Supporting Information

Nickel-catalyzed C-H Bond Trifluoromethylation of

8-Aminoquinoline Derivatives by Acyl-directed Functionalization

Xiaochong Liu^[a,b], Guijie Mao^[a], Jingyi Qiao^[a,b], Chunzhao Xu^[a,b], Hao Liu^[a,b], Junjie Ma^[a,b], Zhizhong Sun^{*[a,b]} and Wenyi Chu^{*[a,b]}

^aCollege of Chemistry and Materials Science, Heilongjiang University, Harbin, Heilongjiang 150080, P.R. China.
^bKey Laboratory of Chemical Engineering Process & Technology for High-efficiency Conversion, College of Chemistry and Materials Science, Heilongjiang University Harbin, Heilongjiang 150080, P.R. China.
E-mail: wenyichu@hlju.edu.cn

Table of Contents

1. Materials and measurements	S2
2. Preparation of the substrates	S2
3. Synthesis of target compounds	S6
4. Radical scavenging experiment	S17
5. Deacylation experiment	S18
6. NMR spectra for target compounds	S18
7. References	S50

1. Materials and measurements.

All starting materials were purchased from TCI; the reagents were obtained from J&K Chemical Company and used without further purification unless specified. The trifluoromethylation reactions were monitored by thin layer chromatography (TLC), and column chromatography were carried out on silica gel (300 ~ 400 mesh). ¹H NMR, ¹³C NMR and ¹⁹F NMR spectra were recorded on a Bruker UltrashieldTM 400 spectrometer operating at 400 MHz and 100 MHz in CDCl₃ or DMSO. ¹H NMR and ¹³C NMR were reported in ppm with tetramethylsilane (TMS) as internal standard. ¹⁹F NMR was reported in ppm with trifluoroacetic acid (TFA) as internal standard. The following abbreviations were used to describe peak splitting patterns when appropriate: s = singlet, d = doublet, t = triplet, q = quartet, m = multiple. Coupling constants (*J*) are reported in Hertz (Hz). Melting points were measured by Shang Guang WRR melting point apparatus. Infrared spectroscopy (IR) was measured by SP-100 Fourier transform infrared spectroscopy. TLC was performed using commercially prepared 100-400 mesh silica gel plates (GF254), and visualization was effected at 254 nm.

2. Preparation of the substrates

Preparation of N-(quinolin-8-yl)benzamides (1a-l, 1q-t and 1w)

The substituted quinolin-8-amine (10 mmol), benzoic acids (12.5 mmol) and Et₃N (20 mmol) were dissolved in DCM (40 mL) followed by dropwise addition of POCl₃ (1.88 mL) at 0°C. The resulting mixture was stirred at 0°C for 0.5 h and warmed to room temperature for 2 h. Then the reaction mixture was cooled to 0°C. Ice water was added slowly to quench the reaction. The organic layer was collected, and the aqueous phase was extracted with DCM. The combined organic phase was washed by saturated NaHCO₃ and dried over Na₂SO₄. The solvent was evaporated under reduced

pressure, and the crude product was purified by silica gel column chromatography to give a desired product.

Preparation of N-(quinolin-8-yl)aliphaticamide (1m-1p, 1v).

The quinolin-8-amine (10 mmol), Et₃N (20 mmol) were dissolved in DCM (40 mL) followed by dropwise acyl chloride (11.5 mmol) at 0°C. The resulting mixture was stirred at 0°C for 0.5 h and warmed to room temperature for 2 h. Then the reaction mixture was cooled to 0°C. Ice water was added slowly to quench the reaction. The organic layer was collected, and the aqueous phase was extracted with DCM. The combined organic phase was washed by saturated NaHCO₃ and dried over Na₂SO₄. The solvent was evaporated under reduced pressure, and the crude material was purified by silica gel column chromatography to give a desired product.

Structures and data of some substrates

N-(quinolin-8-yl)benzamide (1a)

¹H NMR (400 MHz, DMSO- d_6) δ 10.59 (s, 1H), 9.04 (dd, J = 4.2, 1.4 Hz, 1H), 8.72 (d, J = 8.4 Hz, 1H), 8.46 (dd, J = 8.5, 1.4 Hz, 1H), 8.05 (d, J = 6.9 Hz, 2H), 7.80 – 7.56 (m, 5H), 7.48 (d, J = 8.4 Hz, 1H).

2-fluoro-N-(quinolin-8-yl)benzamide (1c)

¹H NMR (400 MHz, DMSO- d_6) δ 11.02 (d, J = 11.2 Hz, 1H), 8.97 (dd, J = 4.2, 1.6 Hz, 1H), 8.87 – 8.83 (m, 1H), 8.46 (dd, J = 8.3, 1.5 Hz, 1H), 8.11 (td, J = 7.9, 1.8 Hz, 1H), 7.78 – 7.74 (m, 1H), 7.74 – 7.70 (m, 1H), 7.69 (dd, J = 5.1, 3.1 Hz, 1H), 7.66 (d, J = 8.1 Hz, 1H), 7.53 – 7.43 (m, 2H).

2-chloro-N-(quinolin-8-yl)benzamide (1d)

¹H NMR (400 MHz, DMSO- d_6) δ 10.45 (s, 1H), 8.91 (dd, J = 4.2, 1.6 Hz, 1H), 8.75 (d, J = 7.4 Hz, 1H), 8.46 (dd, J = 8.3, 1.5 Hz, 1H), 7.83 – 7.76 (m, 2H), 7.66 (dt, J = 12.3, 7.8 Hz, 3H), 7.59 (td, J = 7.6, 1.7 Hz, 1H), 7.53 (td, J = 7.4, 1.2 Hz, 1H).

