# Synthesis of Open-cage Fullerene-based Unidirectional H-Bonding Network and its Coordination to Titanium

Hao Zhang,<sup>†</sup> Jie Su\*<sup>†</sup>, Changwang Pan,<sup>‡</sup> Xin Lu\*<sup>‡</sup>, Liangbing Gan \*<sup>†§</sup>

<sup>†</sup>Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of the Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

<sup>‡</sup>State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering Huazhong University of Science and Technology 1037 Luoyu Road, Wuhan 430074, China.

<sup>§</sup>State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, China.

#### **Table of Contents**

| General synthetic procedure compounds 2-7 for                                                         | S2  |
|-------------------------------------------------------------------------------------------------------|-----|
| Proposed mechanism for the formation of 2 from 1                                                      | S10 |
| <sup>1</sup> H and <sup>13</sup> C NMR and HRMS spectra for compound <b>2</b>                         | S11 |
| <sup>1</sup> H and <sup>13</sup> C NMR and HRMS spectra for compound <b>3</b>                         | S13 |
| <sup>1</sup> H and <sup>13</sup> C NMR and HRMS spectra for compound <b>4</b>                         | S15 |
| <sup>1</sup> H and <sup>13</sup> C NMR and HRMS spectra for compound <b>5</b>                         | S18 |
| <sup>1</sup> H and <sup>13</sup> C NMR and <sup>31</sup> P NMR and HRMS spectra for compound <b>6</b> | S22 |
| <sup>1</sup> H and <sup>13</sup> C NMR and <sup>31</sup> P NMR and HRMS spectra for compound <b>7</b> | S23 |
| UV-Vis spectra for compound 2, 3, 4, 5                                                                | S25 |
| H/D exchange experiment                                                                               | S26 |
| MS of Ti complexes                                                                                    | S27 |
| Proposed structures of Ti complex                                                                     | S33 |
| Isotop Calculation of m/z 1739                                                                        | S34 |

All reagents were used as received. All solvents were used as received. The reactions were carried out under atmosphere condition. The NMR spectra were obtained at 25 °C with 400 and 500MHz spectrometers (<sup>1</sup>H and <sup>13</sup>C NMR spectra for the same compound were obtained with different spectrometers and different solvents in some cases). Chemical shifts are given in ppm relative to TMS or CDCl<sub>3</sub> (for <sup>13</sup>C NMR). ESI-FT-ICR-HRMS spectra were recorded in positive mode. UV/vis spectra are measured with Perkin Elmer Lambda 35 UV/vis spectrometer. Chromatographic purifications were carried out with silica gel of mesh 200-300. Known compounds were characterized by comparison of their <sup>1</sup>H NMR data with literature data as cited. Note: common impurities such as residue solvent toluene and grease from silica gel are sometimes impossible to be removed from the fullerene derivatives by routine flash column chromatography. Further purification by a diffusion-precipitation procedure was usually required to obtain pure samples. The diffusion-precipitation solvents are CS<sub>2</sub>/EtOH or CS<sub>2</sub>/CH<sub>3</sub>CN or CHCl<sub>3</sub>/EtOH.

### **Preparation of Compound 2:**



#### Method 1

Compound 1 (768.6 mg, 0.69 mmol) was desolved in 51 mL odichlorobenzene (oDCB), and then 76 mL hydrochloric acid (37%) and 380 mL acetic acid were added into the reaction vessel. The resulting solution was stirred at 60 °C for 15 minutes. The solution was concentrated in vacuo. The residue was dissolved in oDCB again, and then chromatographed on a silica gel column eluting with petroleum ether to remove oDCB. Eluting with toluene/ ethyl acetate (20 : 1) removed other products, then eluting with toluene/ ethyl acetate (10 : 1) gave a black band as compound 2 (55.9 mg, 0.061 mmol, 8.8 %).

