4.19 (t, *J* = 9.52 Hz, 2H, NCH₂-*CH*₂O), 6.98-7.06 (m, 2H, *Aromatic H*), 7.09-7.14 (m, 2H, *Aromatic H*), 7.22 (m, 1H, *Aromatic H*), 7.29 (dd, *J*₁ = 7.84 Hz, *J*₂ = 1.64 Hz, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.88 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.20 (dd, *J*₁ = 4.84 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.55 (dd, *J*₁ = 7.60 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.96 (dd, *J*₁ = 8.56 Hz, *J*₂ = 1.12 Hz, 1H, *Aromatic H*), 12.91 (s, 1H, *CONH*). ¹³C NMR (100 MHz, CDCl₃) δ 14.6, 54.8, 64.3, 66.0, 114.0, 115.0, 118.2, 118.6, 120.9, 121.6, 122.9, 123.3, 126.2, 129.3, 132.1, 139.5, 142.0, 142.9, 149.9, 151.0, 160.3, 163.48, 163.49.

ESI-MS: calcd for C₂₃H₂₂N₃O₄ [M+ H]⁺: 404.16, found: 404.17.

2-(4-chlorophenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (**5**I), white solid, yield 50%. ¹H NMR (400 MHz, CDCl₃) δ 3.66 (t, *J* = 9.48 Hz, 2H, N*CH*₂-CH₂O), 4.25 (t, *J* = 9.48 Hz, 2H, NCH₂-*CH*₂O), 7.12-7.21 (m, 4H, *Aromatic H*), 7.39-7.43 (m, 2H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.24 (dd, *J*₁ = 4.80 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.48 (dd, *J*₁ = 7.52 Hz, *J*₂ = 2.04 Hz, 1H, *Aromatic H*), 8.93 (dd, *J*₁ = 8.48 Hz, *J*₂ = 1.12 Hz, 1H, *Aromatic H*), 12.91 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 54.9, 66.0, 114.5, 119.2, 119.4, 121.2, 123.1, 123.5 (2 × *CH*), 129.4, 129.6 (2 × *CH*), 130.4, 132.3, 139.4, 142.2, 149.9, 151.8, 159.7, 163.2, 163.9.

ESI-MS: calcd for C₂₁H₁₇ClN₃O₃ [M+ H]⁺: 394.10, found: 394.11.

2-(3-chlorophenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (5m), white solid, yield 42%. ¹H NMR (400 MHz, CDCl₃) δ 3.70 (t, *J* = 9.60 Hz, 2H, N*CH*₂-CH₂O), 4.25 (t, *J* = 9.60 Hz, 2H, NCH₂-*CH*₂O), 7.11-7.19 (m, 3H, *Aromatic H*), 7.24 (m, 1H, *Aromatic H*), 7.28 (dd, *J*₁ = *J*₂ = 2.08 Hz, 1H, *Aromatic H*), 7.37 (dd, *J*₁ = *J*₂ = 8.04 Hz, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 8.36 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 8.26 (dd, *J*₁ = 4.84 Hz, *J*₂ = 1.96 Hz, 1H, *Aromatic H*), 8.47 (dd, *J*₁ = 7.56 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.92 (dd, *J*₁ = 8.56 Hz, *J*₂ = 1.12 Hz, 1H, *Aromatic H*), 12.89 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.9, 66.0, 114.5, 119.3, 119.6, 120.5, 121.2, 122.8,
123.0, 125.3, 129.4, 130.3, 132.3, 134.7, 139.4, 142.1, 149.9, 154.0, 159.5, 163.1, 163.9.
ESI-MS: calcd for C₂₁H₁₇ClN₃O₃ [M+ H]⁺: 394.10, found: 394.11.

The structure of compound **5m** was unambiguously confirmed by X-ray diffraction and was deposited at the CCDC with the number 1867348.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-(3-fluorophenoxy)nicotinamide (**5n**), white solid, yield 45%. ¹H NMR (400 MHz, CDCl₃) δ 3.71 (t, *J* = 9.56 Hz, 2H, N*CH*₂-CH₂O),

4.25 (t, *J* = 9.56 Hz, 2H, NCH₂-*CH*₂O), 6.95-7.05 (m, 3H, *Aromatic H*), 7.14 (m, 1H, *Aromatic H*), 7.18 (dd, *J*₁ = 7.60 Hz, *J*₂ = 4.80 Hz, 1H, *Aromatic H*), 7.39 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.88 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.26 (dd, *J*₁ = 4.80 Hz, *J*₂ = 1.96 Hz, 1H, *Aromatic H*), 8.48 (dd, *J*₁ = 7.56 Hz, *J*₂ = 1.96 Hz, 1H, *Aromatic H*), 8.92 (dd, *J*₁ = 8.56 Hz, *J*₂ = 1.16 Hz, 1H, *Aromatic H*), 12.90 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.8, 66.0, 110.1 (d, *J*_{CF} = 23.84 Hz), 112.1 (d, *J*_{CF} = 20.78 Hz), 114.5, 117.8 (d, *J*_{CF} = 3.47 Hz), 119.4, 119.6, 121.2, 123.1, 129.4, 130.2 (d, *J*_{CF} = 9.42 Hz), 132.3, 139.4, 142.1, 149.9, 154.4 (d, *J*_{CF} = 10.79 Hz), 159.4, 162.9 (d, *J*_{CF} = 248.27 Hz), 163.2, 163.9.

ESI-MS: calcd for C₂₁H₁₇FN₃O₃ [M+H]⁺: 378.13, found: 378.15.

2,4-bis(2-chlorophenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (**70**), white solid, yield 55%. ¹H NMR (400 MHz, CDCl₃) δ 4.04 (t, *J* = 9.40 Hz, 2H, N*CH*₂-CH₂O), 4.35 (t, *J* = 9.40 Hz, 2H, NCH₂-*CH*₂O), 6.27 (d, *J* = 5.88 Hz, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.14-7.23 (m, 2H, *Aromatic H*), 7.26~7.34 (m, 4H, *Aromatic H*), 7.40~7.47 (m, 2H, *Aromatic H*), 7.50 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.64 Hz, 1H, *Aromatic H*), 7.95 (d, *J* = 5.92 Hz, 1H, *Aromatic H*), 9.02 (d, *J* = 8.40

Hz, 1H, Aromatic H), 12.86 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.9, 66.1, 106.2, 111.2, 113.6, 120.3, 122.8, 123.5, 124.3, 126.4, 127.1, 127.3, 127.5, 127.8, 128.4, 129.2, 130.4, 131.0, 132.6, 139.8, 148.7, 149.6, 149.7, 160.9, 161.7, 163.3, 164.3.

ESI-MS: calcd for C₂₇H₂₀Cl₂N₃O₄ [M+ H]⁺: 520.08, found: 520.11.

2,4-bis(2,4-dichlorophenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (7**p**), white solid, yield 53%. ¹H NMR (400 MHz, CDCl₃) δ 4.02 (t, *J* = 9.44 Hz, 2H, N*CH*₂-CH₂O), 4.36 (t, *J* = 9.44 Hz, 2H, NCH₂-*CH*₂O), 6.29 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 7.13 (m, 1H, *Aromatic H*), 7.19-7.23 (m, 2H, *Aromatic H*), 7.27~7.32 (m, 2H, *Aromatic H*), 7.44 (d, *J* = 2.36 Hz, 1H, *Aromatic H*), 7.47 (d, *J* = 2.44 Hz, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.60 Hz, 1H, *Aromatic H*), 7.97 (d, *J* = 5.92 Hz, 1H, *Aromatic H*), 8.98 (d, *J* = 8.44 Hz, 1H, *Aromatic H*), 12.84 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.9, 66.1, 106.4, 111.3, 113.5, 120.2, 123.0, 124.2, 125.1, 128.0, 128.1, 128.4, 128.6, 129.2, 130.2, 130.8, 131.2, 132.0, 132.6, 139.6, 148.3, 148.5, 148.8, 160.7, 161.2, 163.1, 164.5.

ESI-MS: calcd for C₂₇H₁₈Cl₄N₃O₄ [M+ H]⁺: 590.00, found: 590.04.

2,4-bis(2-chloro-4-fluorophenoxy)-N-(2-(4,5-dihydrooxazol-2-

yl)phenyl)nicotinamide (**7q**), white solid, yield 62%. ¹H NMR (400 MHz, CDCl₃) δ 4.03 (t, J = 9.52 Hz, 2H, NCH₂-CH₂O), 4.36 (t, J = 9.52 Hz, 2H, NCH₂-CH₂O), 6.99-7.06 (m, 2H, *Aromatic H*), 7.13 (m, 1H, *Aromatic H*), 7.18 (dd, $J_1 = 8.04$ Hz, $J_2 = 3.0$ Hz, 1H, *Aromatic H*), 7.22 (dd, $J_1 = 7.92$ Hz, $J_2 = 3.08$ Hz, 1H, *Aromatic H*), 7.23-7.28 (m, 2H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.89 (dd, $J_1 = 7.88$ Hz, $J_2 = 1.64$ Hz, 1H, *Aromatic H*), 7.96 (d, J = 5.88 Hz, 1H, *Aromatic H*), 9.01 (d, J = 8.44 Hz, 1H, *Aromatic H*), 12.84 (s, 1H, CONH).

ESI-MS: calcd for C₂₇H₁₈Cl₂F₂N₃O₄ [M+ H]⁺: 556.06, found: 556.09.

2-(4-allyl-2-methoxyphenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (**5r**), white solid, yield 43%. ¹H NMR (400 MHz, CDCl₃) δ 3.43 (d, *J* = 6.76 Hz, 2H, Ph*CH*₂), 3.66 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 3.71 (s, 3H, O*CH*₃), 4.22 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 5.08-5.16 (m, 2H), 6.01 (m, 1H), 6.85-6.87 (m, 2H, *Aromatic*

H), 7.08-7.19 (m, 3H, Aromatic H), 7.51 (m, 1H, Aromatic H), 7.87 (dd, J₁ = 7.92 Hz, J₂ = 1.68 Hz, 1H, Aromatic H), 8.21 (dd, J₁ = 4.80 Hz, J₂ = 2.00 Hz, 1H, Aromatic H), 8.53 (dd, J₁ = 7.60 Hz, J₂ = 2.00 Hz, 1H, Aromatic H), 8.95 (dd, J₁ = 8.56 Hz, J₂ = 1.08 Hz, 1H, Aromatic H), 12.90 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 40.2, 54.9, 55.9, 66.0, 113.2, 114.9, 116.1, 118.2, 118.5, 120.9, 121.6, 122.9, 123.1, 129.3, 132.1, 137.2, 138.4, 139.5, 140.4, 142.1, 150.1, 151.6, 160.2, 163.5, 163.6.

ESI-MS: calcd for C₂₅H₂₄N₃O₄ [M+ H]⁺: 430.18, found: 430.16.

(S)-2-(4-methoxyphenoxy)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)

nicotinamide (**5s**), white solid, yield 72%. ¹H NMR (400 MHz, CDCl₃) δ 1.08 (d, *J* = 6.6 Hz, 3H, NCH-*CH*₃), 3.82 (m, 1H), 3.83 (s, 3H, O-*CH*₃), 4.06 (m, 1H), 4.31 (dd, *J*₁ = 9.24 Hz, *J*₂ = 8.00 Hz, 1H), 6.93-6.97 (m, 2H, *Aromatic H*), 7.09-7.17 (m, 4H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.84 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.24 (dd, *J*₁ = 4.88 Hz, *J*₂ = 1.96 Hz, 1H, *Aromatic H*), 8.43 (dd, *J*₁ = 7.56 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.87 (dd, *J*₁ = 8.48 Hz, *J*₂ = 1.16 Hz, 1H, *Aromatic H*), 12.75 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 21.5, 55.6, 62.1, 72.6, 114.6 (2 × *CH*), 114.9, 118.5, 119.3, 121.4, 122.99 (2 × *CH*), 123.02, 129.3, 132.2, 139.3, 141.7, 146.6, 149.9, 156.8,

160.5, 162.6, 163.5.

ESI-MS: calcd for C₂₃H₂₂N₃O₄ [M+ H]⁺: 404.16, found: 404.14.

(S)-N-(2-(4-ethyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(4-

methoxyphenoxy)nicotinamide (**5t**), white solid, yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 0.78 (t, *J* = 7.40 Hz, 3H, CH₂-*CH*₃), 1.36-1.51 (m, 2H, *CH*₂-CH₃), 3.82 (s, 3H, O-*CH*₃), 3.91-4.00 (m, 2H), 4.30 (m, 1H), 6.92-6.97 (m, 2H, *Aromatic H*), 7.08-7.17 (m, 4H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.24 (dd, *J*₁ = 4.80 Hz, *J*₂ = 1.96 Hz, 1H, *Aromatic H*), 8.37 (dd, *J*₁ = 7.56 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.87 (dd, *J*₁ = 8.44 Hz, *J*₂ = 1.12 Hz, 1H, *Aromatic H*), 12.83 (s, 1H, CO*NH*).

¹³C NMR (100 MHz, CDCl₃) δ 10.0, 28.6, 55.6, 68.0, 70.8, 114.5 (2 × *CH*), 114.7, 118.4, 119.7, 121.2, 122.89 (2 × *CH*), 122.99, 129.3, 132.2, 139.4, 141.2, 146.7, 149.8, 156.8, 160.4, 162.7, 163.7.

ESI-MS: calcd for C₂₄H₂₄N₃O₄ [M+ H]⁺: 418.18, found: 418.21.

(S)-N-(2-(4-benzyl-4,5-dihydrooxazol-2-yl)phenyl)-2-(4-methoxyphenoxy) nicotinamide (**5u**), white solid, yield 52%. ¹H NMR (400 MHz, CDCl₃) δ 2.56 (dd, *J*₁ = 13.52 Hz, *J*₂ = 7.28 Hz, 1H, Ph-*CH*), 2.79 (dd, *J*₁ = 13.52 Hz, *J*₂ = 6.32 Hz, 1H, Ph-*CH*), 3.78 (s, 3H, O-*CH*₃), 4.01 (dd, *J*₁ = 8.08 Hz, *J*₂ = 6.04 Hz, 1H), 4.17 (dd, *J*₁ = 9.16 Hz, *J*₂ = 8.08 Hz, 1H), 4.24 (m, 1H), 6.88-6.94 (m, 4H, *Aromatic H*), 7.03-7.14 (m, 7H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.24 (dd, *J*₁ = 4.84 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.43 (dd, *J*₁ = 7.52 Hz, *J*₂ = 2.00 Hz, 1H, *Aromatic H*), 8.90 (dd, *J*₁ = 8.52 Hz, *J*₂ = 1.16 Hz, 1H, *Aromatic H*), 12.76 (s, 1H, CON*H*).

¹³C NMR (100 MHz, CDCl₃) δ 42.1, 55.5, 67.9, 70.5, 114.5 (2 × CH), 114.6, 118.6,
119.2, 121.3, 122.9 (2 × CH), 123.0, 126.6, 128.3 (2 × CH), 129.2 (2 × CH), 129.4,
132.4, 137.7, 139.5, 141.7, 146.5, 149.9, 156.7, 160.4, 163.1, 163.6.

ESI-MS: calcd for C₂₉H₂₆N₃O₄ [M+ H]⁺: 480.19, found: 480.20.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(4-methoxyphenoxy)nicotinamide (6a), white solid, yield 56%. ¹H NMR (400 MHz, CDCl₃) δ 3.78 (t, *J* = 9.72 Hz, 2H, N*CH*₂-CH₂O), 3.85 (s, 3H, O*CH*₃), 4.26 (t, *J* = 9.72 Hz, 2H, NCH₂-*CH*₂O), 6.62 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 6.96~7.01 (m, 2H, *Aromatic H*), 7.10~7.16 (m, 3H, *Aromatic H*), 7.52 (dd, *J*₁ = 8.04 Hz, *J*₂ = 7.84 Hz, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.64 Hz, *J*₂ = 5.84 Hz, 1H, *Aromatic H*), 8.45 (d, *J* = 5.88 Hz, 1H, *Aromatic H*), 8.96 (d, *J* = 8.48 Hz, 1H, *Aromatic H*), 9.15 (s, 1H, *Aromatic H*), 12.83 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 55.0, 55.7, 66.0, 109.7, 114.3, 115.2 (2 × *CH*), 120.9, 121.0, 122.5 (2 × *CH*), 122.9, 129.4, 132.4, 139.5, 146.6, 153.1, 153.4, 157.5, 162.9, 163.0, 164.0.

ESI-MS: calcd for C₂₂H₂₀N₃O₄ [M+ H] ⁺: 390.15, found: 390.20; calcd for C₂₂H₁₉N₃NaO₄ [M+ Na]⁺: 412.13, found: 412.24.

The structure of compound **6a** was unambiguously confirmed by X-ray diffraction and was deposited at the CCDC with the number 1864262.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(3-methoxyphenoxy)nicotinamide (**6b**), white solid, yield 87%. ¹H NMR (400 MHz, CDCl₃) δ 3.78 (t, *J* = 8.96 Hz, 2H, N*CH*₂-CH₂O), 3.82 (s, 3H, O*CH*₃), 4.26 (t, *J* = 8.96 Hz, 2H, N*CH*₂-*CH*₂O), 6.68-6.76 (m, 2H, *Aromatic H*), 6.77-6.88 (m, 2H, *Aromatic H*), 7.13 (m, 1H, *Aromatic H*), 7.37 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.88 Hz, *J*₂ = 1.76 Hz, 1H, *Aromatic H*), 8.45 (d, *J* = 9.40 Hz, 1H, *Aromatic H*), 8.95 (d, *J* = 8.52 Hz, 1H, *Aromatic H*), 9.15 (s, 1H, *Aromatic H*), 12.84 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 54.9, 55.6, 66.0, 107.5, 110.3, 111.6, 113.4, 114.2, 120.9, 121.3, 123.0, 129.3, 130.7, 132.4, 139.5, 153.1, 153.4, 154.5, 161.3, 162.2, 162.9, 164.0.

ESI-MS: calcd for C₂₂H₂₀N₃O₄ [M+ H]⁺: 390.15, found: 390.20.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(2-methoxyphenoxy)nicotinamide (6c), white solid, yield 85%. ¹H NMR (400 MHz, CDCl₃) δ 3.72 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 3.76 (s, 3H, O*CH*₃), 4.24 (t, *J* = 9.52 Hz, 2H, NCH₂-*CH*₂O), 6.52 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 7.01-7.07 (m, 2H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.22 (dd, $J_1 = 7.68$ Hz, $J_2 = 1.60$ Hz, 1H, *Aromatic H*), 7.29 (m, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, $J_1 = 7.96$ Hz, $J_2 = 1.72$ Hz, 1H, *Aromatic H*), 8.42 (d, J = 5.84 Hz, 1H, *Aromatic H*), 8.97 (dd, $J_1 = 8.52$ Hz, $J_2 = 1.2$ Hz, 1H, *Aromatic H*), 9.19 (s, 1H, *Aromatic H*), 12.82 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.8, 55.8, 66.0, 109.4, 113.0, 114.4, 120.2, 121.25, 121.33, 122.9, 123.2, 127.3, 129.3, 132.3, 139.6, 141.5, 151.6, 152.9, 153.4, 162.4, 163.1, 163.9.