2-bromo-N-(quinolin-8-yl)benzamide (1e)

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.32 (s, 1H), 8.94 – 8.88 (m, 1H), 8.74 (d, *J* = 7.2 Hz, 1H), 8.49 – 8.43 (m, 1H), 7.77 (td, *J* = 12.2, 10.0, 5.5 Hz, 3H), 7.71 – 7.63 (m, 2H), 7.57 (t, *J* = 7.3 Hz, 1H), 7.53 – 7.46 (m, 1H).

3-chloro-N-(quinolin-8-yl)benzamide (1h)

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.66 (s, 1H), 8.99 (d, *J* = 3.8 Hz, 1H), 8.68 (d, *J* = 7.5 Hz, 1H), 8.47 (d, *J* = 8.2 Hz, 1H), 8.09 – 7.97 (m, 2H), 7.90 (dd, *J* = 4.0, 2.3 Hz, 1H), 7.76 (d, *J* = 4.5 Hz, 1H), 7.73 (s, 1H), 7.68 (dt, *J* = 7.9, 3.9 Hz, 3H).

4-methyl-N-(quinolin-8-yl)benzamide (1j)

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.63 (s, 1H), 8.99 (d, *J* = 4.0 Hz, 1H), 8.76 (d, *J* = 7.6 Hz, 1H), 8.46 (d, *J* = 8.3 Hz, 1H), 7.95 (d, *J* = 8.0 Hz, 2H), 7.74 (d, *J* = 8.2 Hz, 1H), 7.71 – 7.63 (m, 2H), 7.43 (d, *J* = 7.8 Hz, 2H), 2.42 (s, 3H).

N-(quinolin-8-yl)propionamide (1m)

¹H NMR (400 MHz, Chloroform-*d*) δ 9.81 (s, 1H), 8.81 – 8.74 (m, 2H), 8.11 (dd, *J* = 8.3, 1.4 Hz, 1H), 7.51 (t, *J* = 7.9 Hz, 1H), 7.47 – 7.43 (m, 1H), 7.40 (dd, *J* = 8.3, 4.2 Hz, 1H), 2.58 (q, *J* = 7.6 Hz, 2H), 1.33 (t, *J* = 7.6 Hz, 3H).

N-(6-fluoroquinolin-8-yl)benzamide (1r)

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.73 (s, 1H), 8.95 (dd, *J* = 4.2, 1.5 Hz, 1H), 8.59 (dd, *J* = 11.2, 2.8 Hz, 1H), 8.45 (dd, *J* = 8.4, 1.6 Hz, 1H), 8.05 (d, *J* = 6.9 Hz, 2H), 7.73 (dd, *J* = 8.3, 4.3 Hz, 1H), 7.69 (d, *J* = 7.1 Hz, 1H), 7.66 (s, 1H), 7.65 (s, 1H), 7.56 (dd, *J* = 9.3, 2.8 Hz, 1H).

N-(6-chloroquinolin-8-yl)benzamide (1s)

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.67 (s, 1H), 8.99 (dd, *J* = 4.2, 1.6 Hz, 1H), 8.74 (d, *J* = 2.3 Hz, 1H), 8.44 (dd, *J* = 8.3, 1.5 Hz, 1H), 8.05 (s, 1H), 8.03 (d, *J* = 1.5 Hz, 1H), 7.89 (d, *J* = 2.3 Hz, 1H), 7.74 (dd, *J* = 8.3, 4.2 Hz, 1H), 7.69 (d, *J* = 7.1 Hz, 1H), 7.66 (s, 1H), 7.64 (s, 1H).

1-(3,4-dihydroquinolin-1(2H)-yl)ethan-1-one (1v)

¹H NMR (400 MHz, Chloroform-*d*) δ 7.16 (m, 4H, arom), 3.81 (t, *J* = 6.0 Hz, 2H), 2.73 (t, *J* = 6.0 Hz, 2H), 2.24 (s, 3H), 1.97 (q, *J* = 6.0 Hz, 2H).

N-(7-chloroquinolin-8-yl)benzamide (1w)¹

m.p: 133.3-133.5 °C

3. Synthesis of target compounds

Synthetic method of N-(7-(trifluoromethyl)quinolin-8-yl)acylamides (2a-u)

A 15 mL screw-cap vial charged with N-(quinolin-8-yl)acylamide (1 mmol), TMSCF₃ (3 mmol), KF (3 mmol), PIDA (3 mmol), Ni(TFA)₂ (0.1 mmol), DPPBac (0.3 mmol) and 1,2-DCE (5 mL), the mixture was stirred at room temperature for 18 h. After completion of the reaction, the solution was extracted with dichloromethane (3×20 mL). Organic layers were combined and dried over Na₂SO₄, filtered and concentrated under reduced pressure, and the crude material was purified by silica gel column chromatography to give a desired product.

Structures and data of target compounds

N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (2a)

white solid (216.6 mg, 85%); m.p: 133.3-133.5 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.88 (s, 1H), 9.12 (d, *J* = 3.9 Hz, 1H), 8.84 (d, *J* = 8.2 Hz, 1H), 8.56 (d, *J* = 8.6 Hz, 1H), 8.15 (d, *J* = 8.1 Hz, 1H), 8.06 (d, *J* = 7.6 Hz, 2H), 7.90 (dd, *J* = 8.7, 4.1 Hz, 1H), 7.74 – 7.68 (m, 1H), 7.65 (t, *J* = 7.2 Hz, 2H). (Figure S1)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.4, 150.4, 138.5, 138.4, 134.4, 133.2, 133.1, 133.0, 131.6, 129.6, 127.6, 127.3, 124.6, 124.0, 114.6. (Figure S2)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.58. (Figure S3)

HRMS: (EI) calcd for C₁₇H₁₁F₃N₂O [M+H]⁺: 317.0902. Found: 317.0909. Anal. calcd for C₁₇H₁₁F₃N₂O: C, 64.56; H, 3.51; F, 18.02; N, 8.86; Found: C, 64.59; H, 3.52; F, 18.04; N, 8.87.