### Method 2

Compound **1** (640.0 mg, 0.58 mmol) was desolved in 300 mL *o*DCB, and then 170 mL hydrochloric acid (37%), 1.2 L acetic acid and 3.2 g hydroquinone (0.029 mol) were added into the reaction vessel. The resulting solution was divided into two equal parts and stirred at room temperature for 30 minutes and then heated up to 60 °C for 15 minutes until compound **1** converted completely. The solution was washed by 300

mL water for three times. The organic layer was separated, dried by anhydrous Na<sub>2</sub>SO<sub>4</sub>, and then chromatographed on a silica gel column eluting with petroleum ether to remove *o*DCB. Eluting with toluene/ ethyl acetate (20 : 1) removed some imputiry, then eluting with toluene/ ethyl acetate (10 : 1) gave a black band as compound **2** (277.2 mg, 0.30 mmol, 51.7 %).

### **Characterization data for 2:**

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  8.16 (d, J = 8.6 Hz, 2H), 7.65 (d, J = 8.6 Hz, 2H), 6.71 (dd, J = 18.9, 9.0 Hz, 1H), 5.15 (dd, J = 18.9, 4.8 Hz, 1H), 1.46 (s, 9H), -9.60 (s, 0.5H). (H<sub>2</sub>O@Compound **2**)

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 190.63, 185.74, 184.28, 165.00, 151.30, 150.41, 150.08, 149.91, 149.77, 149.51, 149.20, 148.85, 148.80, 148.31, 147.26, 147.04, 146.71, 146.70, 146.44, 146.33, 146.29, 146.15, 146.11, 146.06, 145.89, 145.86, 143.96, 143.77, 143.62, 143.57, 143.54, 143.00, 142.84, 142.76, 142.72, 142.61, 142.49, 141.87, 141.63, 141.18, 139.52, 138.39, 137.82, 137.30, 136.86, 136.83, 136.72, 136.70, 135.77, 135.72, 134.99, 134.75, 131.94, 128.15, 127.46, 126.51, 126.48, 126.19, 125.26, 120.83, 53.09 (CH<sub>2</sub>), 34.76 (C), 31.64 ((CH<sub>3</sub>)<sub>3</sub>). ESI-FT-ICR-HRMS-Positive  $C_{69}H_{16}NO_4$  (M + H<sup>+</sup>) calculated 922.1045, found

922.1074.

#### **Preparation of Compound 3:**



Compound 2 (35.0 mg, 0.038 mmol) was dissolved in 15 mL CHCl<sub>3</sub>, and then excess of KBH<sub>4</sub> (41.0 mg, 0.76 mmol, dispersed in 5 mL EtOH) were added into the reaction vessel. The reaction was quenched 5 minutes later by adding 5 mL acetic acid. The solution was washed by 15 mL water for three times. The organic layer was separated, dried by anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated in vacuo. The residue was dissolved in CS<sub>2</sub>, and then chromatographed on a silica gel column eluting with CS<sub>2</sub>/ethyl acetate (50 : 1) to give a black band as compound **3** (9.5 mg, 0.010 mmol, 27.1 %, brsm. 49.4%). 15.8 mg of unreacted compound **2** was recovered.

#### **Characterization data for 3:**

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.17 (d, J = 8.5 Hz, 2H), 7.64 (d, J = 8.5 Hz, 2H), 7.55