ESI-MS: calcd for C₂₂H₂₀N₃O₄ [M+ H]⁺: 390.15, found: 390.20.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(2-methoxyphenoxy)nicotinamide (6c), white solid, yield 85%. ¹H NMR (400 MHz, CDCl₃) δ 3.72 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 3.76 (s, 3H, O*CH*₃), 4.24 (t, *J* = 9.52 Hz, 2H, N*CH*₂-*CH*₂O), 6.52 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 7.01-7.07 (m, 2H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.22 (dd, *J*₁ = 7.68 Hz, *J*₂ = 1.60 Hz, 1H, *Aromatic H*), 7.29 (m, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.96 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 8.42 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 8.97 (dd, *J*₁ = 8.52 Hz, *J*₂ = 1.2 Hz, 1H, *Aromatic H*), 9.19 (s, 1H, *Aromatic H*), 12.82 (s, 1H, *CONH*).

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(p-tolyloxy)nicotinamide (**6d**), white solid, yield 93%. ¹H NMR (400 MHz, CDCl₃) δ 2.40 (s, 3H, *CH*₃), 3.76 (t, *J* = 9.48 Hz, 2H, N*CH*₂-CH₂O), 4.25 (t, *J* = 9.48 Hz, 2H, N*CH*₂-*CH*₂O), 6.64 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 7.06-7.10 (m, 2H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.24-7.28 (m, 2H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 8.42 (d, *J* = 5.88 Hz, 1H, *Aromatic H*), 8.95 (dd, *J*₁ = 8.56 Hz, *J*₂ = 1.16 Hz, 1H, *Aromatic H*), 9.15 (s, 1H, *Aromatic H*), 12.84 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 20.9, 54.9, 66.0, 110.0, 114.3, 121.0, 121.1, 121.3 (2 × *CH*), 122.9, 129.3, 130.8 (2 × *CH*), 132.4, 135.8, 139.5, 151.1, 153.0, 153.4, 162.6, 163.0, 164.0.

ESI-MS: calcd for C₂₂H₂₀N₃O₃ [M+ H]⁺: 374.15, found: 374.13.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(m-tolyloxy)nicotinamide (**6e**), white solid, yield 83%. ¹H NMR (400 MHz, CDCl₃) δ 2.40 (s, 3H, *CH*₃), 3.75 (t, *J* = 9.60 Hz, 2H, N*CH*₂-CH₂O), 4.25 (t, *J* = 9.60 Hz, 2H, NCH₂-*CH*₂O), 6.67 (d, *J* = 5.80 Hz, 1H,

Aromatic H), 6.98-7.01 (m, 2H, *Aromatic H*), 7.10-7.14 (m, 2H, *Aromatic H*), 7.35 (dd, $J_1 = J_2 = 7.68$ Hz, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, $J_1 = 7.92$ Hz, $J_2 = 1.64$ Hz, 1H, *Aromatic H*), 8.46 (d, J = 5.92 Hz, 1H, *Aromatic H*), 8.95 (dd, $J_1 =$ 8.52 Hz, $J_2 = 1.12$ Hz, 1H, *Aromatic H*), 9.16 (s, 1H, *Aromatic H*), 12.83 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 21.4, 54.9, 66.0, 110.2, 114.3, 118.4, 121.0, 121.2, 122.0, 123.0, 126.8, 129.3, 130.0, 132.4, 139.5, 140.7, 153.0, 153.37, 153.40, 162.4, 163.0, 164.0.

ESI-MS: calcd for C₂₂H₂₀N₃O₃ [M+ H]⁺: 374.15, found: 374.13.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(3,4-dimethylphenoxy)nicotinamide (**6f**), white solid, yield 90%. ¹H NMR (400 MHz, CDCl₃) δ 2.29 (s, 3H, *CH*₃), 2.30 (s, 3H, *CH*₃), 3.77 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 4.25 (t, *J* = 9.52 Hz, 2H, N*CH*₂-*CH*₂O), 6.65 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 6.92 (dd, *J*₁ = 8.12 Hz, *J*₂ = 2.56 Hz, 1H, *Aromatic H*), 6.97 (d, *J* = 2.52 Hz, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.20 (d, *J* = 8.12 Hz, 1H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.84 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.44 (d, *J* = 5.88 Hz, 1H, *Aromatic H*), 8.95 (dd, *J*₁ = 8.52 Hz, *J*₂ = 1.2 Hz, 1H, *Aromatic H*), 9.15 (s, 1H, *Aromatic H*), 12.83 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 19.3, 20.0, 54.9, 66.0, 110.1, 114.3, 118.6, 121.0, 121.1, 122.4, 122.9, 129.3, 131.1, 132.3, 134.4, 138.9, 139.5, 151.2, 153.0, 153.4, 162.7,

163.1, 164.0.

ESI-MS: calcd for C₂₃H₂₂N₃O₃ [M+ H]⁺: 388.17, found: 388.14.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(3,5-dimethylphenoxy)nicotinamide (**6g**), white solid, yield 80%. ¹H NMR (400 MHz, CDCl₃) δ 2.35 (s, 6H, 2 × *CH*₃), 3.76 (t, *J* = 9.56 Hz, 2H, N*CH*₂-CH₂O), 4.26 (t, *J* = 9.56 Hz, 2H, NCH₂-*CH*₂O), 6.67 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 6.81 (s, 2H, *Aromatic H*), 6.93 (s, 1H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 8.46 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 8.95 (dd, *J*₁ = 8.52 Hz, *J*₂ = 1.12 Hz, 1H, *Aromatic H*), 9.15 (s, 1H, *Aromatic H*), 12.81 (s, 1H, CO*NH*).

¹³C NMR (100 MHz, CDCl₃) δ 21.3(2 × *CH*₃), 54.9, 66.0, 110.3, 114.3, 119.0 (2 × *CH*), 121.1, 122.9, 127.6, 129.3, 132.4, 139.5, 140.2 (2 × *C*), 153.0, 153.3, 153.4, 162.5, 163.0, 164.0.

ESI-MS: calcd for C₂₃H₂₂N₃O₃ [M+ H]⁺: 388.17, found: 388.14.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(4-isopropylphenoxy)nicotinamide (6h),

white solid, yield 71%. ¹H NMR (400 MHz, CDCl₃) δ 1.28 (d, *J* = 6.92 Hz, 6H, 2 × *CH*₃), 2.95 (q, *J* = 6.92 Hz, 1H, *CH*), 3.75 (t, *J* = 9.48 Hz, 2H, N*CH*₂-CH₂O), 4.24 (t, *J* = 9.48 Hz, 2H, NCH₂-*CH*₂O), 6.67 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 7.08-7.15 (m, 3H, *Aromatic H*), 7.28-7.33 (m, 2H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.96 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 8.46 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 8.95 (dd, *J*₁ = 8.56 Hz, *J*₂ = 1.20 Hz, 1H, *Aromatic H*), 9.15 (s, 1H, *Aromatic H*), 12.82 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 24.1 (2 × *CH*₃), 33.7, 54.9, 66.0, 110.1, 114.3, 121.0, 121.2 (2 × *CH*), 122.9, 128.1 (2 × *CH*), 129.3, 132.4, 139.5, 146.8, 151.2, 153.1, 153.4, 162.5, 163.1, 164.0.

ESI-MS: calcd for C₂₄H₂₄N₃O₃ [M+ H]⁺: 402.18, found: 402.20.

4-(4-(tert-butyl)phenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (**6i**), white solid, yield 69%. ¹H NMR (400 MHz, CDCl₃) δ 1.35 (s, 9H, 3 × *CH*₃), 3.76 (t, *J* = 9.44 Hz, 2H, N*CH*₂-CH₂O), 4.25 (t, *J* = 9.44 Hz, 2H, N*CH*₂-*CH*₂O), 6.68 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 7.08-7.15 (m, 3H, *Aromatic H*), 7.44-7.49 (m, 2H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.46 (d, *J* = 5.88 Hz, 1H, *Aromatic H*), 8.95 (dd, *J*₁ = 8.52 Hz, *J*₂ = 1.20 Hz, 1H, *Aromatic* H), 9.15 (s, 1H, Aromatic H), 12.83 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 31.5 (3 × *CH*₃), 34.6, 54.8, 66.0, 110.2, 114.2, 120.8 (2 × *CH*), 121.0, 121.2, 122.9, 127.1 (2 × *CH*), 129.3, 132.4, 139.5, 149.1, 151.0, 153.1, 153.4, 162.5, 163.0, 164.0.

ESI-MS: calcd for C₂₅H₂₆N₃O₃ [M+ H]⁺: 416.20, found: 416.18.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(4-ethoxyphenoxy)nicotinamide (6j), white solid, yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 1.45 (t, *J* = 6.96 Hz, 3H, *CH*₃), 3.77 (t, *J* = 9.48 Hz, 2H, N*CH*₂-CH₂O), 4.06 (q, *J* = 6.96 Hz, 2H, *CH*₂-O), 4.26 (t, *J* = 9.48 Hz, 2H, NCH₂-*CH*₂O), 6.63 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 6.96-6.99 (m, 2H, *Aromatic H*), 7.08-7.15 (m, 3H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.84 Hz, *J*₂ = 1.64 Hz, 1H, *Aromatic H*), 8.45 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 8.96 (dd, *J*₁ = 8.52 Hz, *J*₂ = 1.12 Hz, 1H, *Aromatic H*), 9.15 (s, 1H, *Aromatic H*), 12.84 (s, 1H, CO*NH*).

¹³C NMR (100 MHz, CDCl₃) δ 14.8, 55.0, 64.0, 66.0, 109.8, 114.3, 115.8 (2 × *CH*), 120.8, 121.0, 122.5 (2 × *CH*), 123.0, 129.4, 132.4, 139.5, 146.5, 153.1, 153.4, 156.9, 162.93, 163.03, 164.0.

ESI-MS: calcd for C₂₃H₂₂N₃O₄ [M+ H]⁺: 404.16, found: 404.17.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(2-ethoxyphenoxy)nicotinamide (6k), white solid, yield 75%. ¹H NMR (400 MHz, CDCl₃) δ 1.16 (t, *J* = 6.96 Hz, 3H, *CH*₃), 3.69 (t, *J* = 9.48 Hz, 2H, N*CH*₂-CH₂O), 3.99 (q, *J* = 6.96 Hz, 2H, *CH*₂-O), 4.23 (t, *J* = 9.48 Hz, 2H, NCH₂-*CH*₂O), 6.56 (d, *J* = 5.76 Hz, 1H, *Aromatic H*), 7.01-7.05 (m, 2H, *Aromatic H*), 7.12 (m, 1H, *Aromatic H*), 7.23-7.28 (m, 2H, *Aromatic H*), 7.52 (m, 1H, *Aromatic H*), 7.88 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.56 Hz, 1H, *Aromatic H*), 8.42 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 8.97 (dd, *J*₁ = 8.56 Hz, *J*₂ = 1.16 Hz, 1H, *Aromatic H*), 9.20 (s, 1H, *Aromatic H*), 12.83 (s, 1H, CON*H*).

¹³C NMR (100 MHz, CDCl₃) δ 14.6, 54.8, 64.4, 66.0, 109.7, 114.1, 114.5, 120.2, 121.2, 121.3, 122.9, 123.2, 127.2, 129.3, 132.2, 139.6, 141.9, 150.8, 152.7, 153.3, 162.5, 163.1, 163.8.

ESI-MS: calcd for $C_{23}H_{22}N_3O_4 [M+H]^+: 404.16$, found: 404.17.

4-(4-chlorophenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (6l), white solid, yield 60%. ¹H NMR (400 MHz, CDCl₃) δ 3.78 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O),

4.28 (t, J = 9.52 Hz, 2H, NCH₂-CH₂O), 6.66 (d, J = 5.80 Hz, 1H, Aromatic H), 7.127.17 (m, 3H, Aromatic H), 7.41-7.47 (m, 2H, Aromatic H), 7.52 (m, 1H, Aromatic H),
7.89 (dd, J₁ = 7.96 Hz, J₂ = 1.60 Hz, 1H, Aromatic H), 8.50 (d, J = 5.80 Hz, 1H,
Aromatic H), 8.94 (d, J = 8.48 Hz, 1H, Aromatic H), 9.15 (s, 1H, Aromatic H), 12.83 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.9, 66.0, 110.2, 114.1, 120.9, 121.6, 122.7 (2 × *CH*), 123.1, 129.4, 130.4 (2 × *CH*), 131.4, 132.5, 139.4, 152.1, 153.2, 153.4, 161.9, 162.8, 164.2.

ESI-MS: calcd for C₂₁H₁₇ClN₃O₃ [M+ H]⁺: 394.10, found: 394.11.

4-(3-chlorophenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (6m), white solid, yield 67%. ¹H NMR (400 MHz, CDCl₃) δ 3.80 (t, J = 9.52 Hz, 2H, NCH₂-CH₂O), 4.29 (t, J = 9.52 Hz, 2H, NCH₂-CH₂O), 6.70 (d, J = 5.72 Hz, 1H, Aromatic H), 7.09-7.16 (m, 2H, Aromatic H), 7.24 (dd, $J_1 = J_2 = 2.20$ Hz, 1H, Aromatic H), 7.29 (m, 1H, Aromatic H), 7.41 (dd, $J_1 = J_2 = 8.08$ Hz, 1H, Aromatic H), 7. 52 (m, 1H, Aromatic H), 7.88 (dd, $J_1 = 7.92$ Hz, $J_2 = 1.64$ Hz, 1H, Aromatic H), 8.52 (d, J = 5.80 Hz, 1H, Aromatic H), 8.93 (d, J = 8.36 Hz, 1H, Aromatic H), 9.15 (s, 1H, Aromatic H), 12.82 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.9, 66.0, 110.4, 114.1, 119.6, 120.8, 121.7, 121.9,

123.1, 126.2, 129.4, 131.1, 132.5, 135.6, 139.4, 153.2, 153.4, 154.2, 161.6, 162.7, 164.2. ESI-MS: calcd for C₂₁H₁₇ClN₃O₃ [M+ H]⁺: 394.10, found: 394.11.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(3-fluorophenoxy)nicotinamide (**6n**), white solid, yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 3.80 (t, *J* = 9.52 Hz, 2H, NCH₂-CH₂O), 4.29 (t, *J* = 9.52 Hz, 2H, NCH₂-CH₂O), 6.72 (d, *J* = 5.76 Hz, 1H, *Aromatic H*), 6.95 (m, 1H, *Aromatic H*), 6.98-7.06 (m, 2H, *Aromatic H*), 7.14 (dd, *J*₁ = *J*₂ = 7.64 Hz, 1H, *Aromatic H*), 7.44 (m, 1H, *Aromatic H*), 7. 52 (m, 1H, *Aromatic H*), 7.89 (dd, *J*₁ = 7.84 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.52 (d, *J* = 5.96 Hz, 1H, *Aromatic H*), 8.93 (d, *J* = 8.20 Hz, 1H, *Aromatic H*), 9.14 (s, 1H, *Aromatic H*), 12.83 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.8, 66.0, 109.3 (d, $J_{CF} = 23.95$ Hz), 110.5, 113.0 (d, $J_{CF} = 20.91$ Hz), 114.1, 117.0, 120.8, 121.8, 123.1, 129.4, 131.2 (d, $J_{CF} = 9.43$ Hz), 132.5, 139.4, 153.2, 153.3, 154.6 (d, $J_{CF} = 10.61$ Hz), 161.5, 162.74, 163.5 (d, $J_{CF} = 247.59$ Hz), 164.2.

ESI-MS: calcd for C₂₁H₁₇FN₃O₃ [M+H]⁺: 378.13, found: 378.15.

4-(2-chlorophenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (60), white solid, yield 72%. ¹H NMR (400 MHz, CDCl₃) δ 3.74 (t, *J* = 9.56 Hz, 2H, NCH₂-CH₂O), 4.26 (t, *J* = 9.56 Hz, 2H, NCH₂-*CH*₂O), 6.50 (d, *J* = 5.76 Hz, 1H, *Aromatic H*), 7.14 (m, 1H, *Aromatic H*), 7.28-7.32 (m, 2H, *Aromatic H*), 7.40 (m, 1H, *Aromatic H*), 7.49-7.57 (m, 2H, *Aromatic H*), 7.89 (dd, *J*₁ = 7.84 Hz, *J*₂ = 1.60 Hz, 1H, *Aromatic H*), 8.49 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 8.96 (dd, *J*₁ = 8.48 Hz, *J*₂ = 1.12 Hz, 1H, *Aromatic H*), 9.21 (s, 1H, *Aromatic H*), 12.84 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.8, 66.0, 109.5, 114.4, 120.7, 121.1, 123.0, 123.7,
127.4 (2), 128.6, 129.4, 131.3, 132.3, 139.5, 149.1, 153.2, 153.5, 161.3, 162.7, 164.0.
ESI-MS: calcd for C₂₁H₁₇ClN₃O₃ [M+ H]⁺: 394.10, found: 394.11.

4-(2,4-dichlorophenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (**6p**), white solid, yield 72%. ¹H NMR (400 MHz, CDCl₃) δ 3.80 (t, *J* = 9.48 Hz, 2H, N*CH*₂-CH₂O), 4.30 (t, *J* = 9.48 Hz, 2H, NCH₂-*CH*₂O), 6.51 (d, *J* = 5.76 Hz, 1H, *Aromatic H*), 7.14 (m, 1H, *Aromatic H*), 7.24 (d, *J* = 8.64 Hz, 1H, *Aromatic H*), 7.37 (dd, *J*₁ = 8.68 Hz, *J*₂ = 2.44 Hz, 1H, *Aromatic H*), 7.49-7.56 (m, 2H, *Aromatic H*), 7.89 (dd, *J*₁ = 7.88 Hz, *J*₂ = 1.52 Hz, 1H, *Aromatic H*), 8.51 (d, *J* = 5.92 Hz, 1H, *Aromatic H*), 8.95 (d, *J* = 8.48 Hz, 1H, *Aromatic H*), 9.18 (s, 1H, *Aromatic H*), 12.81 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 54.8, 66.0, 109.5, 114.2, 121.0, 121.1, 123.1, 124.4, 128.4, 128.8, 129.4, 131.0, 132.3, 132.4, 139.4, 148.0, 153.3, 153.4, 160.9, 162.6, 164.1. ESI-MS: calcd for C₂₁H₁₆Cl₂N₃O₃ [M+ H]⁺: 428.06, found: 428.04.