FT-IR (KBr disc): 3374, 1680, 1534, 1330, 1092 cm⁻¹.

2-methyl-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (2b)

white solid (281.5 mg, 89%); m.p: 122.7-124.5 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.50 (s, 1H), 9.11 (d, *J* = 4.1 Hz, 1H), 8.90 (d, *J* = 8.1 Hz, 1H), 8.61 (d, *J* = 10.0 Hz, 1H), 8.22 (d, *J* = 8.2 Hz, 1H), 7.93 (dd, *J* = 8.7, 4.2 Hz, 1H), 7.77 (d, *J* = 7.5 Hz, 1H), 7.55 (t, *J* = 7.5 Hz, 1H), 7.49 – 7.42 (m, 2H), 2.56 (s, 3H). (Figure S4)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.0, 150.4, 138.5 (d, *J* = 40.8 Hz), 136.6, 136.1,
133.1, 133.1, 131.8, 128.8 (q, *J* = 284.4 Hz), 127.5, 127.4, 127.3, 126.1, 124.0, 118.6,
114.5, 20.2. (Figure S5)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.53. (Figure S6)

HRMS: (EI) calcd for C₁₈H₁₃F₃N₂O [M+H]⁺: 331.1059. Found: 331.1048. Anal. calcd for C₁₈H₁₃F₃N₂O: C, 65.45; H, 3.97; F, 17.26; N, 8.48; Found: C, 65.47; H, 3.98; F, 17.25; N, 8.45.

FT-IR (KBr disc): 3326, 1677, 1537, 1326, 1085 cm⁻¹.

2-fluoro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (2c)

white solid (260.7 mg, 78%); m.p: 134.9-137.2 °C.

¹H NMR (400 MHz, DMSO- d_6) δ 11.21 (d, J = 11.7 Hz, 1H), 9.07 (d, J = 3.5 Hz, 1H), 8.88 (d, J = 8.2 Hz, 1H), 8.53 (d, J = 8.4 Hz, 1H), 8.11 (dd, J = 11.6, 6.4 Hz, 2H), 7.87 (dd, J = 8.6, 4.1 Hz, 1H), 7.74 (q, J = 6.1 Hz, 1H), 7.53 – 7.42 (m, 2H). (Figure S7)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.7, 159.1, 150.4, 138.3 (d, J = 45.1 Hz), 135.2 (d, J = 9.7 Hz), 133.0, 131.9, 127.3, 127.3, 125.8, 124.6, 122.4 (q, J = 242.1 Hz), 121.5, 117.1 (d, J = 24.0 Hz), 114.8. (Figure S8)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.46, -36.26. (Figure S9)

HRMS: (EI) calcd for C₁₇H₁₀F₄N₂O [M+H]⁺: 335.0808. Found: 335.0802. Anal. calcd for C₁₇H₁₀F₄N₂O: C, 61.08; H, 3.02; F, 22.73; N, 8.38; Found: C, 61.09; H, 3.04; F, 22.71; N, 8.36.

FT-IR (KBr disc): 3355, 1678, 1543, 1330, 1080 cm⁻¹.

2-chloro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (2d)

white solid (280.6 mg, 80%); m.p: 81.3-83.9 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.74 (s, 1H), 9.07 – 9.04 (m, 1H), 8.85 (d, *J* = 8.2 Hz, 1H), 8.55 (d, *J* = 8.7 Hz, 1H), 8.16 (d, *J* = 8.3 Hz, 1H), 7.90 – 7.81 (m, 2H), 7.67 – 7.58 (m, 2H), 7.54 (td, *J* = 7.4, 1.5 Hz, 1H). (Figure S10)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.3, 150.4, 138.4, 138.3, 135.7, 133.1, 132.7, 130.7, 130.3, 129.4, 128.8 (q, *J* = 282.0 Hz) 127.3, 127.2, 124.0, 119.3, 119.0, 115.0. (Figure S11)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.44. (Figure S12)

HRMS: (EI) calcd for C₁₇H₁₀ClF₃N₂O [M+H]⁺: 351.0513. Found: 351.0502. Anal. calcd for C₁₇H₁₀ClF₃N₂O: C, 58.22; H, 2.87; Cl, 10.11; F, 16.25; N, 7.99; Found: C, 58.25; H, 2.86; Cl, 10.14; F, 16.27; N, 7.96.

FT-IR (KBr disc): 3314, 1680, 1537, 1332, 1093 cm⁻¹.

2-bromo-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (2e)

white solid (304.29 mg, 77%); m.p: 81.3-83.9 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.61 (s, 1H), 9.05 (d, *J* = 3.1 Hz, 1H), 8.84 (d, *J* = 8.1 Hz, 1H), 8.55 (d, *J* = 8.3 Hz, 1H), 8.17 (d, *J* = 8.2 Hz, 1H), 7.87 (dd, *J* = 8.6, 4.1 Hz, 1H), 7.78 (t, *J* = 8.0 Hz, 2H), 7.58 (t, *J* = 7.3 Hz, 1H), 7.52 (dd, *J* = 10.8, 4.2 Hz, 1H). (Figure S13)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 166.4, 150.4, 138.4, 138.3, 138.2, 133.7, 133.0, 132.6, 129.8, 128.5, 127.3, 127.2, 124.6, 124.0, 123.9 (q, *J* = 307.0 Hz), 119.2, 115.0. (Figure S14)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.44. (Figure S15)

HRMS: (EI) calcd for C₁₇H₁₀BrF₃N₂O [M+H]⁺: 395.0008. Found: 395.0014. Anal. calcd for C₁₇H₁₀BrF₃N₂O: C, 51.67; H, 2.55; Br, 20.22; F, 14.42; N, 7.09; Found: C, 51.68; H, 2.57; Br, 20.24; F, 14.41; N, 7.06.