(s, 1H), 6.41 (d, J = 18.7 Hz, 1H), 5.21 (d, J = 18.7 Hz, 1H), 4.72 (s, 1H), 1.45 (s, 9H). <sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>)  $\delta$  193.91, 193.19, 165.59, 151.85, 151.36, 151.19, 150.48, 150.20, 149.99, 149.73, 149.47, 149.21, 149.14, 149.03, 148.46, 148.10, 148.00, 146.85, 146.80, 146.78, 146.50, 146.38, 146.33, 146.21, 145.93, 145.76, 144.89, 144.84, 144.70, 144.55, 144.48, 144.27, 143.81, 143.22, 143.12, 143.06, 143.03, 142.90, 142.51, 141.30, 140.85, 140.60, 140.42, 140.08, 140.03, 139.72, 138.22, 137.25, 136.81, 136.10, 135.90, 135.88, 135.39, 132.07, 127.93, 127.90, 126.50, 119.71, 119.69, 79.92 (CH), 52.64 (CH<sub>2</sub>), 34.74 (C), 31.62 ((CH<sub>3</sub>)<sub>3</sub>). ESI-FT-ICR-HRMS-Positive C<sub>69</sub>H<sub>18</sub>NO<sub>4</sub> (M + H<sup>+</sup>) calculated 924.1258, found 924.1230. ESI-FT-ICR-HRMS-Positive C<sub>69</sub>H<sub>17</sub>NNaO<sub>4</sub> (M + Na<sup>+</sup>) calculated 946.1030, found 946.1050.

#### **Preparation of Compound 4:**



Compound 2 (48.7 mg, 0.053 mmol) was dissolved in 50 mL CHCl<sub>3</sub>, and then NaBH<sub>4</sub> (4.0 mg, 0.10 mmol, dispersed in 3 mL EtOH) were added into the reaction vessel. The reaction was terminated upon confirmation of complete conversion of compound 2 as indicated by TLC (about 10 minutes). The solution was quenched by 5 mL acetic acid and then washed by 50 mL water for three times. The organic layer was separated, dried by anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated in vacuo. The residue was dissolved in CS<sub>2</sub>, and then chromatographed on a silica gel column eluting with CS<sub>2</sub>/ethyl acetate (50 : 1) to give a red band as compound **4** (16.6 mg, 0.018 mmol, 33.9 %).

#### **Characterization data for 4:**

<sup>1</sup>H NMR (400 MHz, d4-oDCB)  $\delta$  8.22 (d, J = 8.5 Hz, 2H), 7.80 (s, 1H), 7.65 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 18.9 Hz, 1H), 5.17 (d, J = 19.0 Hz, 1H), 1.57 (s, 9H). (One of CH signal was overlapped with solvent peak.)

<sup>1</sup>H NMR (400 MHz, d4-*o*DCB)  $\delta$  8.24 (d, *J* = 8.6 Hz, 2H), 7.97 (s, 1H), 7.91 (s, 1H), 7.66 (d, *J* = 8.6 Hz, 2H), 7.57 (s, 1H), 7.16 (s, 1H), 6.92 (d, *J* = 18.9 Hz, 1H), 5.20 (d, *J* = 18.9 Hz, 1H), 1.58 (s, 9H), -9.13 (s, 1.50 H). (H<sub>2</sub>O@Compound **4**)

<sup>13</sup>C NMR (126 MHz, d4-*o*DCB) δ 193.20, 169.20, 151.59, 150.99, 149.70, 149.66, 149.23, 149.04, 149.01, 148.55, 148.52, 148.43, 148.31, 147.89, 147.64, 147.41, 147.29, 146.76, 146.47, 146.36, 145.85, 145.42, 145.31, 144.89, 144.72, 144.22, 143.74, 143.43, 142.92, 142.73, 142.44, 142.21, 141.80, 141.78, 141.53, 141.47, 141.45, 141.29, 141.26, 140.99, 140.79, 140.27, 139.79, 138.88, 138.81, 138.60, 138.12, 136.47, 135.49, 135.48, 135.40, 135.00, 134.77, 125.73, 120.12, 80.00 (CH), 78.72 (CH), 53.03 (CH<sub>2</sub>), 33.97 (C), 30.85 ((CH<sub>3</sub>)<sub>3</sub>). (Some signals of carbon on fullerene skeleton could not be assigned because of disturbance of solvent peaks.)