4-(2-chloro-4-fluorophenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (**6q**), white solid, yield 78%. ¹H NMR (400 MHz, CDCl₃) δ 3.80 (t, *J* = 9.48 Hz, 2H, N*CH*₂-CH₂O), 4.29 (t, *J* = 9.48 Hz, 2H, NCH₂-*CH*₂O), 6.49 (d, *J* = 5.76 Hz, 1H, *Aromatic H*), 7.09-7.17 (m, 2H, *Aromatic H*), 7.27-7.31 (m, 2H, *Aromatic H*), 7.53 (m, 1H, *Aromatic H*), 7.90 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.60 Hz, 1H, *Aromatic H*), 8.50 (d, *J* = 5.76 Hz, 1H, *Aromatic H*), 8.96 (d, *J* = 8.36 Hz, 1H, *Aromatic H*), 9.19 (s, 1H, *Aromatic H*), 12.81 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 54.9, 66.0, 109.3, 114.3, 115.6 (d, $J_{CF} = 22.87$ Hz), 118.4 (d, $J_{CF} = 26.0$ Hz), 121.1, 123.1, 124.5 (d, $J_{CF} = 8.97$ Hz), 128.4 (d, $J_{CF} = 10.78$ Hz), 129.4, 132.4, 139.4, 145.5 (d, $J_{CF} = 3.6$ Hz), 153.3, 160.1(d, $J_{CF} = 247.92$ Hz), 161.2, 162.7, 164.1. ESI-MS: calcd for C₂₁H₁₆ClFN₃O₃ [M+ H]⁺: 412.09, found: 412.06.

The structure of compound **6q** was unambiguously confirmed by X-ray diffraction and was deposited at the CCDC with the number 1867347.

4-(4-allyl-2-methoxyphenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (**6r**), white solid, yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 3.43 (d, *J* = 6.68 Hz, 2H, Ph*CH*₂), 3.75 (t, *J* = 9.52 Hz, 2H, N*CH*₂-CH₂O), 3.75 (s, 3H, O*CH*₃), 4.25 (t, *J* = 9.52 Hz, 2H, NCH₂-*CH*₂O), 5.11-5.16 (m, 2H), 5.99 (m, 1H), 6.52 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 6.83-6.88 (m, 2H, *Aromatic H*), 7.09-7.15 (m, 2H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.92 Hz, *J*₂ = 1.68 Hz, 1H, *Aromatic H*), 8.42 (d, *J* = 5.88 Hz, 1H, *Aromatic H*), 8.97 (dd, *J*₁ = 8.52 Hz, *J*₂ = 1.16 Hz, 1H, *Aromatic H*), 9.18 (s, 1H, *Aromatic H*), 12.81 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 40.1, 54.9, 55.8, 66.0, 109.4, 113.2, 114.4, 116.4, 120.1, 121.2, 121.3, 122.85, 122.93, 129.3, 132.3, 136.9, 139.6 (2), 139.7, 151.4, 152.9, 153.3, 162.5, 163.1, 163.9.

ESI-MS: calcd for C₂₅H₂₄N₃O₄ [M+ H]⁺: 430.18, found: 430.16.

(S)-4-(4-methoxyphenoxy)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl) nicotinamide (**6s**), white solid, yield 78%. ¹H NMR (400 MHz, CDCl₃) δ 1.16 (d, *J* = 6.6 Hz, 3H, NCH-*CH*₃), 3.83 (s, 3H, O-*CH*₃), 3.87 (dd, *J*₁ = 8.08 Hz, *J*₂ = 7.20 Hz, 1H), 4.18 (m, 1H), 4.36 (dd, *J*₁ = 9.32 Hz, *J*₂ = 8.08 Hz, 1H), 6.65 (d, *J* = 5.88 Hz, 1H, *Aromatic H*), 6.94-6.99 (m, 2H, *Aromatic H*), 7.08-7.16 (m, 3H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.88 Hz, *J*₂ = 1.64 Hz, 1H, *Aromatic H*), 8.45 (d, *J* = 5.80 Hz, 1H, *Aromatic H*), 8.90 (dd, *J*₁ = 8.44 Hz, *J*₂ = 1.16 Hz, 1H, *Aromatic H*), 9.08 (s, 1H, *Aromatic H*), 12.75 (s, 1H, CON*H*).

¹³C NMR (100 MHz, CDCl₃) δ 21.6, 55.7, 62.1, 72.6, 110.0, 114.4, 115.2 (2 × *CH*), 121.0, 121.5, 122.4 (2 × *CH*), 123.0, 129.3, 132.3, 139.4, 146.8, 152.7, 153.0, 157.5, 162.9, 163.0, 163.1.

ESI-MS: calcd for C₂₃H₂₂N₃O₄ [M+ H]⁺: 404.16, found: 404.14.

(R)-4-(4-methoxyphenoxy)-N-(2-(4-methyl-4,5-dihydrooxazol-2-yl)phenyl)

nicotinamide (6v), white solid, yield 51%. Similar NMR Data to that of compound 6s.

(S)-N-(2-(4-ethyl-4,5-dihydrooxazol-2-yl)phenyl)-4-(4-

methoxyphenoxy)nicotinamide (**6t**), white solid, yield 75%. ¹H NMR (400 MHz, CDCl₃) δ 0.82 (t, *J* = 7.36 Hz, 3H, CH₂-*CH*₃), 1.43-1.51 (m, 2H, *CH*₂-CH₃), 3.83 (s, 3H, O-*CH*₃), 3.96 (dd, *J*₁ = 8.08 Hz, *J*₂ = 7.28 Hz, 1H), 4.07 (m, 1H), 4.35 (dd, *J*₁ = 9.36 Hz, *J*₂ = 8.08 Hz, 1H), 6.65 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 6.93-6.97 (m, 2H, *Aromatic H*), 7.07-7.16 (m, 3H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.96 Hz, *J*₂ = 1.72 Hz, 1H, *Aromatic H*), 8.45 (d, *J* = 5.84 Hz, 1H, *Aromatic H*), 8.89 (dd, *J*₁ = 8.48 Hz, *J*₂ = 1.16 Hz, 1H, *Aromatic H*), 9.03 (s, 1H, *Aromatic H*), 12.84 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 10.1, 28.8, 55.7, 68.0, 70.8, 110.1, 114.2, 115.2 (2 × CH), 120.8, 122.3 (2 × CH), 123.0, 129.2, 132.4, 139.5, 146.8, 152.2, 152.9, 157.4, 163.0, 163.1, 163.2.

ESI-MS: calcd for C₂₄H₂₄N₃O₄ [M+ H]⁺: 418.18, found: 418.21.

(R)-N-(2-(4-ethyl-4,5-dihydrooxazol-2-yl)phenyl)-4-(4-methoxyphenoxy)

nicotinamide (6w), white solid, yield 62%. Similar NMR Data to that of compound 6t.

(S)-N-(2-(4-benzyl-4,5-dihydrooxazol-2-yl)phenyl)-4-(4-

methoxyphenoxy)nicotinamide (**6u**), white solid, yield 61%. ¹H NMR (400 MHz, CDCl₃) δ 2.65 (dd, $J_1 = 13.24$ Hz, $J_2 = 6.36$ Hz, 1H, Ph-*CH*), 2.81 (dd, $J_1 = 13.24$ Hz, $J_2 = 7.20$ Hz, 1H, Ph-*CH*), 3.80 (s, 3H, O-*CH*₃), 4.04 (dd, $J_1 = 8.24$ Hz, $J_2 = 6.32$ Hz, 1H), 4.25 (dd, $J_1 = 9.28$ Hz, $J_2 = 8.24$ Hz, 1H), 4.33 (m, 1H), 6.48 (d, J = 5.80 Hz, 1H, *Aromatic H*), 6.76-6.79 (m, 2H, *Aromatic H*), 6.86-6.89 (m, 2H, *Aromatic H*), 7.03-7.10 (m, 5H, *Aromatic H*), 7.13 (m, 1H, *Aromatic H*), 7.53 (m, 1H, *Aromatic H*), 7.87 (dd, $J_1 = 7.96$ Hz, $J_2 = 1.72$ Hz, 1H, *Aromatic H*), 8.44 (d, J = 5.84 Hz, 1H, *Aromatic H*), 8.93 (dd, $J_1 = 8.56$ Hz, $J_2 = 1.16$ Hz, 1H, *Aromatic H*), 9.10 (s, 1H, *Aromatic H*), 12.71 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 42.4, 55.7, 68.0, 70.6, 110.0, 114.1, 115.1 (2 × CH),

120.9, 121.4, 122.3 (2 × *CH*), 123.0, 126.6, 128.3 (2 × *CH*), 129.1 (2 × *CH*), 129.4, 132.5, 137.7, 139.6, 146.5, 152.91, 152.93, 157.4, 162.7, 163.2, 163.4.

ESI-MS: calcd for C₂₉H₂₆N₃O₄ [M+ H]⁺: 480.19, found: 480.20.

(R)-N-(2-(4-benzyl-4,5-dihydrooxazol-2-yl)phenyl)-4-(4-

methoxyphenoxy)nicotinamide (6x), white solid, yield 57%. Similar NMR Data to that of compound 6u.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2,4-bis(4-methoxyphenoxy)nicotinamide (**7a**), white solid, yield 35%. ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H, O*CH*₃), 3.80 (s, 3H, O*CH*₃), 4.07 (t, *J* = 9.40 Hz, 2H, N*CH*₂-CH₂O), 4.35 (t, *J* = 9.40 Hz, 2H, NCH₂-*CH*₂O), 6.35 (dd, *J*₁ = 5.88 Hz, *J*₂ = 1.04 Hz, 1H, *Aromatic H*), 6.85~6.93 (m, 4H, *Aromatic H*), 7.05~7.15 (m, 5H, *Aromatic H*), 7.50 (dd, *J*₁ = 8.08 Hz, *J*₂ = 7.88 Hz, 1H, *Aromatic H*), 7.88 (m, 1H, *Aromatic H*), 7.96 (dd, *J*₁ = 5.88 Hz, *J*₂ = 1.08 Hz, 1H, *Aromatic H*), 9.01 (d, *J* = 8.52 Hz, 1H, *Aromatic H*), 12.75 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.9, 55.6, 55.7, 66.1, 106.2, 111.3, 113.4, 114.5 (2 × *CH*), 115.0 (2 × *CH*), 120.1, 122.2 (2 × *CH*), 122.7 (2 × *CH*), 122.8, 129.2, 132.7, 139.8, 147.1, 147.5, 148.8, 156.6, 157.2, 162.1, 162.2, 164.6, 164.9.

ESI-MS: calcd for C₂₉H₂₆N₃O₆ $[M+ H]^+$: 512.18, found: 512.20; calcd for C₂₉H₂₅N₃NaO₆ $[M+ H]^+$: 534.16, found: 534.24.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2,4-bis(p-tolyloxy)nicotinamide (**7b**), white solid, yield 68%. ¹H NMR (400 MHz, CDCl₃) δ 2.33 (s, 3H, Ph*CH*₃), 2.35 (s, 3H, Ph*CH*₃), 4.06 (t, *J* = 9.56 Hz, 2H, N*CH*₂-CH₂O), 4.34 (t, *J* = 9.56 Hz, 2H, N*CH*₂-*CH*₂O), 6.38 (d, *J* = 5.92 Hz, 1H, *Aromatic H*), 6.99-7.08 (m, 4H, *Aromatic H*), 7.11 (m, 1H, *Aromatic H*), 7.15~7.21 (m, 4H, *Aromatic H*), 7.49 (m, 1H, *Aromatic H*), 7.87 (dd, *J*₁ = 7.88 Hz, *J*₂ = 1.64 Hz, 1H, *Aromatic H*), 7.96 (d, *J* = 5.92 Hz, 1H, *Aromatic H*), 9.00 (d, *J* = 8.48 Hz, 1H, *Aromatic H*), 12.74 (s, 1H, *CONH*).

¹³C NMR (100 MHz, CDCl₃) δ 20.8, 20.9, 54.9, 66.1, 106.5, 111.7, 113.4, 120.2, 120.9 (2 × *CH*), 121.5 (2 × *CH*), 122.7, 129.2, 130.0 (2 × *CH*), 130.5 (2 × *CH*), 132.6, 134.4, 135.3, 139.9, 148.8, 151.5, 151.9, 162.06, 162.11, 164.5, 164.6.

ESI-MS: calcd for C₂₉H₂₆N₃O₄ [M+ H]⁺: 480.19, found: 480.17.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2,4-bis(4-fluorophenoxy)nicotinamide (7c), white solid, yield 79%. ¹H NMR (400 MHz, CDCl₃) δ 4.05 (t, *J* = 9.40 Hz, 2H, NCH₂-CH₂O), 4.36 (t, *J* = 9.40 Hz, 2H, NCH₂-CH₂O), 6.40 (d, *J* = 5.88 Hz, 1H, *Aromatic H*), 7.02-7.19 (m, 9H, *Aromatic H*), 7.51 (m, 1H, *Aromatic H*), 7.89 (d, *J* = 7.84 Hz, 1H, *Aromatic H*), 7.99 (dd, *J*₁ = 5.92 Hz, *J*₂ = 1.64 Hz, 1H, *Aromatic H*), 8.99 (d, *J* = 8.52 Hz, 1H, *Aromatic H*), 12.76 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 54.9, 66.1, 106.6, 111.8, 113.4, 116.0, 116.2, 116.7, 116.9, 120.1, 122.6 (d, $J_{CF} = 8.43$ Hz), 122.9, 123.2 (d, $J_{CF} = 8.36$ Hz), 129.3, 132.7, 139.7, 148.9, 149.4, 150.0, 159.8 (d, $J_{CF} = 243.33$ Hz), 160.1 (d, $J_{CF} = 241.53$ Hz), 161.7, 164.5.

ESI-MS: calcd for C₂₇H₂₀F₂N₃O₄ [M+ H]⁺: 488.14, found: 488.26; calcd for C₂₇H₁₉F₂N₃NaO₄ [M+ Na]⁺: 510.12, found: 510.21.

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2,4-bis(4-(trifluoromethyl)phenoxy)

nicotinamide (7d), white solid, yield 58%. ¹H NMR (400 MHz, CDCl₃) δ 4.01 (t, J =

9.60 Hz, 2H, NCH₂-CH₂O), 4.36 (t, J = 9.60 Hz, 2H, NCH₂-CH₂O), 6.54 (d, J = 5.88

Hz, 1H, Aromatic H), 7.14 (m, 1H, Aromatic H), 7.25-7.33 (m, 4H, Aromatic H), 7.51

(m, 1H, Aromatic H), 7.63-7.70 (m, 4H, Aromatic H), 7.89 (dd, J₁ = 7.92 Hz, J₂ = 1.68

Hz, 1H, Aromatic H), 8.07 (d, J = 5.88 Hz, 1H, Aromatic H), 8.93 (d, J = 8.28 Hz, 1H,

Aromatic H), 12.82 (s, 1H, CONH).

ESI-MS: calcd for C₂₉H₂₀F₆N₃O₄ [M+ H]⁺: 588.14, found: 588.25.

The structure of compound **7d** was unambiguously confirmed by X-ray diffraction and was deposited at the CCDC with the number 1864271.

2,4-bis(4-allyl-2-methoxyphenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)

8.12 Hz, 1H, Aromatic H), 12.66 (s, 1H, CONH).

¹³C NMR (100 MHz, CDCl₃) δ 40.0, 40.1, 55.0, 56.0, 56.1, 66.0, 105.8, 113.5, 113.6, 116.0, 116.2, 120.4, 120.9, 121.1, 122.5, 122.6, 122.9, 123.1, 129.1, 132.5, 137.0, 137.3, 137.7, 137.9, 138.9, 140.0, 140.9, 141.0, 148.5, 151.5, 151.7, 161.8, 162.3, 164.37, 164.40,

ESI-MS: calcd for C₃₅H₃₄N₃O₆ [M+ H]⁺: 592.24, found: 592.31.

X-ray Crystallographic Data

Compound list with crystallographic data

2a (CCDC 1864263),

4a (CCDC 1864265),

5m (CCDC 1867348),

6a (CCDC 1864262),

6q (CCDC 1867347),

7d (CCDC 1864271),

Diflufenican (CCDC 1864261)

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2-morpholinonicotinamide (2a),

Table 1 Crystal data and structure refinement for 2a.