FT-IR (KBr disc): 3325, 1683, 1529, 1331, 1108 cm⁻¹.

2-nitro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (2f)

yellow solid (252.90 mg, 70%); m.p: 163.5-165.2 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.10 (s, 1H), 9.08 (d, *J* = 4.0 Hz, 1H), 8.86 (d, *J* = 8.2 Hz, 1H), 8.59 (d, *J* = 8.3 Hz, 1H), 8.24 (dd, *J* = 17.7, 8.2 Hz, 2H), 7.99 – 7.81 (m, 4H). (Figure S16)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.7, 150.3, 146.7, 139.0, 138.7, 134.8, 132.9, 132.9, 132.8, 131.6 (q, *J* = 289.9 Hz), 129.4, 127.2, 124.8, 124.5, 124.1, 123.3, 115.9.
(Figure S17)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.47. (Figure S18)

HRMS: (EI) calcd for C₁₇H₁₀F₃N₃O₃ [M+H]⁺: 362.0753. Found: 362.0745. Anal. calcd for C₁₇H₁₀F₃N₃O₃: C, 56.52; H, 2.79; F, 15.78; N, 11.63; Found: C₁₇H₁₀F₃N₃O₃: C, 56.53; H, 2.76; F, 15.77; N, 11.65.

FT-IR (KBr disc): 3479, 3324, 2963, 1682, 1528, 1262, 1107 cm⁻¹.

3-methyl-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (2g)

white solid (287.37 mg, 87%); m.p: 115.7-118.6 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.84 (s, 1H), 9.13 (s, 1H), 8.84 (d, *J* = 7.1 Hz, 1H), 8.56 (d, *J* = 6.6 Hz, 1H), 8.14 (t, *J* = 6.9 Hz, 1H), 7.88 (d, *J* = 21.7 Hz, 3H), 7.53 (d, *J*

= 5.7 Hz, 2H), 2.46 (s, 3H). (Figure S19)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.5, 150.4, 139.1, 138.6, 138.4, 134.4, 133.6, 133.1, 129.5, 128.2, 127.4, 127.3, 124.7, 124.6, 124.0, 118.9 (q, *J* = 294.8 Hz), 114.6, 21.4. (Figure S20)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.53. (Figure S21)

HRMS: (EI) calcd for C₁₈H₁₃F₃N₂O [M+H]⁺: 331.1059. Found: 331.1052. Anal. calcd for C₁₈H₁₃F₃N₂O: C, 65.45; H, 3.97; F, 17.26; N, 8.48; Found: C, 65.47; H, 3.95; F, 17.24; N, 8.46.

FT-IR (KBr disc): 3414, 3358, 1675, 1531, 1391, 1315, 1122 cm⁻¹.

3-chloro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (2h)

white solid (291.10 mg, 83%); m.p: 101.6-103.7 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.81 (s, 1H), 9.11 – 9.07 (m, 1H), 8.74 (d, *J* = 8.2 Hz, 1H), 8.51 (d, *J* = 8.6 Hz, 1H), 8.08 (d, *J* = 8.3 Hz, 1H), 8.02 – 7.98 (m, 1H), 7.96 (d, *J* = 7.8 Hz, 1H), 7.86 (dd, *J* = 8.7, 4.2 Hz, 1H), 7.77 – 7.72 (m, 1H), 7.65 (t, *J* = 7.9 Hz, 1H). (Figure S22)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 168.8, 155.1, 143.2, 143.0, 141.1, 139.0, 137.7, 137.4, 136.1, 132.4, 131.9, 130.9, 129.2, 128.7, 126.2 (q, *J* = 373.8 Hz) 123.9, 119.7. (Figure S23)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 23.17. (Figure S24)

HRMS: (EI) calcd for C₁₇H₁₀ClF₃N₂O [M+H]⁺: 351.0513. Found: 351.0502. Anal. calcd for C₁₇H₁₀ClF₃N₂O: C, 58.22; H, 2.87; Cl, 10.11; F, 16.25; N, 7.99; Found: C, 58.25; H, 2.84; Cl, 10.14; F, 16.27; N, 7.98.

FT-IR (KBr disc): 3350, 1682, 1534, 1319, 1144, 1086 cm⁻¹.

3-nitro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (2i)

yellow solid (263.73 mg, 73%); m.p: 181.8-182.5 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.11 (s, 1H), 9.20 (d, *J* = 3.5 Hz, 1H), 8.88 – 8.83 (m, 2H), 8.63 (d, *J* = 8.6 Hz, 1H), 8.59 – 8.52 (m, 2H), 8.23 (d, *J* = 8.3 Hz, 1H), 8.01 – 7.93 (m, 2H). (Figure S25)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 163.8, 150.6, 148.5, 138.8, 138.4, 136.0, 134.0, 133.1, 133.1, 132.2, 131.2, 130.5, 128.1 (q, *J* = 264.6 Hz), 127.3, 124.6, 122.9, 115.8. (Figure S26)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.46. (Figure S27)

HRMS: (EI) calcd for C₁₇H₁₀F₃N₃O₃ [M+H]⁺: 362.0753. Found: 362.0759. Anal. calcd for C₁₇H₁₀F₃N₃O₃: C, 56.52; H, 2.79; F, 15.78; N, 11.63; Found: C, 56.55; H, 2.77; F, 15.79; N, 11.65.

FT-IR (KBr disc): 3331, 2962, 2927, 1684, 1529, 1263, 1112 cm⁻¹.