ESI-FT-ICR-HRMS-Positive  $C_{69}H_{20}NO_4$  (M + H<sup>+</sup>) calculated 926.1422, found 926.1387.

ESI-FT-ICR-HRMS-Positive  $C_{69}H_{19}NNaO_4$  (M + Na<sup>+</sup>) calculated 948.1168, found 948.1201.

ESI-FT-ICR-HRMS-Positive  $C_{69}H_{21}NNaO_5$  (M + Na<sup>+</sup> + H<sub>2</sub>O) calculated 966.1301, found 966.1312.

Crystals of compound **4** suitable for single crystal X-ray diffraction were obtained from slow evaporation in d4-*o*DCB. Crystal Data for C<sub>6.21</sub>H<sub>2.28</sub>C<sub>10.48</sub>N<sub>0.07</sub>O<sub>0.28</sub>S (M =99.33 g/mol): triclinic, space group *P*-1 (no. 2), a = 9.9983(2) Å, b = 16.3521(4) Å, c = 19.4651(5) Å,  $a = 102.1630(10)^\circ$ ,  $\beta = 90.8690(10)^\circ$ ,  $\gamma = 105.0910(10)^\circ$ , V = 2995.41(12) Å<sup>3</sup>, Z = 29, T = 100(2) K,  $\mu$  (synchrotron) = 0.320 mm<sup>-1</sup>,  $D_{calc} = 1.597$ g/cm<sup>3</sup>, 38088 reflections measured (2.428°  $\leq 2 \theta \leq 46.33^\circ$ ), 9868 unique ( $R_{int} = 0.0241$ ,  $R_{sigma} = 0.0214$ ) which were used in all calculations. The final  $R_1$  was 0.0545 ( $I > 2 \sigma$  (I)) and  $wR_2$  was 0.1595 (all data).

CCDC 1882632 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

#### **Preparation of Compound 5:**



Compound 4 (29.7 mg, 0.032 mmol) was desolved in 15 mL CHCl<sub>3</sub>, and then Et<sub>3</sub>SiH (52  $\mu$ L, 0.33 mmol) and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> (8.1 mg, 0.016 mmol) were added into the reaction vessel. The resulting solution was stirred at room temperature for 6 hours. Then the

solution was quenched by 15 mL water. The organic layer was separated, dried by anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated in vacuo. The residue was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, and then chromatographed on a silica gel column eluting with CH<sub>2</sub>Cl<sub>2</sub> to give a red band as compound **5** (17.1 mg, 0.018 mmol, 57.6 %).

### **Characterization data for 5:**

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  9.64 (s, 1H), 9.02 (d, *J* = 3.5 Hz, 1H), 8.43 (s, 1H), 7.87 (d, *J* = 8.6 Hz, 2H), 7.76 (s, 1H), 7.59 (overlapped, *J* = 8.5 Hz, 3H), 7.55 (s, 1H), 7.03 (d, *J* = 18.7 Hz, 1H), 4.85 (d, *J* = 18.7 Hz, 1H), 1.44 (s, 9H).

<sup>1</sup>H NMR (400 MHz, d4-*o*DCB)  $\delta$  9.84 (s, 1H), 9.18 (d, J = 5.0 Hz, 1H), 8.94 (s, 1H), 8.13 (d, J = 8.5 Hz, 2H), 7.76 (s, 1H), 7.69 (overlapped, J = 8.5 Hz, 3H), 7.55 (s, 1H), 7.11 (overlapped, 1H), 4.84 (d, J = 18.7 Hz, 1H), 1.56 (s, 9H), -9.30 (s, 1.7 H). (H<sub>2</sub>O@Compound **5**)