Identification code	2a
Empirical formula	$C_{19}H_{20}N_4O_3$
Formula weight	352.39
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	7.8860(4)
b/Å	9.5658(7)
c/Å	11.4661(7)
$\alpha^{\prime \circ}$	86.429(5)
β/°	79.097(5)
$\gamma^{\prime \circ}$	77.958(6)

Volume/Å ³	830.42(9)		
Z	2		
$\rho_{calc}g/cm^3$	1.409		
μ/mm^{-1}	0.801		
F(000)	372.0		
Crystal size/mm ³	0.25 imes 0.2 imes 0.16		
Radiation	Cu Ka ($\lambda = 1.54184$)		
2Θ range for data collection/ ^c	7.854 to 147.156		
Index ranges	$-8 \le h \le 9, -8 \le k \le 11, -14 \le l \le 14$		
Reflections collected	5513		
Independent reflections	3233 [$R_{int} = 0.0148, R_{sigma} = 0.0167$]		
Data/restraints/parameters	3233/0/235		
Goodness-of-fit on F ²	1.088		
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0396, wR_2 = 0.1037$		
Final R indexes [all data]	$R_1 = 0.0410, wR_2 = 0.1047$		
Largest diff. peak/hole / e Å ⁻³ 0.31/-0.24			

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for EN-1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
01	7111.4(13)	8433.4(11)	4731.8(8)	24.5(2)
02	982.8(13)	4957.8(10)	6861.0(8)	23.4(2)
O3	1918.4(13)	10763.7(10)	8437.9(9)	23.4(2)
N4	2543.4(14)	7752.4(11)	8800.7(9)	15.6(2)
N3	2844.7(14)	6049.1(12)	10335.8(9)	18.0(2)
N2	3190.2(14)	6238.9(11)	6541.4(9)	16.2(2)
N1	6081.8(15)	7411.1(12)	6475.2(10)	20.1(2)
С9	3330.0(17)	6573.7(13)	5320.8(11)	15.6(3)
C15	2532.4(16)	6345.1(13)	9232.2(11)	14.9(3)
C11	2220.0(16)	5308.4(13)	8517.7(11)	14.9(3)
C3	5954.4(16)	7686.7(13)	5393.5(11)	16.3(3)
C10	2052.2(16)	5493.7(13)	7230.6(11)	15.9(3)
C12	2042.6(16)	3986.0(13)	9044.4(11)	17.4(3)
C13	2331.3(17)	3689.1(13)	10195.7(11)	19.1(3)
C5	4847.6(18)	7611.5(14)	3535.2(11)	20.0(3)
C14	2788.4(17)	4728.5(14)	10787.8(11)	19.6(3)

C4	4683.3(16)	7284.8(13)	4754.8(11)	16.3(3)
C8	2157.5(17)	6257.9(14)	4644.3(12)	19.1(3)
C6	3680.0(19)	7288.2(15)	2880.4(12)	22.5(3)
C16	915.6(17)	8538.9(13)	8429.1(12)	18.2(3)
C19	3197.0(18)	8660.0(14)	9520.7(12)	19.8(3)
C2	8121.3(18)	8823.3(15)	5547.7(12)	21.7(3)
C18	3482.5(19)	9994.8(14)	8795.5(13)	22.2(3)
C7	2328.8(18)	6627.5(15)	3443.1(12)	21.6(3)
C1	7612.3(17)	7954.5(15)	6679.9(12)	21.3(3)
C17	1277.9(19)	9878.9(14)	7734.7(13)	22.2(3)

Table 3 Anisotropic Displacement Parameters (Å2×103) for EN-1. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U ₁₂
01	27.2(5)	31.1(5)	19.5(5)	5.1(4)	-3.8(4)	-17.6(4)
O2	26.0(5)	27.0(5)	22.4(5)	0.9(4)	-6.9(4)	-15.2(4)
03	27.2(5)	13.3(4)	31.2(5)	-0.3(4)	-8.0(4)	-4.9(4)
N4	17.5(5)	12.9(5)	17.6(5)	-0.2(4)	-4.5(4)	-4.4(4)
N3	19.7(5)	17.8(5)	16.4(5)	1.1(4)	-2.3(4)	-4.6(4)
N2	17.7(5)	18.8(5)	13.9(5)	0.2(4)	-3.3(4)	-7.7(4)
N1	17.2(5)	25.8(6)	19.0(5)	2.3(4)	-4.8(4)	-7.8(4)
С9	16.9(6)	14.4(6)	14.7(6)	-1.4(5)	-2.0(5)	-1.5(4)
C15	12.7(6)	14.6(6)	16.6(6)	0.2(5)	-0.2(4)	-3.6(4)
C11	13.1(6)	14.3(6)	16.6(6)	-0.5(5)	-0.3(4)	-3.3(4)
C3	14.7(6)	14.7(6)	17.7(6)	0.6(5)	0.8(5)	-2.7(5)
C10	16.6(6)	13.0(6)	17.9(6)	-1.6(5)	-1.8(5)	-3.5(5)
C12	15.8(6)	14.3(6)	21.0(6)	-1.7(5)	1.4(5)	-4.2(5)
C13	19.0(6)	14.3(6)	21.3(6)	3.7(5)	1.6(5)	-3.4(5)
C5	23.4(7)	18.8(6)	16.4(6)	1.1(5)	-1.2(5)	-3.7(5)
C14	21.2(6)	19.2(6)	16.9(6)	3.5(5)	-1.6(5)	-3.1(5)
C4	17.2(6)	13.6(6)	16.7(6)	-0.5(5)	-2.3(5)	-0.9(5)
C8	18.4(6)	20.2(6)	18.9(6)	-2.7(5)	-3.3(5)	-4.1(5)
C6	28.2(7)	24.2(7)	14.1(6)	0.1(5)	-4.4(5)	-2.4(5)
C16	17.6(6)	15.4(6)	22.1(6)	-0.2(5)	-4.6(5)	-3.5(5)
C19	23.7(7)	16.1(6)	21.8(6)	-2.4(5)	-7.3(5)	-5.9(5)
C2	18.8(6)	22.4(7)	25.6(7)	0.6(5)	-4.2(5)	-8.2(5)
C18	26.4(7)	15.0(6)	28.4(7)	0.0(5)	-7.9(6)	-8.7(5)
C7	22.9(7)	23.6(7)	19.1(6)	-4.2(5)	-7.2(5)	-2.4(5)
C1	17.8(6)	25.8(7)	22.5(7)	1.3(5)	-5.6(5)	-8.0(5)
C17 $26.7(7)$ $16.8(6)$ $24.9(7)$ $2.6(5)$ $-9.1(5)$	-5.3(5)					
--	---------					
--	---------					

Table 4 Bond Lengths for EN-1.

Aton	n Atom	Length/Å	Aton	n Atom	Length/Å
01	C3	1.3642(15)	C9	C8	1.4017(18)
01	C2	1.4484(16)	C15	C11	1.4123(17)
02	C10	1.2232(16)	C11	C10	1.5029(17)
03	C18	1.4162(17)	C11	C12	1.3897(17)
03	C17	1.4280(16)	C3	C4	1.4705(18)
N4	C15	1.4062(16)	C12	C13	1.3839(18)
N4	C16	1.4695(16)	C13	C14	1.3804(19)
N4	C19	1.4623(16)	C5	C4	1.4013(18)
N3	C15	1.3365(17)	C5	C6	1.3843(19)
N3	C14	1.3415(17)	C8	C7	1.3889(18)
N2	С9	1.4050(16)	C6	C7	1.386(2)
N2	C10	1.3662(16)	C16	C17	1.5159(17)
N1	C3	1.2701(17)	C19	C18	1.5130(18)
N1	C1	1.4718(16)	C2	C1	1.5312(18)
C9	C4	1.4173(18)			

Table 5 Bond Angles for EN-1.

Atom	n Atom	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
C3	01	C2	105.98(10)	02	C10	N2	124.57(12)
C18	O3	C17	109.74(10)	02	C10	C11	119.95(11)
C15	N4	C16	116.25(10)	N2	C10	C11	115.45(11)
C15	N4	C19	116.16(10)	C13	C12	C11	119.58(12)
C19	N4	C16	110.09(10)	C14	C13	C12	118.47(11)
C15	N3	C14	118.12(11)	C6	C5	C4	121.13(13)
C10	N2	С9	127.84(11)	N3	C14	C13	123.28(12)
C3	N1	C1	106.91(11)	C9	C4	C3	122.64(11)
N2	C9	C4	118.90(11)	C5	C4	C9	119.44(12)
C8	C9	N2	122.48(12)	C5	C4	C3	117.92(12)
C8	C9	C4	118.60(11)	C7	C8	C9	120.56(12)
N4	C15	C11	120.88(11)	C5	C6	C7	119.28(12)
N3	C15	N4	116.64(11)	N4	C16	C17	109.33(10)
N3	C15	C11	122.48(11)	N4	C19	C18	108.19(10)
C15	C11	C10	126.27(11)	01	C2	C1	103.61(10)

C12	C11	C15	117.59(11) O3	C18	C19	112.34(11)
C12	C11	C10	116.15(11) C6	C7	C8	120.95(12)
01	C3	C4	115.16(11) N1	C1	C2	104.29(10)
N1	C3	01	117.71(12) O3	C17	C16	110.63(11)
N1	C3	C4	127.13(12)			

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for EN-1.

Atom	x	У	z	U(eq)
H2	3908	6539	6898	19
H12	1732	3305	8626	21
H13	2220	2810	10562	23
Н5	5757	8053	3159	24
H14	3072	4502	11537	24
H8	1257	5797	5003	23
Н6	3801	7512	2072	27
H16A	7	8795	9122	22
H16B	501	7940	7938	22
H19A	4297	8154	9739	24
H19B	2347	8913	10243	24
H2A	7804	9841	5694	26
H2B	9376	8568	5241	26
H18A	3916	10608	9263	27
H18B	4375	9729	8096	27
H7	1525	6429	3010	26
H1A	8574	7173	6796	26
H1B	7301	8554	7371	26
H17A	2144	9616	7022	27
H17B	202	10406	7496	27

Experimental

Single crystals of $C_{19}H_{20}N_4O_3$ [2a] were []. A suitable crystal was selected and [] on a **SuperNova, Dual, Cu at zero, AtlasS2** diffractometer. The crystal was kept at 100.00(10) K during data collection. Using Olex2 [1], the structure was solved with the ShelXS [2] structure solution program using Direct Methods and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2008). Acta Cryst. A64, 112-122.

3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [2a]

Crystal Data for C₁₉H₂₀N₄O₃ (M=352.39 g/mol): triclinic, space group P-1 (no. 2), a = 7.8860(4) Å, b = 9.5658(7) Å, c = 11.4661(7) Å, $a = 86.429(5)^{\circ}$, $\beta = 79.097(5)^{\circ}$, $\gamma = 77.958(6)^{\circ}$, V = 830.42(9) Å³, Z = 2, T = 100.00(10) K, μ (Cu K α) = 0.801 mm⁻¹, *Dcalc* = 1.409 g/cm³, 5513 reflections measured (7.854° $\leq 2\Theta \leq 147.156^{\circ}$), 3233 unique ($R_{int} = 0.0148$, $R_{sigma} = 0.0167$) which were used in all calculations. The final R_1 was 0.0396 (I > 2 σ (I)) and wR_2 was 0.1047 (all data).

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-morpholinonicotinamide (4a)

Table 1 Crystal data and structure refinement for 4a.

Identification code	4a
Empirical formula	$C_{19}H_{20}N_4O_3$
Formula weight	352.39
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	7.7358(5)
b/Å	9.6039(6)
c/Å	11.6310(7)
α/°	85.647(5)
β/°	76.146(5)
$\gamma^{/\circ}$	78.816(5)

Volume/Å ³	822.64(9)			
Z	2			
$\rho_{calc}g/cm^3$	1.423			
μ/mm^{-1}	0.099			
F(000)	372.0			
Crystal size/mm ³	$0.31\times0.21\times0.13$			
Radiation	Mo Ka ($\lambda = 0.71073$)			
2Θ range for data collection/ ^c	^o 7.22 to 58.986			
Index ranges	$-10 \le h \le 10, -12 \le k \le 12, -11 \le l \le 15$			
Reflections collected	6220			
Independent reflections	3834 [$R_{int} = 0.0189, R_{sigma} = 0.0405$]			
Data/restraints/parameters	3834/0/235			
Goodness-of-fit on F ²	1.033			
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0458, wR_2 = 0.1048$			
Final R indexes [all data]	$R_1 = 0.0588, wR_2 = 0.1137$			
Largest diff. peak/hole / e Å ⁻³ 0.32/-0.25				

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for EN-3. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
02	1001.5(15)	4807.2(12)	6979.0(9)	22.0(3)
03	1772.2(15)	10621.6(11)	8414.0(9)	22.6(3)
01	7191.7(16)	8515.4(12)	4762.9(9)	25.6(3)
N2	3285.3(16)	6102.2(13)	6594.6(10)	16.2(3)
N1	6181.9(17)	7364.1(14)	6480.0(11)	19.2(3)
N3	2563.0(17)	3369.4(14)	10138.7(11)	19.9(3)
N4	2439.4(16)	7633.0(12)	8865.7(10)	15.2(3)
C8	2241(2)	6157.2(16)	4753.3(13)	18.7(3)
C11	2268.3(19)	5160.9(15)	8579.3(12)	14.6(3)
C3	6026.8(19)	7709.1(15)	5429.1(12)	15.5(3)
С9	3404.3(19)	6507.6(15)	5397.8(12)	14.9(3)
C4	4733.2(19)	7319.5(15)	4827.8(12)	15.8(3)
C10	2096.9(19)	5342.2(15)	7316.6(12)	15.2(3)
C5	4843(2)	7757.2(16)	3643.8(13)	20.3(3)
C12	2270.4(19)	3789.8(16)	9067.8(13)	17.6(3)
C15	2464.3(19)	6226.7(15)	9285.6(12)	14.8(3)

C142731(2)5790.0(16)10411.1(13)18.6(3)C18247(2)8860.1(17)5542.8(13)21.0(3)C132797(2)4388.6(17)10781.8(13)20.1(3)C16839(2)8354.5(16)8439.6(13)18.1(3)C192974(2)8599.2(16)9578.1(13)19.1(3)C27735(2)7929.0(17)6651.7(13)20.5(3)C72368(2)6630.3(17)3579.5(13)21.1(3)C183310(2)9931.7(16)8846.5(14)21.7(3)C171270(2)9672.1(16)7719.8(13)20.8(3)	C6	3655(2)	7436.2(17)	3025.9(13)	21.5(3)
C18247(2)8860.1(17)5542.8(13)21.0(3)C132797(2)4388.6(17)10781.8(13)20.1(3)C16839(2)8354.5(16)8439.6(13)18.1(3)C192974(2)8599.2(16)9578.1(13)19.1(3)C27735(2)7929.0(17)6651.7(13)20.5(3)C72368(2)6630.3(17)3579.5(13)21.1(3)C183310(2)9931.7(16)8846.5(14)21.7(3)C171270(2)9672.1(16)7719.8(13)20.8(3)	C14	2731(2)	5790.0(16)	10411.1(13)	18.6(3)
C132797(2)4388.6(17)10781.8(13)20.1(3)C16839(2)8354.5(16)8439.6(13)18.1(3)C192974(2)8599.2(16)9578.1(13)19.1(3)C27735(2)7929.0(17)6651.7(13)20.5(3)C72368(2)6630.3(17)3579.5(13)21.1(3)C183310(2)9931.7(16)8846.5(14)21.7(3)C171270(2)9672.1(16)7719.8(13)20.8(3)	C1	8247(2)	8860.1(17)	5542.8(13)	21.0(3)
C16839(2)8354.5(16)8439.6(13)18.1(3)C192974(2)8599.2(16)9578.1(13)19.1(3)C27735(2)7929.0(17)6651.7(13)20.5(3)C72368(2)6630.3(17)3579.5(13)21.1(3)C183310(2)9931.7(16)8846.5(14)21.7(3)C171270(2)9672.1(16)7719.8(13)20.8(3)	C13	2797(2)	4388.6(17)	10781.8(13)	20.1(3)
C192974(2)8599.2(16)9578.1(13)19.1(3)C27735(2)7929.0(17)6651.7(13)20.5(3)C72368(2)6630.3(17)3579.5(13)21.1(3)C183310(2)9931.7(16)8846.5(14)21.7(3)C171270(2)9672.1(16)7719.8(13)20.8(3)	C16	839(2)	8354.5(16)	8439.6(13)	18.1(3)
C27735(2)7929.0(17)6651.7(13)20.5(3)C72368(2)6630.3(17)3579.5(13)21.1(3)C183310(2)9931.7(16)8846.5(14)21.7(3)C171270(2)9672.1(16)7719.8(13)20.8(3)	C19	2974(2)	8599.2(16)	9578.1(13)	19.1(3)
C72368(2)6630.3(17)3579.5(13)21.1(3)C183310(2)9931.7(16)8846.5(14)21.7(3)C171270(2)9672.1(16)7719.8(13)20.8(3)	C2	7735(2)	7929.0(17)	6651.7(13)	20.5(3)
C183310(2)9931.7(16)8846.5(14)21.7(3)C171270(2)9672.1(16)7719.8(13)20.8(3)	C7	2368(2)	6630.3(17)	3579.5(13)	21.1(3)
C17 1270(2) 9672.1(16) 7719.8(13) 20.8(3)	C18	3310(2)	9931.7(16)	8846.5(14)	21.7(3)
	C17	1270(2)	9672.1(16)	7719.8(13)	20.8(3)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for EN-3. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U11	U22	U33	U23	U13	U12
O2	25.1(6)	24.1(6)	21.4(5)	0.6(4)	-7.5(4)	-13.3(5)
03	28.0(6)	13.9(5)	27.3(6)	0.7(4)	-8.9(5)	-4.5(5)
01	30.7(6)	31.9(7)	19.5(5)	6.1(5)	-6.5(5)	-20.4(5)
N2	17.2(6)	19.7(7)	13.8(6)	0.6(5)	-4.7(5)	-7.6(5)
N1	18.9(6)	23.2(7)	18.2(6)	1.7(5)	-6.9(5)	-8.2(5)
N3	20.2(7)	17.7(7)	21.7(6)	3.4(5)	-4.0(5)	-5.5(5)
N4	19.2(6)	11.5(6)	16.7(6)	0.5(5)	-6.7(5)	-4.1(5)
C8	18.1(7)	20.8(8)	17.6(7)	-4.9(6)	-3.1(6)	-4.0(6)
C11	12.9(7)	14.7(7)	15.7(7)	0.1(5)	-2.0(5)	-3.3(5)
C3	14.9(7)	12.5(7)	17.4(7)	0.3(5)	-0.5(5)	-2.6(6)
С9	16.1(7)	14.6(7)	13.0(6)	-1.9(5)	-2.7(5)	-0.9(6)
C4	17.3(7)	14.3(7)	15.5(7)	-1.1(5)	-3.4(5)	-2.3(6)
C10	15.5(7)	12.7(7)	17.5(7)	-1.4(5)	-3.6(5)	-2.6(5)
C5	25.6(8)	17.7(8)	17.5(7)	1.3(6)	-3.3(6)	-6.4(6)
C12	16.4(7)	15.6(7)	20.1(7)	-0.2(6)	-1.4(6)	-4.7(6)
C15	12.6(7)	14.2(7)	17.3(7)	1.2(5)	-1.7(5)	-4.2(5)
C6	28.9(9)	24.1(8)	12.6(7)	0.5(6)	-6.1(6)	-6.6(7)
C14	22.2(8)	19.0(8)	15.2(7)	-1.4(6)	-3.8(6)	-5.5(6)
C1	18.5(8)	20.6(8)	25.7(8)	-1.0(6)	-5.5(6)	-7.4(6)
C13	21.3(8)	23.2(8)	16.1(7)	5.6(6)	-4.9(6)	-6.6(6)
C16	18.7(7)	14.5(7)	21.7(7)	-0.4(6)	-5.8(6)	-3.0(6)
C19	23.9(8)	15.5(7)	19.9(7)	-2.4(6)	-7.5(6)	-5.0(6)
C2	16.9(7)	24.4(8)	21.8(7)	-0.9(6)	-5.7(6)	-6.1(6)
C7	22.8(8)	25.6(8)	17.2(7)	-4.9(6)	-8.3(6)	-3.8(6)
C18	23.7(8)	16.5(8)	27.2(8)	-1.0(6)	-7.8(6)	-6.3(6)

C17 25.8(8) 17.2(8) 20.6(7) 2.3(6) -8.4(6)) -4.4(6)
--	-----------

Table 4 Bond Lengths for EN-3.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
02	C10	1.2228(18)	C8	C7	1.392(2)
O3	C18	1.4274(18)	C11	C10	1.500(2)
O3	C17	1.4263(19)	C11	C12	1.394(2)
01	C3	1.3628(18)	C11	C15	1.412(2)
01	C1	1.4507(19)	C3	C4	1.467(2)
N2	C9	1.4028(18)	C9	C4	1.418(2)
N2	C10	1.3714(19)	C4	C5	1.396(2)
N1	C3	1.2694(19)	C5	C6	1.384(2)
N1	C2	1.4705(19)	C15	C14	1.395(2)
N3	C12	1.3375(19)	C6	C7	1.386(2)
N3	C13	1.340(2)	C14	C13	1.377(2)
N4	C15	1.3990(18)	C1	C2	1.529(2)
N4	C16	1.4725(18)	C16	C17	1.511(2)
N4	C19	1.4655(19)	C19	C18	1.512(2)
C8	С9	1.401(2)			

Table 5 Bond Angles for EN-3.