4-methyl-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (2j)

white solid (284.07 mg, 86%); m.p: 128.1-129.4 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.84 (s, 1H), 9.13 (s, 1H), 8.83 (d, *J* = 8.2 Hz, 1H), 8.55 (d, *J* = 8.4 Hz, 1H), 8.14 (d, *J* = 8.2 Hz, 1H), 7.95 (d, *J* = 7.7 Hz, 2H), 7.89 (dd, *J* = 8.6, 4.2 Hz, 1H), 7.44 (d, *J* = 7.8 Hz, 2H), 2.43 (s, 3H). (Figure S28)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.2, 150.4, 143.3, 138.5 (d, *J* = 22.4 Hz), 133.1, 131.6, 130.1, 128.6 (q, *J* = 283.3 Hz), 127.7, 127.3, 124.6, 124.0, 118.7, 114.4, 21.5. (Figure S29)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.54. (Figure S30)

HRMS: (EI) calcd for C₁₈H₁₃F₃N₂O [M+H]⁺: 331.1059. Found: 331.1065. Anal. calcd

for C₁₈H₁₃F₃N₂O: C, 65.45; H, 3.97; F, 17.26; N, 8.48; Found: C, 65.48; H, 3.94; F, 17.29; N, 8.46.

FT-IR (KBr disc): 3363, 1672, 1545, 1391, 1316, 1107 cm⁻¹.

4-nitro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (2k)

yellow solid (274.57 mg, 76%); m.p: 211.6-213.1 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.01 (s, 1H), 9.14 (d, *J* = 4.0 Hz, 1H), 8.83 (d, *J* = 8.2 Hz, 1H), 8.58 (d, *J* = 8.8 Hz, 1H), 8.45 (d, *J* = 8.6 Hz, 2H), 8.29 (d, *J* = 8.6 Hz, 2H), 8.19 (d, *J* = 8.2 Hz, 1H), 7.91 (dd, *J* = 8.7, 4.1 Hz, 1H). (Figure S31)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 164.2, 150.5, 150.1, 140.0, 138.7, 138.3, 133.1, 130.6, 129.5, 127.3, 127.2, 124.7, 124.6, 123.3 (q, *J* = 254.5 Hz), 115.5. (Figure S32) ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.46. (Figure S33)

HRMS: (EI) calcd for C₁₇H₁₀F₃N₃O₃ [M+H]⁺: 362.0753. Found: 362.0746. Anal. calcd for C₁₇H₁₀F₃N₃O₃: C, 56.52; H, 2.79; F, 15.78; N, 11.63; Found: C, 56.55; H, 2.81; F, 15.75; N, 11.64.

FT-IR (KBr disc): 3301, 1681, 1532, 1311, 1124 cm⁻¹.

N-(7-(trifluoromethyl)quinolin-8-yl)-2-naphthamide (2l)

white solid (285.75 mg, 78%); m.p: 253.3-255.4 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 11.04 (s, 1H), 9.17 (d, *J* = 3.6 Hz, 1H), 8.90 (d, *J* = 8.2 Hz, 1H), 8.72 (s, 1H), 8.59 (d, *J* = 8.3 Hz, 1H), 8.24 - 8.15 (m, 3H), 8.12 - 8.05 (m, 2H), 7.92 (dd, *J* = 8.6, 4.2 Hz, 1H), 7.74 - 7.65 (m, 2H). (Figure S34)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.2, 165.6, 150.5, 138.7, 138.5, 135.1, 133.2, 133.2, 132.7, 131.8, 129.7, 129.3, 128.8, 128.5, 128.2, 127.6, 124.6, 124.1, 124.0,

123.0 (q, *J* = 291.2 Hz), 114.8. (Figure S35)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.56. (Figure S36)

HRMS: (EI) calcd for C₂₁H₁₃F₃N₂O [M+H]⁺: 367.1059. Found: 367.1068. Anal. calcd for C₂₁H₁₃F₃N₂O: C, 68.85; H, 3.58; F, 15.56; N, 7.65; Found: C, 68.88; H, 3.55; F, 15.54; N, 7.62.

FT-IR (KBr disc): 3358, 1644, 1502, 1315, 1084 cm⁻¹.

N-(7-(trifluoromethyl)quinolin-8-yl)propionamide (2m)

white solid (233.37 mg, 87%); m.p: 109.7-112.5 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.33 (s, 1H), 9.08 (dd, *J* = 4.1, 1.2 Hz, 1H), 8.75 (d, *J* = 8.3 Hz, 1H), 8.54 – 8.49 (m, 1H), 8.08 (d, *J* = 8.3 Hz, 1H), 7.85 (dd, *J* = 8.7, 4.2 Hz, 1H), 2.67 (q, *J* = 7.5 Hz, 2H), 1.16 (t, *J* = 7.5 Hz, 3H). (Figure S37)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 173.6, 150.0, 139.2, 138.2, 132.9, 127.3, 124.3,

124.0, 122.7 (q, J = 308.9 Hz), 117.8, 114.5, 30.4, 9.9. (Figure S38)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.68. (Figure S39)

HRMS: (EI) calcd for C₁₃H₁₁F₃N₂O [M+H]⁺: 269.0902. Found: 269.0891. Anal. calcd for C₁₃H₁₁F₃N₂O: C, 58.21; H, 4.13; F, 21.25; N, 10.44; Found: C, 58.24; H, 4.15; F, 21.22; N, 10.47.

FT-IR (KBr disc): 3343, 2994, 1709, 1522, 1393, 1318, 1112 cm⁻¹.

N-(7-(trifluoromethyl)quinolin-8-yl)pivalamide (2n)

white solid (260.74 mg, 88%); m.p: 89.7-91.4 °C.