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 170.74, 150.81, 150.75, 150.56, 150.45, 150.35, 150.32, 149.95, 149.50, 149.42, 149.26, 149.07, 149.06, 148.18, 147.94, 147.45, 147.38, 146.98, 146.92, 146.78, 146.19, 146.05, 146.00, 145.84, 145.28, 145.05, 144.67, 144.01, 144.00, 143.89, 143.87, 143.49, 142.65, 142.49, 142.28, 141.93, 141.45, 141.35, 140.86, 140.85, 140.76, 140.70, 140.64, 140.44, 140.32, 139.85, 139.73, 139.67, 139.53, 136.45, 136.17, 135.53, 133.24, 131.48, 131.09, 127.12, 126.94, 126.50, 121.28, 81.26 (CH), 80.97 (CH), 80.85 (CH), 56.10 (CH<sub>2</sub>), 34.69 (C), 31.47 ((CH<sub>3</sub>)<sub>3</sub>).

ESI-FT-ICR-HRMS-Positive  $C_{69}H_{22}NO_4$  (M + H<sup>+</sup>) calculated 928.1523, found 928.1543.

ESI-FT-ICR-HRMS-Positive  $C_{69}H_{21}LiNO_4$  (M + Li<sup>+</sup>) calculated 934.1631, found 934.1625.

ESI-FT-ICR-HRMS-Positive  $C_{69}H_{23}NLiO_5$  (M + Li<sup>+</sup> + H<sub>2</sub>O) calculated 952.1759, found 952.1731.

Crystals of compound **5**•**EtOH** suitable for single crystal X-ray diffraction were obtained from slow diffusion in a two phases system of CS<sub>2</sub> and EtOH. Crystal Data for C<sub>143</sub>H<sub>54</sub>N<sub>2</sub>O<sub>10</sub>S<sub>2</sub> (M = 2024.00 g/mol): monoclinic, space group  $P2_1/n$  (no. 14), a = 10.4701(3) Å, b = 25.0970(11) Å, c = 16.2566(6) Å,  $\beta = 91.218(3)^\circ$ , V = 4270.8(3) Å<sup>3</sup>, Z = 2, T = 179.98(11) K,  $\mu$  (MoK $\alpha$ ) = 0.145 mm<sup>-1</sup>,  $D_{calc} = 1.574$  g/cm<sup>3</sup>, 31081 reflections measured (4.216°  $\leq 2\theta \leq 54.97^\circ$ ), 9749 unique ( $R_{int} = 0.0313$ ,  $R_{sigma} = 0.0400$ ) which were used in all calculations. The final  $R_1$  was 0.0613 ( $I > 2\sigma(I)$ ) and  $wR_2$  was 0.1617 (all data).

CCDC 1882633 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Crystals of compound **H**<sub>2</sub>**O**@**5**•**EtOH** suitable for single crystal X-ray diffraction were obtained from slow diffusion in a two phases system of CS<sub>2</sub> and EtOH. Crystal Data for C<sub>143</sub>H<sub>57.4</sub>N<sub>2</sub>O<sub>11.7</sub>S<sub>2</sub> (M =2054.63 g/mol): monoclinic, space group  $P2_1/n$  (no. 14), a = 10.4595(4) Å, b = 25.0584(10) Å, c = 16.2556(7) Å,  $\beta = 91.316(4)^\circ$ , V = 4259.4(3) Å<sup>3</sup>, Z = 2, T = 179.99(10) K,  $\mu$  (Mo K $\alpha$ ) = 0.149 mm<sup>-1</sup>,  $D_{calc} = 1.602$  g/cm<sup>3</sup>, 31983 reflections measured (4.104°  $\leq 2\theta \leq 54.968°$ ), 9738 unique ( $R_{int} = 0.0554$ ,  $R_{sigma} = 0.0597$ ) which were used in all calculations. The final  $R_1$  was 0.0681 ( $I > 2\sigma(I)$ ) and  $wR_2$  was 0.1679 (all data).