Atom	Aton	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
C17	O3	C18	109.99(11)	C5	C4	C9	119.33(14)
C3	01	C1	106.09(11)	02	C10	N2	124.13(13)
C10	N2	С9	128.34(13)	02	C10	C11	121.07(13)
C3	N1	C2	107.03(12)	N2	C10	C11	114.76(13)
C12	N3	C13	115.45(13)	C6	C5	C4	121.14(15)
C15	N4	C16	117.31(12)	N3	C12	C11	125.07(14)
C15	N4	C19	117.41(11)	N4	C15	C11	121.74(12)
C19	N4	C16	109.85(11)	C14	C15	N4	122.02(14)
C7	C8	C9	120.20(14)	C14	C15	C11	116.22(13)
C12	C11	C10	115.32(13)	C5	C6	C7	119.52(14)
C12	C11	C15	118.41(13)	C13	C14	C15	120.37(14)
C15	C11	C10	126.25(13)	01	C1	C2	103.56(12)
01	C3	C4	115.16(12)	N3	C13	C14	124.33(14)
N1	C3	01	117.64(14)	N4	C16	C17	109.35(12)
N1	C3	C4	127.20(14)	N4	C19	C18	109.16(12)

N2	C9	C4	118.64(13) N1	C2	C1	104.48(12)
C8	C9	N2	122.37(13) C6	C7	C8	120.80(14)
C8	C9	C4	118.98(13) O3	C18	C19	112.43(13)
C9	C4	C3	122.54(12) O3	C17	C16	110.88(12)
C5	C4	C3	118.13(14)			

Table 6 Torsion Angles for EN-3.

Α	B	С	D	Ang	le/°	Α	B	С	D	Angle/°
01 0	23	C4	C9	-178	8.76(13)	C12	2 N3	C13	C14	0.7(2)
01 0	23	C4	C5	2	2.03(19)	C12	C11	C10	002	44.18(19)
01 0	21	C2	N1	-1().75(15)	C12	C11	C10	N2	-133.94(14)
N2 (C9	C4	C3		2.2(2)	C12	C11	C15	N4	-178.73(13)
N2 (C9	C4	C5	-178	8.64(13)	C12	C11	C15	C14	2.9(2)
N1 (23	C4	C9		2.2(2)	C15	5N4	C16	6C17	-164.20(12)
N1 (23	C4	C5	-177	7.06(14)	C15	5N4	C19	C18	165.99(12)
N4 (C15	C14	C13	-178	8.23(13)	C15	C11	C10	002	-137.35(15)
N4 (C16	C17	03	-59	9.42(16)	C15	C11	C10	N2	44.5(2)
N4 (C19	C18	803	56	5.95(16)	C15	C11	C12	2N3	-4.6(2)
C8 (C 9	C4	C3	-178	8.79(13)	C15	5C14	C13	N3	-2.1(2)
C8 (C 9	C4	C5		0.4(2)	C1	01	C3	N1	-4.79(18)
C11 C	C15	C14	C13		0.1(2)	C1	01	C3	C4	176.03(12)
C3 (D1	C1	C2	9	9.43(15)	C13	N3	C12	C11	2.7(2)
C3 N	J 1	C2	C1	8	8.40(16)	C16	5N4	C15	C11	56.38(18)
C3 (24	C5	C6	-179	9.46(13)	C16	5N4	C15	C14	-125.36(15)
C9 N	J 2	C10	002		5.3(2)	C16	5N4	C19	C18	-56.56(15)
C9 N	J 2	C10	C11	-176	5.65(13)	C19	N4	C15	C11	-169.33(13)
C9 (28	C7	C6		0.8(2)	C19	N4	C15	C14	8.9(2)
C9 (24	C5	C6		1.3(2)	C19	N4	C16	6C17	58.30(15)
C4 (25	C6	C7		-2.0(2)	C2	N1	C3	01	-2.60(18)
C101	J 2	C9	C8		-0.1(2)	C2	N1	C3	C4	176.47(14)
C101	J2	C9	C4	178	8.94(13)	C7	C8	C9	N2	177.56(13)
C100	C11	C12	2 N3	173	8.99(13)	C7	C8	C9	C4	-1.5(2)
C100	211	C15	5 N4		2.9(2)	C18	803	C17	C16	58.67(16)
C100	C11	C15	5C14	-175	5.51(14)	C17	03	C18	C19	-57.90(16)
C5 (C6	C7	C8		0.9(2)					

Atom	x	У	Z	U(eq)
H2	4057	6364	6917	19
H8	1381	5607	5111	22
Н5	5730	8273	3264	24
H12	2052	3115	8614	21
H6	3720	7759	2245	26
H14	2866	6449	10914	22
H1A	7928	9859	5726	25
H1B	9534	8632	5188	25
H13	3017	4133	11528	24
H16A	-172	8613	9108	22
H16B	501	7721	7955	22
H19A	4065	8141	9825	23
H19B	2022	8840	10283	23
H2A	8733	7165	6720	25
H2B	7401	8486	7359	25
H7	1580	6403	3162	25
H18A	3625	10584	9327	26
H18B	4330	9688	8180	26
H17A	2253	9405	7037	25
H17B	218	10146	7435	25

Table 7 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for EN-3.

Experimental

Single crystals of $C_{19}H_{20}N_4O_3$ [4a] were []. A suitable crystal was selected and [] on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 100.00(10) K during data collection.

Crystal structure determination of [4a]

Crystal Data for C₁₉H₂₀N₄O₃ (*M* =352.39 g/mol): triclinic, space group P-1 (no. 2), *a* = 7.7358(5) Å, *b* = 9.6039(6) Å, *c* = 11.6310(7) Å, *a* = 85.647(5), *β* = 76.146(5), *γ* = 78.816(5), *V* = 822.64(9) Å³, *Z* = 2, *T* = 100.00(10) K, μ (Mo K α) = 0.099 mm⁻¹, *Dcalc* = 1.423 g/cm³, 6220 reflections measured (7.22° ≤ 2 Θ ≤ 58.986°), 3834 unique (R_{int} = 0.0189, R_{sigma} = 0.0405) which were used in all calculations. The final R_1 was 0.0458 (I > 2 σ (I)) and wR_2 was 0.1137 (all data).

2-(3-chlorophenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (5m)

Table 1	Crystal	data a	nd stru	cture r	efinement	for	5m.
---------	---------	--------	---------	---------	-----------	-----	-----

Identification code	5m
Empirical formula	$C_{21}H_{16}ClN_3O_3$
Formula weight	393.82
Temperature/K	100.00(10)
Crystal system	triclinic
Space group	P-1
a/Å	8.0444(10)
b/Å	10.7234(12)
c/Å	11.5467(13)
α/°	71.104(10)
β/°	70.410(11)
$\gamma/^{\circ}$	73.474(10)
Volume/Å ³	870.4(2)
Z	2
$\rho_{calc}g/cm^3$	1.503

μ/mm^{-1}	0.249				
F(000)	408.0				
Crystal size/mm ³	$0.13 \times 0.11 \times 0.09$				
Radiation	MoKa ($\lambda = 0.71073$)				
2Θ range for data collection/°	4.096 to 59.172				
Index ranges	$-11 \le h \le 11, -14 \le k \le 13, -15 \le l \le 13$				
Reflections collected	11524				
Independent reflections	4192 [$R_{int} = 0.0448, R_{sigma} = 0.0583$]				
Data/restraints/parameters	4192/0/253				
Goodness-of-fit on F ²	1.037				
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0561, wR_2 = 0.1276$				
Final R indexes [all data]	$R_1 = 0.0759, wR_2 = 0.1414$				
Largest diff. peak/hole / e Å ⁻³ 0.37/-0.33					

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 54-1. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ}tensor.

Atom	x	У	z	U(eq)
Cl1	7399.7(9)	4631.7(6)	10634.9(6)	34.06(19)
01	6278.7(19)	8288.9(16)	6717.1(13)	22.7(3)
O2	5675(2)	8382.6(16)	3213.6(14)	25.3(4)
O3	12823(2)	5591.3(16)	4939.4(15)	27.2(4)
N2	7768(2)	7903.7(17)	4308.0(16)	19.1(4)
N1	3226(2)	8443.2(18)	7576.4(17)	21.4(4)
N3	9898(2)	6305.4(18)	5882.0(17)	21.3(4)
C7	9333(3)	7762(2)	3296(2)	18.9(4)
C6	6047(3)	8239(2)	4202(2)	18.7(4)
C16	6478(3)	7979(2)	7949(2)	21.0(5)
C1	4621(3)	8374(2)	6575(2)	19.0(4)
C13	11145(3)	6294(2)	4853(2)	19.5(4)
C3	1304(3)	8734(2)	6263(2)	23.2(5)
C5	4525(3)	8406(2)	5370.5(19)	17.9(4)
C8	10985(3)	6993(2)	3556(2)	20.4(4)
C12	9310(3)	8406(2)	2031(2)	20.6(4)
C17	6545(3)	8989(2)	8418(2)	22.9(5)
C4	2796(3)	8621(2)	5237(2)	20.0(4)
C14	10712(3)	5495(2)	6931(2)	22.5(5)

C19	7206(3)	7298(2)	10280(2)	23.4(5)
C2	1588(3)	8611(2)	7412(2)	22.9(5)
C21	6733(3)	6630(2)	8618(2)	23.0(5)
C18	6918(3)	8639(2)	9581(2)	24.3(5)
C11	10851(3)	8278(2)	1055(2)	23.3(5)
C20	7106(3)	6316(2)	9781(2)	22.3(5)
C15	12719(3)	5137(2)	6284(2)	24.1(5)
С9	12534(3)	6898(2)	2539(2)	24.8(5)
C10	12473(3)	7520(2)	1297(2)	26.7(5)

Table 3 Anisotropic Displacement Parameters (Å2×103) for 54-1. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
C11	46.8(4)	25.2(3)	32.0(3)	0.4(2)	-19.1(3)	-8.3(3)
01	16.7(7)	34.0(9)	17.0(8)	-5.2(6)	-5.8(6)	-4.2(6)
02	21.3(8)	34.3(9)	20.6(8)	-6.6(7)	-8.0(6)	-3.4(7)
03	19.1(8)	34.9(9)	23.8(8)	-6.5(7)	-7.6(7)	1.6(7)
N2	17.9(9)	25.0(10)	15.5(9)	-6.6(7)	-4.3(7)	-4.2(7)
N1	18.6(9)	23.4(9)	20.8(9)	-5.0(8)	-3.9(7)	-4.0(7)
N3	20.7(9)	23.5(10)	21.2(9)	-4.2(8)	-9.3(8)	-3.7(7)
C7	19.0(10)	18.6(10)	21.1(11)	-7.7(8)	-4.0(8)	-5.2(8)
C6	20.1(10)	16.0(10)	20.6(11)	-3.0(8)	-7.2(9)	-4.1(8)
C16	13.5(10)	29.4(12)	16.6(10)	-5.2(9)	-2.7(8)	-1.2(8)
C1	17.8(10)	16.2(10)	21.6(11)	-1.6(8)	-6.6(8)	-3.4(8)
C13	17.0(10)	19.0(10)	25.3(11)	-7.5(9)	-7.8(9)	-3.1(8)
C3	17.0(10)	23.2(11)	30.9(12)	-6.8(9)	-7.5(9)	-4.9(8)
C5	17.7(10)	14.8(10)	19.9(11)	-2.3(8)	-5.3(8)	-3.2(8)
C8	20.0(11)	21.2(11)	22.0(11)	-7.5(9)	-6.1(9)	-4.1(8)
C12	19.5(11)	20.2(11)	22.3(11)	-5.9(9)	-5.6(9)	-3.5(8)
C17	17.9(11)	25.6(12)	22.9(11)	-4.0(9)	-4.6(9)	-4.1(9)
C4	22.4(11)	18.6(10)	21.3(11)	-3.9(9)	-8.1(9)	-5.9(8)
C14	23.1(11)	22.4(11)	22.8(11)	-2.6(9)	-10.6(9)	-4.2(9)
C19	20.3(11)	32.6(12)	18.4(11)	-4.6(9)	-7.2(9)	-6.6(9)
C2	17.5(11)	23.3(11)	25.2(12)	-6.2(9)	-1.2(9)	-5.0(8)
C21	18.8(11)	28.9(12)	23.2(11)	-10.5(9)	-2.4(9)	-6.7(9)
C18	21.1(11)	28.1(12)	24.7(12)	-7.6(9)	-6.0(9)	-5.4(9)
C11	28.0(12)	27.7(12)	15.7(10)	-4.5(9)	-5.0(9)	-9.7(9)
C20	17.6(10)	25.8(11)	20.8(11)	-3.2(9)	-4.1(9)	-4.8(9)
C15	21.4(11)	24.0(11)	24.9(12)	-3.4(9)	-10.6(9)	0.5(9)

C9	17.8(11)	30.5(12)	27.2(12)	-10.6(10)	-4.9(9)	-4.1(9)
C10	20.7(11)	34.6(13)	23.7(12)	-11.5(10)	0.5(9)	-6.8(9)

Table 4 Bond Lengths for 54-1.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl1	C20	1.747(2)	C16	C21	1.394(3)
01	C16	1.405(2)	C1	C5	1.408(3)
01	C1	1.371(2)	C13	C8	1.472(3)
02	C6	1.227(2)	C3	C4	1.384(3)
O3	C13	1.365(2)	C3	C2	1.379(3)
03	C15	1.450(3)	C5	C4	1.396(3)
N2	C7	1.412(3)	C8	С9	1.402(3)
N2	C6	1.364(3)	C12	C11	1.375(3)
N1	C1	1.319(3)	C17	C18	1.384(3)
N1	C2	1.348(3)	C14	C15	1.529(3)
N3	C13	1.273(3)	C19	C18	1.399(3)
N3	C14	1.476(3)	C19	C20	1.385(3)
C7	C8	1.421(3)	C21	C20	1.388(3)
C7	C12	1.403(3)	C11	C10	1.392(3)
C6	C5	1.508(3)	C9	C10	1.383(3)
C16	C17	1.379(3)			

Table 5 Bond Angles for 54-1.

Atom	n Atom	n Atom	Angle/°	Aton	n Atom	Atom	Angle/°
C1	01	C16	118.90(16)	C1	C5	C6	128.43(18)
C13	03	C15	106.01(16)	C4	C5	C6	115.67(18)
C6	N2	C7	125.03(18)	C4	C5	C1	115.90(19)
C1	N1	C2	117.15(19)	C7	C8	C13	122.78(19)
C13	N3	C14	106.93(17)	C9	C8	C7	118.87(19)
N2	C7	C8	119.84(18)	C9	C8	C13	118.35(19)
C12	C7	N2	121.24(18)	C11	C12	C7	120.7(2)
C12	C7	C8	118.88(19)	C16	C17	C18	118.4(2)
O2	C6	N2	123.4(2)	C3	C4	C5	120.5(2)
O2	C6	C5	118.39(18)	N3	C14	C15	104.54(17)
N2	C6	C5	118.23(18)	C20	C19	C18	118.4(2)
C17	C16	01	119.64(19)	N1	C2	C3	123.7(2)
C17	C16	C21	122.29(19)	C20	C21	C16	117.7(2)

C21	C16	01	117.90(19)	C17	C18	C19	121.4(2)
01	C1	C5	117.88(18)	C12	C11	C10	120.9(2)
N1	C1	O1	117.39(18)	C19	C20	Cl1	120.07(17)
N1	C1	C5	124.72(19)	C19	C20	C21	121.9(2)
O3	C13	C8	115.51(18)	C21	C20	Cl1	118.03(17)
N3	C13	O3	117.75(19)	O3	C15	C14	104.01(16)
N3	C13	C8	126.73(19)	C10	C9	C8	121.3(2)
C2	C3	C4	117.88(19)	C9	C10	C11	119.3(2)

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 54-1.

Atom	x	y	z	U(eq)
H2	7909.66	7768.57	5047.83	23
H3	146.28	8887.64	6180.92	28
H12	8241.43	8924.19	1851.07	25
H17	6344.49	9883.92	7962.9	28
H4	2645.56	8688.85	4453.23	24
H14A	10213.11	4689.56	7371.55	27
H14B	10508.72	6009.27	7536.02	27
H19	7457.2	7070.55	11060.59	28
H2A	592.55	8646.64	8112.25	28
H21	6655.05	5964.34	8295.84	28
H18	6978.94	9309.23	9904.68	29
H11	10807.23	8705.39	221.85	28
H15A	13407.64	5596.58	6500.76	29
H15B	13166.81	4175.17	6529.07	29
H9	13622.7	6406.6	2703.36	30
H10	13506.08	7432.02	630.65	32

Experimental

Single crystals of $C_{21}H_{16}ClN_3O_3$ [5m] were []. A suitable crystal was selected and [] on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 100.00(10) K during data collection.

Crystal structure determination of [5m]

Crystal Data for C₂₁H₁₆ClN₃O₃ (M=393.82 g/mol): triclinic, space group P-1 (no. 2), a = 8.0444(10) Å, b = 10.7234(12) Å, c = 11.5467(13) Å, $a = 71.104(10)^{\circ}$, $\beta = 70.410(11)^{\circ}$, $\gamma = 73.474(10)^{\circ}$, V = 870.4(2) Å³, Z = 2, T = 100.00(10) K, μ (MoK α) = 0.249 mm⁻¹, *Dcalc* = 1.503 g/cm³, 11524 reflections measured ($4.096^{\circ} \le 2\Theta \le 59.172^{\circ}$), 4192 unique ($R_{int} = 0.0448$, $R_{sigma} = 0.0583$) which were used in all calculations. The final R_1 was 0.0561 (I > 2 σ (I)) and wR_2 was 0.1414 (all data).