¹H NMR (400 MHz, DMSO- d_6) δ 10.38 (s, 1H), 9.09 (d, J = 4.0 Hz, 1H), 8.72 (d, J = 8.2 Hz, 1H), 8.53 (d, J = 8.6 Hz, 1H), 8.08 (d, J = 8.2 Hz, 1H), 7.87 (dd, J = 8.6, 4.2 Hz, 1H), 1.36 (s, 9H). (Figure S40)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 177.1, 150.3, 138.5, 138.1, 133.1, 127.3, 127.3,

124.5, 123.9, 121.0 (q, J = 339.2 Hz), 113.7, 40.5, 27.6. (Figure S41)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.55. (Figure S42)

HRMS: (EI) calcd for C₁₅H₁₅F₃N₂O [M+H]⁺: 297.1215. Found: 297.1204. Anal. calcd for C₁₅H₁₅F₃N₂O: C, 60.81; H, 5.10; F, 19.24; N, 9.45; Found: C, 60.84; H, 5.13; F, 19.27; N, 9.42.

FT-IR (KBr disc): 3370, 3346, 1673, 1525, 1318, 1098 cm⁻¹.

N-(7-(trifluoromethyl)quinolin-8-yl)acetamide (20)

white solid (218.62 mg, 86%); m.p: 73.5-74.3 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.40 (s, 1H), 9.08 (d, *J* = 3.4 Hz, 1H), 8.73 (d, *J* = 8.2 Hz, 1H), 8.51 (d, *J* = 8.0 Hz, 1H), 8.06 (d, *J* = 8.2 Hz, 1H), 7.85 (dd, *J* = 8.6, 4.0 Hz, 1H), 2.35 (s, 3H). (Figure S43)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.1, 150.0, 139.3, 138.2, 132.8, 127.2, 124.3 (q,

J = 196.7 Hz), 124.3, 124.0, 117.9, 114.6, 25.1. (Figure S44)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 18.51. (Figure S45)

HRMS: (EI) calcd for C₁₂H₉F₃N₂O [M+H]⁺: 255.0746. Found: 255.0752. Anal. calcd for C₁₂H₉F₃N₂O: C, 56.70; H, 3.57; F, 22.42; N, 11.02; Found: C, 56.73; H, 3.59; F, 22.41; N, 11.05.

FT-IR (KBr disc): 3358, 3092, 1725, 1523, 1374, 1317, 1102 cm⁻¹.

N-(7-(trifluoromethyl)quinolin-8-yl)trifluoroacetamide (2p)

white solid (258.87 mg, 84%); m.p: 91.5-93.3 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ11.16 (s, 1H), 9.15 (d, *J* = 3.4 Hz, 1H), 8.58 (d, *J* = 8.2 Hz, 1H), 8.52 (d, *J* = 8.0 Hz, 1H), 8.18 (d, *J* = 8.0 Hz, 1H), 7.91 (dd, *J* = 8.5, 4.0 Hz, 1H). (Figure S46)

¹³C NMR (100 MHz, DMSO-*d*₆) δ155.1 (d, J = 37.3 Hz), 151.2, 139.0, 136.1, 133.1,

126.9, 126.8, 124.2 (q, *J* = 178.6 Hz), 124.1, 121.3, 121.2 (q, *J* = 279.7 Hz), 114.8. (Figure S47)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 14.53, -2.03. (Figure S48)

HRMS: (EI) calcd for C₁₂H₆F₆N₂O [M+H]⁺: 309.0463. Found: 309.0454. Anal. calcd for C₁₂H₆F₆N₂O: C, 46.77; H, 1.96; F, 36.99; N, 9.09; Found: C, 46.75; H, 1.99; F, 36.97; N, 9.06.

FT-IR (KBr disc): 3324, 3085, 1694, 1502, 1374, 1301, 1112 cm⁻¹.

N-(6-methyl-7-(trifluoromethyl)quinolin-8-yl)benzamide (2q)

white solid (214.70 mg, 65%); m.p: 131.5-133.3 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.80 (s, 1H), 9.00 (d, *J* = 3.8 Hz, 1H), 8.68 (s, 1H), 8.55 (d, *J* = 8.8 Hz, 1H), 8.04 (d, *J* = 7.2 Hz, 2H), 7.80 (dd, *J* = 8.8, 4.2 Hz, 1H), 7.74 - 7.61 (m, 3H), 2.68 (q, *J* = 3.8 Hz, 3H). (Figure S49)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 170.0, 154.0, 143.5, 142.1 (d, *J* = 30.6 Hz), 139.1, 138.0, 138.0, 137.7, 134.3, 132.3, 129.9, 129.4, 126.6 (q, *J* = 363.7 Hz), 120.9, 27.4 (d, *J* = 4.4 Hz). (Figure S50)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 30.96. (Figure S51)

HRMS: (EI) calcd for C₁₈H₁₃F₃N₂O [M+H]⁺: 331.1059. Found: 331.1067. Anal. calcd for C₁₈H₁₃F₃N₂O: C, 65.45; H, 3.97; F, 17.26; N, 8.48; Found: C, 65.48; H, 3.99; F, 17.23; N, 8.45.

FT-IR (KBr disc): 3338, 1672, 1529, 1283, 1140 cm⁻¹.