CCDC 1882635 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Crystals of compound **H**<sub>2</sub>**O**@**5**•**Nopol** suitable for single crystal X-ray diffraction were obtained from slow diffusion in a two phases system of CS<sub>2</sub> and Nopol. Crystal Data for C<sub>81</sub>H<sub>42.7</sub>NO<sub>5.85</sub>S<sub>2</sub> (M = 1187.58 g/mol): triclinic, space group *P*-1 (no. 2), *a* = 10.43660(10) Å, *b* = 16.3952(3) Å, *c* = 16.8240(3) Å, *a* = 110.8690(10)°,  $\beta$  = 99.0190(10)°,  $\gamma$  = 100.6190(10)°, *V* = 2565.14(7) Å<sup>3</sup>, *Z* = 2, *T* = 180.00(10) K,  $\mu$ (Mo K $\alpha$ ) = 0.174 mm<sup>-1</sup>, *D*<sub>calc</sub> = 1.538 g/cm<sup>3</sup>, 27699 reflections measured (4.092°  $\leq 2\theta \leq 50.056^{\circ}$ ), 9056 unique (*R*<sub>int</sub> = 0.0222, *R*<sub>sigma</sub> = 0.0267) which were used in all calculations. The final *R*<sub>1</sub> was 0.0773 (*I* > 2 $\sigma$ (*I*)) and *wR*<sub>2</sub> was 0.1970 (all data).

CCDC 1882636 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

Crystals of compound **H**<sub>2</sub>**O**@**5** suitable for single crystal X-ray diffraction were obtained from slow diffusion in a two phases system of CS<sub>2</sub> and CH<sub>3</sub>CN. Crystal Data for C<sub>70</sub>H<sub>22.75</sub>NO<sub>4.875</sub>S<sub>2</sub> (M = 1019.76 g/mol): monoclinic, space group *Cc* (no. 9), *a* = 14.4203(2) Å, *b* = 27.3088(4) Å, *c* = 10.35690(10) Å,  $\beta$  = 94.1820(10)°, *V* = 4067.70(9) Å<sup>3</sup>, *Z* = 4, *T* = 180.00(10) K,  $\mu$  (Mo K $\alpha$ ) = 0.203 mm<sup>-1</sup>, *D*<sub>calc</sub> = 1.665 g/cm<sup>3</sup>, 26233 reflections measured (4.916°  $\leq 2\theta \leq 54.962°$ ), 8361 unique (*R*<sub>int</sub> = 0.0175, *R*<sub>sigma</sub> = 0.0192) which were used in all calculations. The final *R*<sub>1</sub> was 0.0433 (*I* > 2 $\sigma$ (*I*)) and *wR*<sub>2</sub> was 0.1202 (all data).

CCDC 1882638 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre.

#### **Preparation of Compound 6:**



Compound 2 (54.6 mg, 0.059 mmol) was dissolved in 50 mL CHCl<sub>3</sub>, and then  $P(OEt)_3$  (51 µL, 0.30 mmol) were added into the reaction vessel. The reaction was terminated upon confirmation of complete conversion of compound 2 as indicated by TLC (about 20 minutes). The solution was directly chromatographed on a silica gel column eluting with toluene/ethyl acetate (50:1) to remove impurities and toluene/ ethyl acetate (10:1) to give a black band as compound 7 (44.3 mg, 0.042 mmol, 70.6%).