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-4-(4-methoxyphenoxy)nicotinamide (6a),

Table 1	Crystal	data a	nd s	structure	refinement	for	E0-6-2-4.
---------	---------	--------	------	-----------	------------	-----	-----------

Identification code	E0-6-2-4
Empirical formula	$C_{22}H_{19}N_3O_4$
Formula weight	389.40
Temperature/K	150.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	8.75620(10)
b/Å	23.4732(3)
c/Å	8.8632(2)
α/°	90
β/°	92.210(2)
$\gamma/^{o}$	90
Volume/Å ³	1820.35(5)
Ζ	4

$\rho_{calc}g/cm^3$	1.421
μ/mm^{-1}	0.819
F(000)	816.0
Crystal size/mm ³	0.14 imes 0.12 imes 0.1
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/ ^c	7.532 to 147.968
Index ranges	$-10 \le h \le 10, -28 \le k \le 14, -10 \le l \le 10$
Reflections collected	9852
Independent reflections	3593 [$R_{int} = 0.0255, R_{sigma} = 0.0280$]
Data/restraints/parameters	3593/0/263
Goodness-of-fit on F ²	1.094
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0382, wR_2 = 0.0967$
Final R indexes [all data]	$R_1 = 0.0435, \mathrm{w}R_2 = 0.0990$
Largest diff. peak/hole / e Å ⁻³	0.16/-0.27

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for E0-6-2-4. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
01	6680.0(11)	6548.7(4)	6012.4(11)	30.6(2)
O4	9554.6(11)	6807.7(4)	11636.5(10)	29.1(2)
O3	9098.8(11)	4525.0(4)	6509.8(10)	30.8(2)
02	4381.2(12)	5944.2(4)	2215(1)	33.3(2)
N2	5970.9(12)	5612.2(5)	4124.1(12)	23.7(2)
N3	7625.2(13)	5309.5(5)	6663.1(12)	27.7(3)
N1	2295.9(16)	7110.9(6)	4790.1(15)	40.1(3)
C12	7637.8(14)	4781.9(6)	4277.8(14)	23.9(3)
C6	4943.3(14)	5987.0(6)	3498.0(14)	23.4(3)
C7	6567.6(14)	5121.8(5)	3440.9(14)	22.9(3)
C19	8736.6(15)	6751.1(5)	10295.5(15)	24.1(3)
C17	8762.5(15)	6876.1(6)	7595.9(15)	26.1(3)
C18	9470.4(15)	6930.5(6)	9014.2(15)	26.0(3)
C13	8095.8(14)	4903.1(6)	5859.6(15)	23.9(3)
C5	4433.0(15)	6472.6(6)	4459.9(14)	24.4(3)
C16	7311.9(15)	6645.0(6)	7474.6(15)	26.0(3)
C4	2980.0(16)	6686.9(6)	4085.6(15)	28.9(3)
C1	5233.0(16)	6735.2(6)	5665.1(15)	28.1(3)
C8	6146.1(15)	4955.1(6)	1967.7(15)	26.8(3)
C11	8250.7(16)	4299.3(6)	3602.2(16)	28.3(3)

C9	6757.9(16)	4468.8(6)	1341.2(15)	28.7(3)
C21	6557.5(16)	6474.8(6)	8732.0(16)	30.6(3)
C15	8350.4(16)	5244.3(6)	8178.4(15)	28.7(3)
C20	7264.8(16)	6528.5(6)	10154.0(16)	29.5(3)
C14	9301.1(17)	4698.5(6)	8077.1(15)	30.9(3)
C22	8796.2(17)	6658.8(6)	12980.9(15)	31.8(3)
C10	7814.1(16)	4140.3(6)	2147.8(16)	30.4(3)
C2	4557.2(19)	7186.4(7)	6402.6(18)	40.5(4)
C3	3104(2)	7353.5(7)	5931.8(19)	46.6(4)

Table 3 Anisotropic Displacement Parameters (Å2×103) for E0-6-2-4. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
01	26.5(5)	36.4(5)	28.2(5)	-7.9(4)	-7.6(4)	2.8(4)
04	27.4(5)	35.8(5)	23.7(5)	-1.9(4)	-2.8(4)	-2.9(4)
03	32.9(5)	33.1(5)	26.2(5)	-1.0(4)	-4.5(4)	8.1(4)
02	37.0(6)	40.0(6)	22.3(5)	-4.7(4)	-6.9(4)	8.8(4)
N2	24.9(5)	26.3(6)	19.8(5)	-2.3(4)	-1.6(4)	1.1(4)
N3	30.7(6)	30.7(6)	21.6(5)	0.3(5)	-0.9(4)	2.4(5)
N1	42.9(8)	40.2(7)	36.1(7)	-9.4(6)	-13.2(6)	16.6(6)
C12	22.4(6)	25.6(6)	24.0(6)	0.8(5)	2.8(5)	-2.8(5)
C6	21.9(6)	26.8(7)	21.6(6)	0.9(5)	0.3(5)	-2.2(5)
C7	20.9(6)	24.8(6)	23.0(6)	-0.7(5)	3.1(5)	-2.5(5)
C19	24.6(6)	21.4(6)	26.1(6)	-3.3(5)	-3.5(5)	0.4(5)
C17	28.3(7)	23.1(6)	26.9(7)	-1.3(5)	0.4(5)	-1.3(5)
C18	22.2(6)	24.4(7)	31.3(7)	-3.8(5)	-1.8(5)	-3.6(5)
C13	20.9(6)	25.5(7)	25.1(6)	3.0(5)	0.9(5)	-0.5(5)
C5	27.1(7)	23.9(6)	21.9(6)	2.0(5)	-1.6(5)	-0.9(5)
C16	26.0(7)	24.6(6)	26.8(7)	-5.5(5)	-6.0(5)	1.4(5)
C4	32.4(7)	28.1(7)	25.7(7)	-1.5(5)	-5.7(5)	4.0(6)
C1	28.3(7)	28.5(7)	27.0(7)	0.3(5)	-5.3(5)	2.3(5)
C8	25.1(7)	31.0(7)	24.2(7)	-1.5(5)	-0.3(5)	-0.5(5)
C11	26.9(7)	28.8(7)	29.4(7)	0.8(6)	2.7(5)	2.1(5)
C9	29.2(7)	33.0(7)	24.1(6)	-5.6(5)	2.6(5)	-4.1(6)
C21	22.4(7)	34.8(8)	34.3(7)	-5.1(6)	-2.2(5)	-5.0(5)
C15	30.1(7)	34.0(7)	21.7(6)	0.7(5)	-1.7(5)	1.8(6)
C20	26.5(7)	33.2(7)	28.9(7)	-1.7(6)	3.0(5)	-3.4(5)
C14	32.8(7)	36.1(8)	23.4(7)	1.2(6)	-2.9(5)	2.6(6)
C22	35.0(8)	34.8(8)	25.6(7)	0.2(6)	0.0(6)	0.6(6)

C10	31.4(7)	29.0(7)	31.1(7)	-5.7(6)	5.3(6)	1.4(6)
C2	46.8(9)	36.9(8)	36.4(8)	-13.7(7)	-15.7(7)	10.9(7)
C3	51.7(10)	43.4(9)	43.2(9)	-16.9(8)	-17.0(8)	23.1(8)

Table 4 Bond Lengths for E0-6-2-4.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
01	C16	1.4077(15)	C6	C5	1.5018(18)
01	C1	1.3645(16)	C7	C8	1.3990(18)
04	C19	1.3703(15)	C19	C18	1.3915(19)
O4	C22	1.4297(16)	C19	C20	1.3918(19)
O3	C13	1.3609(16)	C17	C18	1.3859(18)
O3	C14	1.4518(16)	C17	C16	1.3815(19)
02	C6	1.2256(15)	C5	C4	1.3961(19)
N2	C6	1.3613(17)	C5	C1	1.3978(18)
N2	C7	1.4104(17)	C16	C21	1.376(2)
N3	C13	1.2687(17)	C1	C2	1.389(2)
N3	C15	1.4713(16)	C8	C9	1.3861(19)
N1	C4	1.3299(19)	C11	C10	1.3817(19)
N1	C3	1.339(2)	C9	C10	1.382(2)
C12	C7	1.4182(18)	C21	C20	1.3884(19)
C12	C13	1.4710(18)	C15	C14	1.532(2)
C12	C11	1.3981(19)	C2	C3	1.381(2)

Table 5 Bond Angles for E0-6-2-4.

C1 O1 C16 119.00(10) N3 C13 C12 126.72	(12)
C19 O4 C22 117.07(11) C4 C5 C6 115.27	(11)
C13 O3 C14 105.97(10) C4 C5 C1 116.61	(12)
C6 N2 C7 127.04(11) C1 C5 C6 128.12	(12)
C13 N3 C15 107.22(11) C17 C16 O1 117.53	(12)
C4 N1 C3 116.02(13) C21 C16 O1 121.00	(12)
C7 C12 C13 122.69(12) C21 C16 C17 121.29	(12)
C11 C12 C7 119.25(12) N1 C4 C5 125.52	(13)
C11 C12 C13 118.02(12) O1 C1 C5 117.68	(12)
O2 C6 N2 124.10(12) O1 C1 C2 123.18	(12)
O2 C6 C5 118.12(12) C2 C1 C5 119.07	(13)
N2 C6 C5 117.75(11) C9 C8 C7 120.81	(13)

N2	C7	C12	118.87(11) C	C10	C11	C12	121.43(13)
C8	C7	N2	122.71(12) 0	C10	С9	C8	120.90(13)
C8	C7	C12	118.42(12) 0	C16	C21	C20	119.83(13)
O4	C19	C18	115.86(11) N	N3	C15	C14	104.47(11)
O4	C19	C20	124.46(12) 0	C21	C20	C19	119.67(13)
C18	C19	C20	119.68(12)	03	C14	C15	104.13(10)
C16	C17	C18	118.98(13)	211	C10	C9	119.17(13)
C17	C18	C19	120.52(12) 0	23	C2	C1	118.62(14)
O3	C13	C12	115.17(11) N	N1	C3	C2	124.14(14)
N3	C13	O3	118.09(12)				

Table 6 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Paramet	ters
(Å ² ×10 ³) for E0-6-2-4.	

Atom	x	У	z	U(eq)
H2	6290.84	5682.01	5034.95	28
H17	9256.29	6993.32	6739.03	31
H18	10443.65	7088.18	9110.35	31
H4	2445.38	6518.83	3275.06	35
H8	5446.87	5173.19	1401.72	32
H11	8967.8	4080.55	4143.44	34
H9	6453.51	4362.11	364.79	34
H21	5576.47	6324.34	8629.32	37
H15A	7586.03	5206.99	8935.77	34
H15B	8997.36	5568.7	8430.29	34
H20	6757.61	6416.29	11007.63	35
H14A	10369.18	4772.68	8335.51	37
H14B	8929.6	4407.46	8747.69	37
H22A	8540.51	6261.12	12955.31	48
H22B	7879.34	6880.32	13045.05	48
H22C	9459.34	6734.98	13845.14	48
H10	8225.78	3816.28	1717.03	36
H2A	5072.78	7372.02	7196.92	49
Н3	2657.44	7653.56	6439.82	56

Crystal structure determination of [E0-6-2-4]

Crystal Data for C₂₂H₁₉N₃O₄ (M =389.40 g/mol): monoclinic, space group P2₁/c (no. 14), a = 8.75620(10) Å, b = 23.4732(3) Å, c = 8.8632(2) Å, $\beta = 92.210(2)^{\circ}$, V = 1820.35(5) Å³, Z = 4, T = 150.00(10) K, μ (CuK α) = 0.819 mm⁻¹, Dcalc = 1.421 g/cm³, 9852 reflections measured (7.532° $\leq 2\Theta \leq 147.968^{\circ}$), 3593 unique ($R_{int} = 0.0255$, $R_{sigma} = 0.0280$) which were used in all calculations. The final R_1 was 0.0382 (I > 2 σ (I)) and wR_2 was 0.0990 (all data).

4-(2-chloro-4-fluorophenoxy)-N-(2-(4,5-dihydrooxazol-2-yl)phenyl)nicotinamide (6q)

Table 1 Crystal data and structure refinement for 6q.

Identification code	6q
Empirical formula	$C_{21}H_{15}ClFN_3O_3$
Formula weight	411.81
Temperature/K	99.99(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	7.3959(4)
b/Å	19.3566(12)
c/Å	12.7098(9)
α/°	90
β/°	91.147(6)
$\gamma/^{\circ}$	90

Volume/Å ³	1819.2(2)					
Z	4					
$\rho_{calc}g/cm^3$	1.504					
μ/mm^{-1}	0.250					
F(000)	848.0					
Crystal size/mm ³	$0.14 \times 0.13 \times 0.12$					
Radiation	MoKa ($\lambda = 0.71073$)					
2Θ range for data collection/° 4.208 to 59.036						
Index ranges	$-10 \le h \le 8, -26 \le k \le 26, -17 \le l \le 17$					
Reflections collected	14810					
Independent reflections	4489 [$R_{int} = 0.0370, R_{sigma} = 0.0415$]					
Data/restraints/parameters	4489/0/262					
Goodness-of-fit on F ²	1.048					
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0445, wR_2 = 0.1002$					
Final R indexes [all data]	$R_1 = 0.0575, wR_2 = 0.1079$					
Largest diff. peak/hole / e Å ⁻³ 0.29/-0.43						

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 58-3. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	z	U(eq)
Cl1	10208.2(5)	3654.8(2)	7800.1(4)	33.96(14)
F1	5419.8(13)	1810.2(5)	8097.7(8)	29.4(2)
O1	7131.2(16)	4478.4(5)	7088.1(9)	22.1(3)
O2	9517.9(15)	6355.5(6)	6530.5(9)	24.3(3)
O3	3339.4(17)	6054.9(7)	9807.8(10)	34.2(3)
N2	7676.1(17)	5820.9(6)	7701.7(10)	19.1(3)
N1	7692.8(17)	5208.7(7)	4023.3(11)	20.9(3)
N3	4549.2(19)	5369.9(7)	8571.5(11)	26.2(3)
C2	7303.3(19)	4696.3(7)	6070.6(12)	16.7(3)
C6	8474(2)	5887.6(7)	6750.4(12)	17.7(3)
C5	8114(2)	5584.6(8)	4877.5(13)	19.4(3)
C16	6677(2)	3792.1(7)	7287.7(12)	17.4(3)
C18	4489(2)	2886.5(8)	7423.7(12)	19.9(3)
C1	7937.6(19)	5371.1(7)	5915.2(12)	16.7(3)
C4	7099(2)	4567.4(8)	4206.5(13)	20.0(3)
C19	5848(2)	2466.2(7)	7808.2(12)	18.9(3)
C3	6902(2)	4286.4(8)	5196.7(12)	19.2(3)
C21	8021(2)	3353.1(8)	7667.3(12)	19.2(3)
C7	7733(2)	6321.8(8)	8508.3(12)	19.7(3)

7611(2)	2676.6(8)	7948.9(13)	20.2(3)
4912(2)	3564.8(8)	7171.7(12)	19.5(3)
6255(2)	6384.8(8)	9187.5(13)	22.4(3)
4703(2)	5906.2(8)	9143.5(12)	21.4(3)
9220(2)	6759.5(8)	8660.1(13)	25.2(4)
6272(3)	6903.0(9)	9946.0(13)	29.2(4)
2782(2)	5054.8(9)	8807.0(14)	28.8(4)
9202(3)	7267.3(9)	9431.3(14)	31.7(4)
7726(3)	7349.0(9)	10068.4(14)	34.1(4)
2116(2)	5467.3(9)	9743.5(15)	30.5(4)
	7611(2) 4912(2) 6255(2) 4703(2) 9220(2) 6272(3) 2782(2) 9202(3) 7726(3) 2116(2)	7611(2)2676.6(8)4912(2)3564.8(8)6255(2)6384.8(8)4703(2)5906.2(8)9220(2)6759.5(8)6272(3)6903.0(9)2782(2)5054.8(9)9202(3)7267.3(9)7726(3)7349.0(9)2116(2)5467.3(9)	7611(2) $2676.6(8)$ $7948.9(13)$ $4912(2)$ $3564.8(8)$ $7171.7(12)$ $6255(2)$ $6384.8(8)$ $9187.5(13)$ $4703(2)$ $5906.2(8)$ $9143.5(12)$ $9220(2)$ $6759.5(8)$ $8660.1(13)$ $6272(3)$ $6903.0(9)$ $9946.0(13)$ $2782(2)$ $5054.8(9)$ $8807.0(14)$ $9202(3)$ $7267.3(9)$ $9431.3(14)$ $7726(3)$ $7349.0(9)$ $10068.4(14)$ $2116(2)$ $5467.3(9)$ $9743.5(15)$

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 58-3. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Cl1	18.7(2)	29.3(2)	53.8(3)	0.3(2)	-1.6(2)	-5.31(16)
F1	35.3(6)	12.9(5)	39.8(6)	7.6(4)	-5.2(5)	-5.1(4)
01	34.7(6)	11.5(5)	19.9(6)	0.8(4)	-0.4(5)	-4.6(5)
02	26.2(6)	17.8(6)	28.8(7)	0.3(5)	1.9(5)	-8.0(5)
O3	33.1(7)	33.3(7)	36.5(8)	-6.9(6)	11.0(6)	-2.4(6)
N2	22.8(7)	12.6(6)	22.0(7)	-0.6(5)	-0.3(5)	-3.4(5)
N1	21.6(6)	19.7(7)	21.2(7)	1.4(5)	-0.3(6)	-0.1(5)
N3	28.4(7)	23.8(7)	26.3(8)	-2.5(6)	2.1(6)	-8.3(6)
C2	15.4(7)	14.2(7)	20.5(8)	2.3(6)	0.6(6)	1.9(6)
C6	16.5(7)	12.5(7)	24.0(8)	2.7(6)	-3.1(6)	2.5(6)
C5	17.6(7)	15.4(7)	25.4(8)	3.7(6)	0.7(6)	0.2(6)
C16	25.7(8)	10.5(7)	16.2(7)	0.0(5)	1.4(6)	-1.3(6)
C18	19.2(7)	18.5(8)	21.9(8)	-0.9(6)	-1.3(6)	-3.0(6)
C1	13.0(7)	14.5(7)	22.6(8)	0.5(6)	-0.3(6)	1.6(6)
C4	18.4(7)	19.1(8)	22.7(8)	-3.3(6)	0.4(6)	-0.6(6)
C19	27.0(8)	10.1(7)	19.6(8)	1.1(6)	0.5(6)	-1.3(6)
C3	19.5(7)	13.2(7)	24.9(8)	-0.6(6)	1.8(6)	-1.3(6)
C21	17.6(7)	19.3(8)	20.8(8)	-1.6(6)	1.7(6)	-2.6(6)
C7	27.3(8)	12.8(7)	18.7(8)	2.0(6)	-5.6(7)	-0.6(6)
C20	22.8(8)	14.1(7)	23.8(8)	-0.3(6)	-1.0(7)	5.2(6)
C17	21.9(8)	17.0(8)	19.5(8)	1.4(6)	-2.3(6)	2.7(6)
C12	30.5(9)	18.7(8)	17.8(8)	1.9(6)	-3.5(7)	-1.7(7)
C13	26.4(8)	20.5(8)	17.3(8)	2.3(6)	0.0(7)	0.8(7)
C8	30.4(9)	20.6(8)	24.3(9)	3.6(6)	-6.1(7)	-4.6(7)
C11	44.8(11)	23.1(8)	19.7(8)	-0.7(7)	0.7(8)	-2.1(8)
C14	27.5(9)	31.0(9)	27.9(9)	3.7(7)	-1.0(7)	-10.2(7)
С9	45.8(11)	22.7(9)	26.1(9)	2.2(7)	-11.9(8)	-12.6(8)
			94			

C10	57.6(12)	22.4(9)	22.2(9)	-5.5(7)	-4.9(9)	-8.1(8)
C15	24.3(8)	31.1(10)	36.1(10)	8.0(8)	2.2(8)	-1.6(7)

Table 4 Bond Lengths for 58-3.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Cl1	C21	1.7247(16)	C5	C1	1.391(2)
F1	C19	1.3612(17)	C16	C21	1.387(2)
01	C2	1.3687(18)	C16	C17	1.382(2)
01	C16	1.3947(17)	C18	C19	1.375(2)
02	C6	1.2260(18)	C18	C17	1.389(2)
O3	C13	1.359(2)	C4	C3	1.381(2)
03	C15	1.455(2)	C19	C20	1.375(2)
N2	C6	1.362(2)	C21	C20	1.392(2)
N2	C7	1.411(2)	C7	C12	1.412(2)
N1	C5	1.339(2)	C7	C8	1.398(2)
N1	C4	1.339(2)	C12	C13	1.475(2)
N3	C13	1.271(2)	C12	C11	1.391(2)
N3	C14	1.478(2)	C8	C9	1.388(2)
C2	C1	1.403(2)	C11	C10	1.385(3)
C2	C3	1.392(2)	C14	C15	1.523(3)
C6	C1	1.506(2)	C9	C10	1.381(3)

Table 5 Bond Angles for 58-3.