N-(6-fluoro-7-(trifluoromethyl)quinolin-8-yl)benzamide (2r)

white solid (191.58 mg, 58%); m.p: 136.7-138.9 °C

¹H NMR (400 MHz, DMSO- d_6) δ 10.95 (s, 1H), 9.06 (d, J = 4.1 Hz, 1H), 8.63 (d, J =

14.8 Hz, 1H), 8.59 (d, *J* = 9.2 Hz, 1H), 8.05 (d, *J* = 7.4 Hz, 2H), 7.91 (dd, *J* = 8.8, 4.2 Hz, 1H), 7.74 – 7.70 (m, 1H), 7.65 (t, *J* = 7.4 Hz, 2H). (Figure S52)

¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.6, 149.5, 149.5, 148.7, 140.7, 140.5, 135.6, 135.1, 133.8, 133.4, 133.3, 129.6, 128.8 (q, *J* = 256.7 Hz), 127.8, 125.6,105.9 (d, *J* = 33.6 Hz). (Figure S53)

¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 23.83 (d, *J* = 31.2 Hz), -29.88 (q, *J* = 31.2 Hz). (Figure S54)

HRMS: (EI) calcd for C₁₇H₁₀F₄N₂O [M+H]⁺: 335.0808. Found: 335.0899. Anal. calcd for C₁₇H₁₀F₄N₂O: C, 61.08; H, 3.02; F, 22.73; N, 8.38; Found: C, 61.09; H, 3.05; F, 22.74; N, 8.36.

FT-IR (KBr disc): 3326, 1689, 1525, 1293, 1144, 1114, 1024 cm⁻¹.

N-(6-chloro-7-(trifluoromethyl)quinolin-8-yl)benzamide (2s)

white solid (175.36 mg, 50%); m.p: 112.7-115.3 °C

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.86 (s, 1H), 9.07 (dd, J = 4.1, 1.2 Hz, 1H), 8.83 (s, 1H), 8.63 (dt, J = 8.9, 1.6 Hz, 1H), 8.04 (s, 1H), 8.02 (d, J = 1.5 Hz, 1H), 7.89 (dd, J = 8.9, 4.2 Hz, 1H), 7.73 – 7.69 (m, 1H), 7.67 (s, 1H), 7.65 (s, 1H). (Figure S55) ¹³C NMR (100 MHz, DMSO-*d*₆) δ 165.5, 150.3, 138.9, 136.9, 133.9, 133.5, 133.3, 129.6, 128.7 (q, J = 310.0 Hz), 127.7, 125.9, 125.3, 117.7, 115.4. (Figure S56) ¹⁹F NMR (376 MHz, DMSO-*d*₆) δ 25.00. (Figure S57)

HRMS: (EI) calcd for C₁₇H₁₀ClF₃N₂O [M+H]⁺: 351.0513. Found: 351.0503. Anal. calcd for C₁₇H₁₀ClF₃N₂O: C, 58.22; H, 2.87; Cl, 10.11; F, 16.25; N, 7.99; Found: C, 58.24; H, 2.89; Cl, 10.14; F, 16.27; N, 7.96.

FT-IR (KBr disc): 3324, 1685, 1530, 1315, 1035 cm⁻¹.

N-(6-bromo-7-(trifluoromethyl)quinolin-8-yl)benzamide (2t)

white solid (169.92 mg, 50%); m.p: 123.7-124.9 °C ¹H NMR (400 MHz, DMSO- d_6) δ 10.89 (s, 1H), 9.13 – 9.11 (m, 1H), 9.10 (s, 1H), 8.69 – 8.64 (m, 1H), 8.07 – 8.04 (m, 2H), 7.90 (dd, J = 8.9, 4.2 Hz, 1H), 7.72 (t, J =7.3 Hz, 1H), 7.66 (d, J = 14.7 Hz, 2H). (Figure S58) ¹³C NMR (100 MHz, DMSO- d_6) δ 165.6, 150.7, 150.4, 138.7, 137.3, 134.0, 133.6, 136.5 133.3, 129.7, 127.8, 126.4, 125.3, 123.5, 121.8, 121.2, 119.7. (Figure S59) ¹⁹F NMR (376 MHz, DMSO- d_6) δ 26.23. (Figure S60) HRMS: (EI) calcd for C₁₇H₁₀BrF₃N₂O [M+H]⁺: 395.0008. Found: 395.0014. Anal. calcd for C₁₇H₁₀BrF₃N₂O: C, 51.67; H, 2.55; Br, 20.22; F, 14.42; N, 7.09; Found: C, 51.65; H, 2.57; Br, 20.19; F, 14.44; N, 7.06. FT-IR (KBr disc): 3323, 1687, 1535, 1321, 1117 cm⁻¹.

4. Radical scavenging experiment

Synthesis of N-(7-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)quinolin-8-yl)benzamide (3a).

A 15 mL screw-cap vial charged with N-(quinolin-8-yl)benzamide (248.3 mg, 1 mmol), TMSCF₃ (426.59mg, 3 mmol), KF (174.29 mg, 3 mmol), PIDA (966.30 mg, 3 mmol), Ni(TFA)₂ (25.27 mg, 0.1 mmol), DPPBac (91.85 mg, 0.3 mmol), 2,2,6,6-tetramethylpiperidine-1-oxyl (468.75mg, 3 mmol) and 1,2-DCE (5 mL), the mixture was stirred at room temperature for 18 h. After completion of the reaction, the solution was extracted with dichloromethane (3×20 mL). Organic layers were combined and dried over Na₂SO₄, filtered and concentrated under reduced pressure.

The crude material was purified by silica gel column chromatography to give a white solid (76.6 mg, 19%).

¹H NMR (400 MHz, DMSO-*d*₆) δ 10.52 (s, 1H), 8.85 (d, *J* = 3.9 Hz, 1H), 8.67 (d, *J* = 8.2 Hz, 1H), 8.39 (d, *J* = 8.6 Hz, 1H), 8.05 (d, *J* = 8.9 Hz, 2H), 7.80 – 7.56 (m, 5H), 1.58 (p, *J* = 6.1 Hz, 2H), 1.31 (s, 6H), 1.06 (s, 6H). (Figure S61)

5. Deprotection experiment.

A 15 mL screw-cap vial charged with N-(7-(trifluoromethyl)quinolin-8-yl)benzamide (94.9 mg, 0.3 mmol) and 6 mol/L NaOH in MeOH (9 mL), the mixture was stirred at 120 °C for 36 h. After completion of the reaction, the solution was cooled to room temperature, and 30 mL MeOH was added. The mixture was concentration in vacuum and extracted with ethyl acetate (3×20 mL). Organic layers were combined and dried over Na₂SO₄, filtered and concentrated under reduced pressure to afforded 7-(trifluoromethyl)quinolin-8-amine (55.1 mg, 85%, m.p. 61-62 °C²).