### **Characterization data for 6:**

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  8.47 (d, J = 12.8 Hz, 1H), 8.11 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 8.7 Hz, 2H), 6.70 (d, J = 18.5 Hz, 1H), 5.10 (d, J = 18.5 Hz, 1H), 4.69 – 4.55 (m, 2H), 4.52 – 4.43 (m, 2H), 1.47 – 1.45 (m, 3H), 1.42 (s, 9H), 1.28 – 1.25 (m, 3H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 190.53, 186.80, 164.97, 151.89, 151.16, 150.58, 150.49, 150.03, 149.98, 149.56, 149.15, 148.95, 148.81, 148.12, 147.43, 147.00, 146.93, 146.75, 146.57, 146.44, 146.18, 146.17, 146.03, 145.96, 145.94, 145.19, 144.70, 144.63, 143.91, 143.79, 143.55, 143.19, 143.10, 142.91, 142.82, 142.80, 142.72, 142.60, 142.39, 142.07, 141.68, 141.03, 140.40, 140.33, 139.98, 139.94, 138.28, 137.55, 137.35, 136.93, 136.53, 136.28, 135.93, 135.81, 132.27, 129.39, 127.96, 126.92, 125.73, 119.93, 82.69 (CH), 65.89 (OCH<sub>2</sub>), 65.84 (OCH<sub>2</sub>), 65.05 (OCH<sub>2</sub>), 65.00 (OCH<sub>2</sub>), 52.80 (CH<sub>2</sub>), 34.65 (C), 31.62 ((CH<sub>3</sub>)<sub>3</sub>), 16.61 (CH<sub>3</sub>), 16.56 (CH<sub>3</sub>), 16.42 (CH<sub>3</sub>), 16.37 (CH<sub>3</sub>).

<sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>) δ 1.24.

ESI-FT-ICR-HRMS-Positive  $C_{73}H_{27}NO_7P$  (M + H<sup>+</sup>) calculated 1060.1492, found 1060.1520.

### **Preparation of Compound 7:**



Compound 4 (31.9 mg, 0.034 mmol) was dissolved in 30 mL CHCl<sub>3</sub>, and then  $P(OEt)_3$  (1.8 mL, 10.4 mmol) and HOAc (0.5 mL) were added into the reaction vessel. The resulting solution was stirred at room temperature overnight. The reaction was terminated upon confirmation of complete conversion of compound 4 as indicated by TLC (about 10 hours). The solution was concentrated in vacuo and then dissolved in

 $CS_2$ , chromatographed on a silica gel column eluting with  $CS_2$ /ethyl acetate (50 : 1) to remove impurities. Elution with  $CS_2$ / ethyl acetate (10 : 1) gave a red band as compound 7 (22.5 mg, 0.021 mmol, 61.7 %).

### **Characterization data for 7:**

<sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.96 (d, J = 8.5 Hz, 2H), 7.59 (overlapped, J = 8.2 Hz, 3H), 6.79 (s, 1H), 6.69 (s, 1H), 5.99 (d, J = 19.1 Hz, 1H), 4.86 (d, J = 28.2 Hz, 1H), 4.57 – 4.46 (m, 2H), 4.43 – 4.32 (m, 2H), 1.51 (t, J = 7.0 Hz, 3H), 1.42 (s, 9H), 1.38 (t, J = 7.2 Hz, 3H).

<sup>13</sup>C NMR (126 MHz, CDCl<sub>3</sub>) δ 169.84, 154.15, 151.94, 151.58, 151.21, 151.11, 151.10, 150.20, 150.18, 150.03, 149.88, 149.72, 149.63, 149.60, 149.57, 149.00, 148.68, 148.25, 146.92, 146.82, 146.72, 146.36, 146.34, 146.29, 145.90, 145.81, 145.15, 144.19, 143.88, 143.84, 143.82, 143.63, 143.58, 143.43, 143.26, 142.73, 142.67, 142.32, 142.27, 141.79, 141.76, 141.62, 140.13, 139.92, 139.53, 139.51, 138.68, 138.53, 137.66, 136.30, 136.26, 135.57, 135.04, 134.35, 132.47, 132.03, 130.15, 126.55, 121.43, 80.00 (CH), 79.03 (CH), 67.37 (OCH<sub>2</sub>), 67.13 (OCH<sub>2</sub>), 66.30 (OCH<sub>2</sub>), 66.19 (OCH<sub>2</sub>), 54.35 (CH<sub>2</sub>), 53.07 (CH), 34.83 (C), 31.55 ((CH<sub>3</sub>)<sub>3</sub>), 16.88 (CH<sub>3</sub>), 16.83 (CH<sub>3</sub>), 16.58 (CH<sub>3</sub>).