Atom Atom Atom		n Atom	An	gle/°	gle/° Atom		Atom	An	gle/°
C2	01	C16		119.52(12)	C20	C19	C18		123.76(14)
C13	O3	C15		105.55(13)	C4	C3	C2		118.55(14)
C6	N2	C7		124.92(13)	C16	C21	Cl1		119.40(12)
C4	N1	C5		115.78(14)	C16	C21	C20		120.48(14)
C13	N3	C14		106.90(14)	C20	C21	Cl1		120.12(12)
01	C2	C1		117.23(13)	N2	C7	C12		119.42(14)
01	C2	C3		123.77(13)	C8	C7	N2		121.92(15)
C3	C2	C1		119.00(14)	C8	C7	C12		118.67(15)
02	C6	N2		123.94(14)	C19	C20	C21		117.13(14)
02	C6	C1		119.21(14)	C16	C17	C18		119.53(14)
N2	C6	C1		116.75(13)	C7	C12	C13		122.28(14)
N1	C5	C1		125.66(14)	C11	C12	C7		119.31(15)
C21	C16	01		118.23(14)	C11	C12	C13		118.39(16)
C17	C16	01		120.95(13)	03	C13	C12		115.46(14)
C17	C16	C21		120.71(14)	N3	C13	O3		117.98(15)

C19	C18	C17	118.37(14) 1	N3	C13	C12	126.54(15)
C2	C1	C6	127.08(14)	C9	C8	C7	120.50(17)
C5	C1	C2	116.62(14)	C10	C11	C12	121.57(17)
C5	C1	C6	116.29(13) N	N3	C14	C15	104.06(14)
N1	C4	C3	124.36(15)	C10	С9	C8	120.93(17)
F1	C19	C18	118.41(14)	C9	C10	C11	118.92(16)
F1	C19	C20	117.80(13)	03	C15	C14	104.07(13)

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for 58-3.

Atom	x	У	Z	U(eq)
H2	7093.33	5445.21	7819.59	23
Н5	8563.78	6026.89	4767.59	23
H18	3316.07	2720.58	7334.61	24
H4	6797.89	4292.77	3628.61	24
H3	6510.69	3833.24	5277.77	23
H20	8492.86	2379.87	8220.4	24
H17	4014.42	3863.98	6926.54	23
H8	10228.98	6709.99	8241.38	30
H11	5284.12	6951.14	10381.21	35
H14A	2920.07	4570.27	8986.19	35
H14B	1950.33	5095.96	8210.62	35
H9	10197.17	7556.57	9520.13	38
H10	7707.99	7697.73	10571.37	41
H15A	877.75	5618.3	9626.65	37
H15B	2183.41	5194.42	10383.19	37

Experimental

Single crystals of $C_{21}H_{15}ClFN_3O_3$ [6q] were []. A suitable crystal was selected and [] on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 99.99(10) K during data collection.

Crystal structure determination of [6q]

Crystal Data for C₂₁H₁₅ClFN₃O₃ (M =411.81 g/mol): monoclinic, space group P2₁/c (no. 14), a = 7.3959(4) Å, b = 19.3566(12) Å, c = 12.7098(9) Å, $\beta = 91.147(6)^{\circ}$, V = 1819.2(2) Å³, Z = 4, T = 99.99(10) K, μ (MoK α) = 0.250 mm⁻¹, *Dcalc* = 1.504 g/cm³, 14810 reflections measured (4.208° $\leq 2\Theta \leq 59.036^{\circ}$), 4489 unique ($R_{int} = 0.0370$, $R_{sigma} = 0.0415$) which were used in all calculations. The final R_1 was 0.0445 (I > 2 σ (I)) and wR_2 was 0.1079 (all data).

N-(2-(4,5-dihydrooxazol-2-yl)phenyl)-2,4-bis(4-(trifluoromethyl)phenoxy) nicotinamide (7d)

Table 1	Crystal	data	and	structure	refinement	for	7d.
	•						

Identification code	7d
Empirical formula	$C_{29}H_{19}F_6N_3O_4$
Formula weight	587.47
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	15.9357(8)

b/Å	13.7866(8)
c/Å	11.8725(7)
α/°	90
β/°	93.908(5)
$\gamma/^{\circ}$	90
Volume/Å ³	2602.3(3)
Z	4
$\rho_{calc}g/cm^3$	1.499
μ/mm^{-1}	0.130
F(000)	1200.0
Crystal size/mm ³	$0.14 \times 0.12 \times 0.11$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	² 4.534 to 59.172
Index ranges	$\text{-}21 \le h \le 21, \text{-}12 \le k \le 19, \text{-}11 \le l \le 16$
Reflections collected	13946
Independent reflections	$6166 \ [R_{int} = 0.0347, R_{sigma} = 0.0566]$
Data/restraints/parameters	6166/7/379
Goodness-of-fit on F ²	1.071
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0643, \mathrm{wR}_2 = 0.1500$
Final R indexes [all data]	$R_1 = 0.0902, wR_2 = 0.1664$
Largest diff. peak/hole / e Å-3	0.66/-0.60

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for X_48. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ}tensor.

Atom	x	У	Z	U(eq)
F3	503.6(9)	4083.2(12)	6449.3(15)	44.8(4)
03	6823.0(9)	5589.1(11)	5949.8(14)	25.2(4)
02	4906.3(9)	3850.9(12)	5553.6(14)	25.6(4)
01	4369.3(10)	4561.7(12)	7607.6(14)	28.1(4)
O4	8561.5(11)	2192.3(13)	6999.2(17)	37.5(5)
F2	645.2(10)	5524.5(14)	5812(2)	70.0(7)
N2	6305.1(11)	3659.3(13)	6072.6(15)	19.8(4)
F1	490.5(10)	5293.0(15)	7568(2)	69.0(7)
N1	6141.0(12)	6683.1(15)	7063.4(17)	25.9(4)
N3	7854.2(12)	3600.4(15)	7110.4(18)	27.6(5)
F5	9214.3(16)	8303(2)	3433.4(18)	90.9(9)
C13	6478.9(14)	2764.6(16)	5574.1(18)	21.0(5)
C11	6168.5(13)	5811.1(16)	6588.5(18)	19.9(5)

C12	5558.3(13)	4138.2(16)	6043.7(17)	18.2(4)
C22	7353.6(14)	6333.3(16)	5626.2(19)	21.2(5)
C10	5570.3(13)	5070.7(16)	6698.3(18)	18.4(4)
C7	4923.8(14)	5292.6(17)	7380.3(19)	22.3(5)
C19	7878.4(14)	2747.6(17)	6701.6(19)	23.6(5)
C1	3514.9(14)	4710.7(17)	7366.3(19)	23.1(5)
C25	8463.4(14)	7687.5(17)	4902.5(19)	23.2(5)
C18	7248.5(15)	2299.2(17)	5899.1(19)	23.8(5)
C8	4871.8(15)	6189.0(18)	7898.0(19)	25.7(5)
F6	9778.3(14)	8445(2)	5057(2)	108.4(10)
C27	8188.6(14)	6281.7(17)	6016(2)	25.8(5)
C9	5483.2(15)	6855.1(18)	7700(2)	28.4(5)
C26	8748.4(14)	6962.8(18)	5649(2)	27.0(5)
C14	5925.2(15)	2324.1(18)	4764.0(19)	25.8(5)
C2	3202.2(14)	5421.5(18)	6631(2)	25.1(5)
C3	2341.1(15)	5499.6(18)	6400(2)	27.6(5)
C23	7063.1(14)	7041.9(18)	4878(2)	26.2(5)
C4	1802.0(15)	4859.1(18)	6897(2)	27.7(5)
C24	7619.7(15)	7720.0(18)	4513(2)	27.4(5)
C6	2985.3(15)	4064.9(19)	7863(2)	31.1(6)
F4	8756.6(17)	9304.7(15)	4490(3)	117.7(12)
C20	8643.4(15)	3744.1(19)	7818(2)	32.8(6)
C28	9062.5(18)	8424(2)	4498(2)	38.2(6)
C15	6121.8(18)	1426.7(19)	4318(2)	34.5(6)
C5	2128.1(16)	4145.4(19)	7627(2)	33.6(6)
C17	7418.1(17)	1386.5(18)	5451(2)	33.3(6)
C16	6855.6(19)	952(2)	4668(2)	39.9(7)
C29	868.7(16)	4940(2)	6678(3)	39.1(7)
C21	9064.5(16)	2748(2)	7834(3)	36.8(6)

Table 3 Anisotropic Displacement Parameters (Å2×103) for X_48. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

U_{11}	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
29.5(8)	34.1(9)	71.1(12)	-12.5(8)	5.7(8)	-9.1(7)
18.9(8)	19.7(8)	37.8(9)	-4.4(7)	8.8(7)	-3.5(6)
19.9(8)	26.2(9)	29.9(9)	1.2(7)	-4.7(7)	-4.2(7)
19.5(8)	29.6(9)	35.9(9)	10.5(8)	7.3(7)	3.2(7)
26.9(9)	28.2(10)	55.8(12)	-2.0(9)	-8.6(9)	9.6(8)
29.0(9)	53.7(12)	123.9(19)	25.1(12)	-18.9(11)	-3.3(8)
	U ₁₁ 29.5(8) 18.9(8) 19.9(8) 19.5(8) 26.9(9) 29.0(9)	U_{11} U_{22} 29.5(8)34.1(9)18.9(8)19.7(8)19.9(8)26.2(9)19.5(8)29.6(9)26.9(9)28.2(10)29.0(9)53.7(12)	U_{11} U_{22} U_{33} 29.5(8) $34.1(9)$ $71.1(12)$ 18.9(8)19.7(8) $37.8(9)$ 19.9(8) $26.2(9)$ $29.9(9)$ 19.5(8) $29.6(9)$ $35.9(9)$ 26.9(9) $28.2(10)$ $55.8(12)$ 29.0(9) $53.7(12)$ $123.9(19)$	U_{11} U_{22} U_{33} U_{23} 29.5(8) $34.1(9)$ $71.1(12)$ $-12.5(8)$ 18.9(8)19.7(8) $37.8(9)$ $-4.4(7)$ 19.9(8) $26.2(9)$ $29.9(9)$ $1.2(7)$ 19.5(8) $29.6(9)$ $35.9(9)$ $10.5(8)$ 26.9(9) $28.2(10)$ $55.8(12)$ $-2.0(9)$ 29.0(9) $53.7(12)$ $123.9(19)$ $25.1(12)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

N2	17.1(8)	19.6(10)	22.6(9)	-4.3(8)	-1.1(7)	-0.8(7)
F1	26.0(8)	69.3(14)	114.2(17)	-49.8(13)	22.0(10)	-5.4(8)
N1	21.0(9)	24.4(10)	31.7(11)	-6.0(9)	-2.5(8)	1.4(8)
N3	20.3(9)	27.1(11)	34.7(11)	-4.1(9)	-3.1(9)	1.8(8)
F5	109.7(19)	114(2)	53.4(12)	-2.0(13)	36.3(12)	-63.9(16)
C13	24.5(11)	19.7(11)	19.3(10)	1.5(9)	5.0(9)	-2.8(9)
C11	14.9(10)	22.3(12)	22.2(10)	-1.1(9)	-0.6(9)	2.4(9)
C12	18.3(10)	19.8(11)	16.5(10)	3.6(9)	1.8(8)	-1.8(9)
C22	20.4(10)	17.4(11)	26.4(11)	-4.6(9)	4.9(9)	-3.5(9)
C10	15.2(9)	20.3(11)	19.1(10)	3.4(9)	-2.6(8)	1.8(9)
C7	18.8(10)	27.1(12)	21.0(11)	6.4(10)	1.2(9)	2.9(9)
C19	20.6(11)	23.4(12)	27.3(11)	3.6(10)	5.7(9)	3.9(9)
C1	20.8(11)	24.4(12)	25.0(11)	0.3(10)	8.0(9)	3.1(9)
C25	24.0(11)	22.2(12)	23.5(11)	-0.2(10)	2.6(9)	-3.7(10)
C18	28.1(12)	20.7(12)	23.1(11)	1.6(9)	5.7(10)	-0.2(10)
C8	24.3(11)	30.4(13)	22.8(11)	-0.4(10)	3.8(9)	9.5(10)
F6	69.0(13)	131.3(19)	117.8(18)	85.5(16)	-45.9(13)	-69.8(14)
C27	24.0(11)	21.7(12)	31.3(12)	5.1(10)	-0.9(10)	0.5(10)
С9	31.5(13)	25.7(13)	27.1(12)	-8.5(10)	-3.6(10)	8.1(11)
C26	18.4(10)	29.2(13)	32.7(12)	2.0(11)	-3.2(10)	-3.2(10)
C14	31.5(12)	24.9(12)	21.2(11)	0.5(10)	2.7(10)	-2.5(10)
C2	22.0(11)	27.2(13)	26.8(11)	4.2(10)	6.6(9)	-2.0(10)
C3	25.3(12)	26.8(13)	30.6(12)	0.5(11)	1.2(10)	1.4(10)
C23	17.9(10)	29.7(13)	30.4(12)	-2.5(11)	-2.9(10)	0.6(10)
C4	22.0(11)	23.5(12)	38.4(14)	-5.8(11)	7.0(10)	-0.1(10)
C24	29.3(12)	26.2(13)	26.2(12)	4.9(10)	-1.7(10)	0.3(10)
C6	29.5(12)	28.7(13)	36.2(13)	10.7(11)	10.2(11)	1.6(11)
F4	100.2(19)	33.4(12)	230(4)	29.9(17)	88(2)	-5.3(12)
C20	18.8(11)	34.1(14)	44.5(15)	-2.9(12)	-5.1(11)	2.7(10)
C28	37.9(14)	35.0(14)	40.3(14)	13.8(12)	-6.4(12)	-11.7(12)
C15	47.0(16)	30.4(14)	25.9(12)	-8.7(11)	1.9(12)	-7.3(12)
C5	27.8(12)	31.0(14)	43.9(15)	3.7(12)	16.5(11)	-4.3(11)
C17	39.1(14)	24.7(13)	36.5(14)	-2.4(11)	4.6(12)	6.7(11)
C16	58.9(18)	26.2(14)	35.2(14)	-11.4(12)	7.2(13)	2.8(13)
C29	26.4(13)	26.5(14)	65.1(19)	-8.2(14)	7.8(13)	-3.1(11)
C21	24.8(12)	34.3(15)	50.2(16)	3.0(13)	-7.0(12)	1.4(11)

Table 4 Bond Lengths for X_48 .

Atom Atom	Length/Å	Atom Atom
-----------	----------	-----------

100

Length/Å

F3	C29	1.337(3) 0	C10	C7	1.387(3)
03	C11	1.365(3)	C7	C8	1.385(3)
03	C22	1.400(3)	C19	C18	1.472(3)
02	C12	1.222(2)	C1	C2	1.383(3)
01	C7	1.379(3)	C1	C6	1.386(3)
01	C1	1.387(3)	C25	C26	1.391(3)
04	C19	1.358(3)	C25	C24	1.392(3)
04	C21	1.451(3)	C25	C28	1.495(3)
F2	C29	1.335(4) 0	C18	C17	1.400(3)
N2	C13	1.404(3)	C8	C9	1.371(4)
N2	C12	1.359(3) H	F6	C28	1.280(3)
F1	C29	1.343(3)	C27	C26	1.386(3)
N1	C11	1.330(3)	C14	C15	1.390(4)
N1	С9	1.354(3)	C2	C3	1.385(3)
N3	C19	1.274(3)	С3	C4	1.391(3)
N3	C20	1.478(3)	C23	C24	1.379(3)
F5	C28	1.314(4) 0	C4	C5	1.388(4)
C13	C18	1.414(3)	C4	C29	1.496(3)
C13	C14	1.399(3)	C6	C5	1.380(3)
C11	C10	1.409(3) H	F4	C28	1.308(4)
C12	C10	1.502(3)	C20	C21	1.527(4)
C22	C27	1.381(3) 0	C15	C16	1.379(4)
C22	C23	1.379(3)	C17	C16	1.383(4)

Table 5 Bond Angles for X_48.