¹H NMR (400 MHz, Chloroform-*d*) δ 8.79 (dd, *J* = 1.2, 4.3 Hz, 1H), 8.06 (dd, *J* = 1.4, 8.3 Hz, 1H), 7.52 – 7.42 (m, 2H), 7.09 (d, *J* = 8.6 Hz, 1H), 5.78 (s, 2H). (Figure S62)

6. NMR spectra for target compounds.

Figure S2. ¹³C NMR of N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2a.

Figure S3. ¹⁹F NMR of N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2a.

Figure S4. ¹H NMR of 2-methyl-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2b.

80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 f1 (ppm)

Figure S6. ¹⁹F NMR of 2-methyl-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2b.

11.22 11.20 11.20 9.08 8.87 8.85 8.85 8.85 8.85 8.81 8.82 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.81 8.82 7.88 8.82 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.88 7.7587 7.7588 7.758 7.758 7.7587 7.7

Figure S8. ¹³C NMR of 2-fluoro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2c.

-18.46

---36.26

 $^{19}{\rm F}$ NMR (376 MHz, DMSO- $d_6) \, \delta$ 18.46 , -36.26 .

Figure S10. ¹H NMR of 2-chloro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2d.

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14(Figure S12. ¹⁹F NMR of 2-chloro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide **2d**.

Figure S14. ¹³C NMR of 2-bromo-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2e.

Figure S16. ¹H NMR of 2-nitro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2f.

Figure S18. ¹⁹F NMR of 2-nitro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide **2f**.

Figure S19. ¹H NMR of 3-methyl-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2g.

Figure S20. ¹³C NMR of 3-methyl-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2g.

11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 5.5 5.0 2.5 2.0 1.5 1.0 0.5 0

Figure S22. ¹H NMR of 3-chloro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2h.

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14(Figure S24. ¹⁹F NMR of 3-chloro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide **2h**.

Figure S25. ¹H NMR of 3-nitro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2i.

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14(

Figure S28. ¹H NMR of 4-methyl-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2j.

Figure S29. ¹³C NMR of 4-methyl-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2j.

80 60 40 20 0 -20 -40 -60 -80 -100 -120 -140 f1 (ppm)

Figure S30. ¹⁹F NMR of 4-methyl-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2j.

Figure S31 | ¹H NMR of 4-nitro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2k.

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14(

Figure S33. ¹⁹F NMR of 4-nitro-N-(7-(trifluoromethyl)quinolin-8-yl)benzamide 2k.

Figure S34. ¹H NMR of N-(7-(trifluoromethyl)quinolin-8-yl)-2-naphthamide 21.

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -14(Figure S36. ¹⁹F NMR of N-(7-(trifluoromethyl)quinolin-8-yl)-2-naphthamide **2l**.

Figure S38. ¹³C NMR of N-(7-(trifluoromethyl)quinolin-8-yl)propionamide 2m.

Figure S40. ¹H NMR of N-(7-(trifluoromethyl)quinolin-8-yl)pivalamide **2n**.

Figure S44. ¹³C NMR of N-(7-(trifluoromethyl)quinolin-8-yl)acetamide 20.

Figure S46. ¹H NMR of N-(7-(trifluoromethyl)quinolin-8-yl)trifluoroacetamide **2p**.

Figure S50. ¹³C NMR of N-(6-methyl-7-(trifluoromethyl)quinolin-8-yl)benzamide 2q.

Figure S51. ¹⁹F NMR of N-(6-methyl-7-(trifluoromethyl)quinolin-8-yl)benzamide 2q.

¹H NMR (400 MHz, DMSO- d_6) õ 10.95 (s, 1H), 9.06 (d, J = 4.1 Hz, 1H), 8.63 (d, J = 14.8 Hz, 1H), 8.59 (d, J = 9.2 Hz, 1H), 8.05 (d, J = 7.4 Hz, 2H), 7.91 (dd, J = 8.8, 4.2 Hz, 1H), 7.74 – 7.70 (m, 1H), 7.65 (t, J = 7.4 Hz, 2H).

Figure S52. ¹H NMR of N-(6-fluoro-7-(trifluoromethyl)quinolin-8-yl)benzamide 2r.

Figure S54. ¹⁹F NMR of N-(6-fluoro-7-(trifluoromethyl)quinolin-8-yl)benzamide 2r.

Figure S56. ¹³C NMR of N-(6-chloro-7-(trifluoromethyl)quinolin-8-yl)benzamide 2s.

90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140

Figure S57. ¹⁹F NMR of N-(6-chloro-7-(trifluoromethyl)quinolin-8-yl)benzamide 2s.

Figure S58. ¹H NMR of N-(6-bromo-7-(trifluoromethyl)quinolin-8-yl)benzamide 2t.

Figure S60. ¹⁹F NMR of N-(6-bromo-7-(trifluoromethyl)quinolin-8-yl)benzamide 2t.

1.611.611.581.561.56-1.31-1.06

Figure S62. ¹H NMR of 7-(trifluoromethyl)quinolin-8-amine.

7. References

- 1. P. B. Arockiam, G. Lucas and W. D. Joanna, Adv. Synth. Catal., 2017, 359, 2571.
- 2. H. Egami, Y. Ito, T. Ide, S. Masuda, Y. Hamashima, Synthesis, 2018, 50, 2948.