1 Aton	n Atom	Angle/°	Atom	Atom	Atom	Angle/°
03	C22	119.12(17)	C17	C18	C13	119.4(2)
01	C1	118.97(17)	C17	C18	C19	118.9(2)
04	C21	106.00(19)	C9	C8	C7	117.2(2)
N2	C13	127.85(18)	C22	C27	C26	119.1(2)
N1	C9	116.4(2)	N1	C9	C8	124.4(2)
N3	C20	107.08(19)	C27	C26	C25	119.9(2)
C13	C18	118.42(19)	C15	C14	C13	120.0(2)
C13	N2	122.6(2)	C1	C2	C3	119.3(2)
C13	C18	119.0(2)	C2	C3	C4	119.9(2)
C11	C10	115.87(19)	C22	C23	C24	119.2(2)
C11	O3	119.1(2)	C3	C4	C29	120.9(2)
C11	C10	125.0(2)	C5	C4	C3	119.9(2)
C12	N2	124.7(2)	C5	C4	C29	119.1(2)
	Atom O3 O1 O4 N2 N1 N3 C13 C13 C13 C11 C11 C11 C12	Atom Atom O3 C22 O1 C1 O4 C21 N2 C13 N1 C9 N3 C20 C13 N12 C13 C18 C11 C10 C11 C3 C11 C10 C12 N2	Atom Atom Angle/° O3 C22 119.12(17) O1 C1 118.97(17) O4 C21 106.00(19) N2 C13 127.85(18) N1 C9 116.4(2) N3 C20 107.08(19) C13 C18 118.42(19) C13 C18 119.0(2) C11 C10 115.87(19) C11 O3 119.1(2) C11 C10 125.0(2) C12 N2 124.7(2)	Atom Atom Angle/° Atom O3 C22 119.12(17) C17 O1 C1 118.97(17) C17 O4 C21 106.00(19) C9 N2 C13 127.85(18) C22 N1 C9 116.4(2) N1 N3 C20 107.08(19) C17 C13 N12 122.6(2) C1 C13 N2 122.6(2) C1 C13 C18 119.0(2) C2 C11 C10 115.87(19) C22 C11 O3 119.1(2) C3 C11 C10 125.0(2) C5 C12 N2 124.7(2) C5	Atom Atom Angle/° Atom Atom O3 C22 119.12(17) C17 C18 O1 C1 118.97(17) C17 C18 O4 C21 106.00(19) C9 C8 N2 C13 127.85(18) C22 C27 N1 C9 116.4(2) N1 C9 N3 C20 107.08(19) C15 C14 C13 C18 118.42(19) C15 C14 C13 C18 119.0(2) C2 C3 C11 C10 115.87(19) C20 C3 C11 C10 119.1(2) C3 C4 C11 C10 125.0(2) C5 C4 C12 N2 124.7(2) C5 C4	Atom AtomAngle/°Atom Atom Atom AtomO3C22119.12(17)C17C18C13O1C1118.97(17)C17C18C19O4C21106.00(19)C9C8C7N2C13127.85(18)C22C27C26N1C9116.4(2)N1C9C8N3C20107.08(19)C15C14C13C13N2118.42(19)C15C14C13C13N2122.6(2)C1C2C3C13C18119.0(2)C2C3C4C11C10115.87(19)C22C23C24C11C10125.0(2)C3C4C3C12N2124.7(2)C5C4C3

02	C12	C10	120.30(19)	C23	C24	C25	120.1(2)
N2	C12	C10	114.99(18)	C5	C6	C1	119.0(2)
C27	C22	03	117.2(2)	N3	C20	C21	104.1(2)
C23	C22	03	120.90(19)	F5	C28	C25	112.7(2)
C23	C22	C27	121.7(2)	F6	C28	F5	106.6(3)
C11	C10	C12	123.87(19)	F6	C28	C25	114.5(2)
C7	C10	C11	115.4(2)	F6	C28	F4	107.5(3)
C7	C10	C12	120.5(2)	F4	C28	F5	101.8(3)
01	C7	C10	117.7(2)	F4	C28	C25	112.8(2)
01	C7	C8	120.4(2)	C16	C15	C14	121.1(2)
C8	C7	C10	121.7(2)	C6	C5	C4	120.5(2)
O4	C19	C18	115.5(2)	C16	C17	C18	120.8(2)
N3	C19	O4	117.8(2)	C15	C16	C17	119.6(2)
N3	C19	C18	126.7(2)	F3	C29	F1	105.5(2)
C2	C1	01	122.8(2)	F3	C29	C4	112.5(2)
C2	C1	C6	121.3(2)	F2	C29	F3	106.7(2)
C6	C1	01	115.8(2)	F2	C29	F1	106.1(2)
C26	C25	C24	120.0(2)	F2	C29	C4	112.9(2)
C26	C25	C28	120.3(2)	F1	C29	C4	112.6(2)
C24	C25	C28	119.7(2)	O4	C21	C20	104.16(19)
C13	C18	C19	121.8(2)				

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for X_48.

Atom	x	У	z	U(eq)
H2	6721.5	3938.24	6440.69	24
H8	4440.31	6332.81	8360.3	31
H27	8372.84	5796.96	6518.98	31
Н9	5443.75	7465.83	8024.87	34
H26	9313.5	6935.18	5900.35	32
H14	5425.4	2631.83	4523.67	31
H2A	3566.28	5842.74	6294.56	30
Н3	2123.56	5979.76	5913.45	33
H23	6498.48	7062.17	4622.97	31
H24	7431.46	8199.58	4006.15	33
Н6	3204.31	3584.3	8347.43	37
H20A	8527.9	3946.06	8574.96	39
H20B	8995.45	4228.13	7491.02	39
H15	5752.46	1141.65	3775.07	41

H5	1766.43	3718.61	7959.05	40
H17	7915	1068.5	5681.76	40
H16	6971.53	343.32	4378.8	48
H21A	9642.3	2798.24	7631.01	44
H21B	9057.65	2452.48	8574.67	44

Experimental

Single crystals of $C_{29}H_{19}F_6N_3O_4$ [7d] were []. A suitable crystal was selected and [] on a SuperNova, Dual, Cu at zero, AtlasS2 diffractometer. The crystal was kept at 100.00(10) K during data collection.

Crystal structure determination of [7d]

Crystal Data for C₂₉H₁₉F₆N₃O₄ (M =587.47 g/mol): monoclinic, space group P2₁/c (no. 14), a = 15.9357(8) Å, b = 13.7866(8) Å, c = 11.8725(7) Å, $\beta = 93.908(5)^\circ$, V = 2602.3(3) Å³, Z = 4, T = 100.00(10) K, μ (MoK α) = 0.130 mm⁻¹, *Dcalc* = 1.499 g/cm³, 13946 reflections measured (4.534° $\leq 2\Theta \leq 59.172^\circ$), 6166 unique ($R_{int} = 0.0347$, $R_{sigma} = 0.0566$) which were used in all calculations. The final R_1 was 0.0643 (I > 2 σ (I)) and wR_2 was 0.1664 (all data).

N-(2,4-difluorophenyl)-2-(3-(trifluoromethyl)phenoxy)nicotinamide (Diflufenican)

Table 1 Crystal data and structure refinement for Diflufenican.

Identification code	Diflufenican
Empirical formula	$C_{19}H_{11}F_5N_2O_2$
Formula weight	394.30
Temperature/K	100.00(10)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	12.1293(6)
b/Å	8.5068(4)
c/Å	15.8667(9)
$\alpha/^{\circ}$	90

β/°	92.925(5)
γ/°	90
Volume/Å ³	1635.02(15)
Ζ	4
$\rho_{calc}g/cm^3$	1.602
μ/mm^{-1}	0.144
F(000)	800.0
Crystal size/mm ³	$0.15\times0.14\times0.12$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/ $^{\circ}$	^o 5.142 to 59.042
Index ranges	$\text{-16} \le h \le 14, \text{-10} \le k \le 11, \text{-22} \le l \le 13$
Reflections collected	8760
Independent reflections	$3905 \ [R_{int} = 0.0331, R_{sigma} = 0.0488]$
Data/restraints/parameters	3905/0/253
Goodness-of-fit on F ²	1.032
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0499, wR_2 = 0.1058$
Final R indexes [all data]	$R_1 = 0.0718, wR_2 = 0.1188$
Largest diff. peak/hole / e Å-3	3 0.27/-0.29

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for exp_1053. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	x	У	Z	U(eq)
F(1)	4741.7(8)	8497.6(12)	5961.0(8)	29.9(3)
F(2)	8279.4(10)	9547.8(14)	5028.8(8)	39.1(3)
F(4)	-265.6(10)	6991.0(15)	8900.4(8)	39.0(3)
F(5)	1327.8(10)	7807.8(16)	9339.8(7)	39.1(3)
F(3)	130.8(12)	9429.8(15)	8816.5(8)	47.7(4)
O(2)	3220(1)	5701.7(14)	6862.7(9)	25.3(3)
O(1)	5880.4(10)	3031.9(15)	6071.9(9)	28.7(3)
N(2)	2356.8(12)	3450.4(18)	7287.1(10)	22.8(4)
N(1)	5106.3(12)	5459.5(17)	6083(1)	21.3(3)
C(8)	4136.4(14)	3257(2)	6678.4(11)	20.0(4)
C(17)	961.8(14)	7724(2)	7868.3(11)	18.2(4)
C(12)	3217.5(14)	4089(2)	6950.6(12)	20.7(4)
C(18)	1898.0(14)	6809(2)	7786.6(12)	19.8(4)
C(16)	396.2(14)	8369(2)	7167.2(12)	22.2(4)

C(1)	5944.4(14)	6391(2)	5764.8(11)	19.8(4)
C(9)	4110.0(15)	1647(2)	6802.2(12)	23.2(4)
C(13)	2244.5(14)	6547(2)	6983.2(12)	20.7(4)
C(7)	5120.7(14)	3899(2)	6251.3(12)	20.6(4)
C(2)	5750.3(14)	7997(2)	5726.7(12)	22.0(4)
C(6)	6965.6(15)	5862(2)	5515.8(12)	24.9(4)
C(19)	541.7(16)	7990(2)	8723.7(13)	25.4(4)
C(10)	3216.9(16)	940(2)	7155.0(13)	26.1(4)
C(11)	2361.6(16)	1880(2)	7383.0(12)	24.5(4)
C(3)	6498.9(15)	9082(2)	5480.6(12)	25.0(4)
C(14)	1713.1(15)	7193(2)	6281.1(12)	24.6(4)
C(15)	781.5(15)	8115(2)	6374.9(12)	25.5(4)
C(4)	7506.4(16)	8502(2)	5256.9(13)	26.3(4)
C(5)	7746.7(15)	6933(2)	5259.3(13)	27.4(4)

Table 3 Anisotropic Displacement Parameters (Å2×103) for exp_1053. The Anisotropicdisplacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+...]$.

Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
F(1)	23.3(6)	20.4(6)	47.0(8)	-2.0(5)	10.2(5)	4.2(4)
F(2)	34.6(7)	30.5(7)	53.8(9)	4.5(6)	17.7(6)	-9.2(5)
F(4)	34.3(7)	51.2(8)	33.0(7)	-4.9(6)	16.2(6)	-17.6(6)
F(5)	35.5(7)	60.5(9)	21.1(6)	-2.9(6)	-0.1(5)	-6.0(6)
F(3)	72.8(9)	32.1(7)	39.8(8)	-7.7(6)	18.6(7)	16.3(7)
O(2)	20.7(6)	14.8(6)	41.3(9)	0.7(6)	10.4(6)	2.1(5)
O(1)	23.6(7)	20.9(7)	42.3(9)	-0.6(6)	7.9(6)	5.6(5)
N(2)	20.3(8)	20.9(8)	27.3(9)	1.3(7)	2.2(7)	-1.1(6)
N(1)	17.0(7)	18.7(8)	28.6(9)	-1.2(7)	5.2(7)	2.1(6)
C(8)	19.5(9)	20.7(9)	19.6(9)	-1.6(7)	-1.5(7)	0.8(7)
C(17)	20.6(8)	14.0(8)	20.3(9)	-0.5(7)	4.5(7)	-3.5(7)
C(12)	20.7(9)	17.4(9)	24(1)	-0.1(8)	0.2(8)	-0.3(7)
C(18)	19.8(9)	15.7(8)	23.7(10)	2.9(7)	-0.6(7)	-2.4(7)
C(16)	17.8(9)	18.9(9)	30.0(11)	2.3(8)	3.3(8)	0.8(7)
C(1)	18.8(9)	21.1(9)	19.6(9)	-0.8(8)	1.1(7)	0.0(7)
C(9)	23.2(9)	19.6(9)	26.5(10)	-2.5(8)	-0.7(8)	3.5(7)
C(13)	16.8(8)	15.0(8)	30.7(11)	-0.4(8)	5.7(8)	-0.4(7)
C(7)	19.6(9)	19.5(9)	22.5(10)	-0.7(8)	-1.1(8)	1.5(7)
C(2)	18.8(9)	23.9(9)	23.4(10)	-2.6(8)	2.9(8)	3.1(7)
C(6)	23.6(9)	23.1(9)	28.3(11)	-0.5(8)	5.5(8)	4.0(8)
C(19)	25.1(10)	24(1)	27.5(11)	-1.9(8)	4.4(8)	-2.8(8)

C(10)	31.5(10)	17.3(9)	29.3(11)	2.2(8)	-1.7(9)	-0.6(8)
C(11)	24.6(9)	22.1(9)	26.9(10)	4.3(8)	1.3(8)	-4.5(8)
C(3)	28(1)	21.5(9)	25.6(10)	0.2(8)	1.6(8)	-0.4(8)
C(14)	28.6(10)	25.7(10)	20(1)	0.1(8)	6.0(8)	0.1(8)
C(15)	26.2(10)	26.5(10)	23.7(10)	4.7(8)	-0.5(8)	2.2(8)
C(4)	25.1(10)	27.5(10)	26.8(10)	2.1(9)	7.1(8)	-6.9(8)
C(5)	21.0(9)	29.8(10)	32.1(11)	0.1(9)	9.8(8)	3.2(8)

Table 4 Bond Lengths for exp_1053.

Atom	Atom	Length/Å	Atom Atom	Length/Å
F(1)	C(2)	1.365(2)	C(17) C(18)	1.388(2)
F(2)	C(4)	1.355(2)	C(17) C(16)	1.389(3)
F(4)	C(19)	1.337(2)	C(17) C(19)	1.491(3)
F(5)	C(19)	1.339(2)	C(18) C(13)	1.381(3)
F(3)	C(19)	1.334(2)	C(16) C(15)	1.380(3)
O(2)	C(12)	1.379(2)	C(1) C(2)	1.387(2)
O(2)	C(13)	1.406(2)	C(1) C(6)	1.394(2)
O(1)	C(7)	1.225(2)	C(9) C(10)	1.382(3)
N(2)	C(12)	1.314(2)	C(13) C(14)	1.373(3)
N(2)	C(11)	1.345(2)	C(2) C(3)	1.366(3)
N(1)	C(1)	1.403(2)	C(6) C(5)	1.390(3)
N(1)	C(7)	1.354(2)	C(10) C(11)	1.373(3)
C(8)	C(12)	1.407(2)	C(3) C(4)	1.381(3)
C(8)	C(9)	1.384(2)	C(14) C(15)	1.390(3)
C(8)	C(7)	1.505(2)	C(4) C(5)	1.366(3)

Table 5 Bond Angles for exp_1053.

Atom Atom Atom	Angle/°	Atom Atom Atom	Angle/°
C(12) O(2) C(13)	119.27(13	6) O(1) C(7) C(8)	120.63(16)
C(12) N(2) C(11)	117.24(16	6) N(1) C(7) C(8)	116.23(15)
C(7) N(1) C(1)	128.49(15	5) F(1) C(2) C(1)	116.62(15)
C(12) C(8) C(7)	127.95(16	5) F(1) C(2) C(3)	119.02(16)
C(9) C(8) C(12)	115.45(16	5) C(3) C(2) C(1)	124.36(17)
C(9) C(8) C(7)	116.58(16	6) C(5) C(6) C(1)	120.00(18)
C(18) C(17) C(16)	121.29(17	7) F(4) C(19) F(5)	105.98(16)
C(18) C(17) C(19)	119.27(17	7) F(4) C(19) C(17)	112.50(16)
C(16) C(17) C(19)	119.42(16	5) $F(5) C(19) C(17)$	112.54(16)

O(2) C(12) C(8)	117.62(15) F(3) C(19) F(4)	106.18(16)
N(2) C(12) O(2)	117.27(15) F(3) C(19) F(5)	106.36(16)
N(2) C(12) C(8)	125.11(17) F(3) C(19) C(17)	112.74(16)
C(13) C(18) C(17)	117.74(17) C(11) C(10) C(9)	118.17(18)
C(15) C(16) C(17)	119.42(17) N(2) C(11) C(10)	123.20(17)
C(2) C(1) N(1)	116.58(15) C(2) C(3) C(4)	116.23(18)
C(2) C(1) C(6)	117.19(16) C(13) C(14) C(15)	119.32(17)
C(6) C(1) N(1)	126.18(17) C(16) C(15) C(14)	120.04(18)
C(10) C(9) C(8)	120.81(17) F(2) C(4) C(3)	117.88(17)
C(18) C(13) O(2)	120.40(17) F(2) C(4) C(5)	119.45(17)
C(14) C(13) O(2)	117.25(16) C(5) C(4) C(3)	122.67(17)
C(14) C(13) C(18)	122.15(17) C(4) C(5) C(6)	119.52(17)
O(1) C(7) N(1)	123.15(16)	

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for exp_1053.

Atom	x	У	z	U(eq)
H(1)	4504.72	5943.04	6184.55	26
H(18)	2278.81	6386.09	8257.23	24
H(16)	-236.32	8965.6	7231.25	27
H(9)	4700.45	1033.71	6646.08	28
H(6)	7124.46	4792.3	5521.22	30
H(10)	3196.06	-141.74	7235.69	31
H(11)	1755.83	1406.92	7615.17	29
H(3)	6339.12	10151.16	5464.56	30
H(14)	1973.78	7015.15	5748.28	30
H(15)	417.41	8561.39	5903.5	31
H(5)	8427.87	6584.24	5090.65	33

Crystal structure determination of [Diflufenican]

Crystal Data for C₁₉H₁₁F₅N₂O₂ (M=394.30 g/mol): monoclinic, space group P2₁/c (no. 14), a = 12.1293(6) Å, b = 8.5068(4) Å, c = 15.8667(9) Å, $\beta = 92.925(5)^{\circ}$, V = 1635.02(15) Å³, Z = 4, T = 100.00(10) K, μ (MoK α) = 0.144 mm⁻¹, Dcalc = 1.602 g/cm³, 8760 reflections measured (5.142° $\leq 2\Theta \leq 59.042^{\circ}$), 3905 unique ($R_{int} = 0.0331$, $R_{sigma} = 0.0488$) which were used in all calculations. The final R_1 was 0.0499 (I > 2 σ (I)) and wR_2 was 0.1188 (all data).