<sup>31</sup>P NMR (202 MHz, CDCl<sub>3</sub>) δ 22.31.

ESI-FT-ICR-HRMS-Positive  $C_{73}H_{31}NO_7P$  (M + H<sup>+</sup>) calculated 1064.1825, found 1064.1833.

### **Preparation of H<sub>2</sub>O@2:**



Compound 2 (144.2 mg, 0.16 mmol) was dissolved in 30 mL *o*DCB, then 1 mL water was added into the reaction vessel. The resulting solution was stirred at 80°C for 12 hours. For <sup>1</sup>H NMR measurement, the sample was prepared by using *o*DCB-D<sub>4</sub> (0.6 mL) as the solvent for 5 mg sample and one drop of water. <sup>1</sup>H NMR showed the encapsulation ratio reached 58%.

Proposed mechanism for the formation of 2 from 1:



The conversion from 1 to 2 involved loss of two hydroxyl groups and a carbonyl group. The mechanism is quite complicated. The above Scheme shows two possible pathways. In the first pathway, the first step is the hydrolysis of one of the two imino groups to form A as originally designed. Due to the electron withdrawing effect of the newly formed carbonyl group, the second imino group was reduced into the anilinyl group in **B**. Addition of hydrophenone accelerated this reduction step. Without the added hydroquinone some unknown reducing reagents such as the small amount of aniline hydrolyzed from the first step may have acted as the reducing reagent. Then the amino nitrogen added to the carbonyl carbon to form an aminal intermediate C. Ring-opening rearrangement of C gave the methylene group in D. Decarbonylation from **D** to **E** involved ring contraction from a 6- to 5-menmbered ring. The final reductive aromatization step is analogous to other classical reactions. The aromatization step could have taken place in one of the earlier intermediates. The second pathway involved fullerene cation intermediates. The fullerene centered-cations are stablized by conjugation with the cage double bonds. Electron transfer from the hydroquinone is essential in the reduction processes. Other pathways are also possible. Detailed mechanism study remains to be carried out.





### <sup>1</sup>H NMR of Compound H<sub>2</sub>O@2 (58%) in CDCl<sub>3</sub>



# <sup>13</sup>C NMR of Compound **2** in CDCl<sub>3</sub>



### DEPT of Compound $\mathbf{2}$ in CDCl<sub>3</sub>



MS of Compound  $2\&H_2O@2$ 



 $^{1}$ H NMR of Compound **3** in CDCl<sub>3</sub>



# <sup>13</sup>C NMR of Compound **3** in CDCl<sub>3</sub>



### MS of Compound ${\bf 3}$



### <sup>1</sup>H NMR of Compound $H_2O@4$ (75%) in d4-*o*DCB



# <sup>13</sup>C NMR of Compound **4** in d4-*o*DCB







MS of Compound  $4\&H_2O@4(H^+)$ 



MS of Compound 3&4&H<sub>2</sub>O@4 (Na<sup>+</sup>)





### <sup>1</sup>H NMR of Compound **H**<sub>2</sub>**O@5** (83%) in d4-*o*DCB



# <sup>13</sup>C NMR of Compound **5** in CDCl<sub>3</sub>



### DEPT of Compound 5 in CDCl<sub>3</sub>



MS of Compound  $5\&H_2O@5(H^+)$ 



MS of Compound  $5\&H_2O@5$  (Li<sup>+</sup>)



# <sup>1</sup>H NMR of Compound 6 in CDCl<sub>3</sub>



# <sup>13</sup>C NMR of Compound **6** in CDCl<sub>3</sub>



<sup>31</sup>P NMR of Compound 6 in CDCl<sub>3</sub>



### MS of Compound 6





## <sup>13</sup>C NMR of Compound **7** in CDCl<sub>3</sub>







# $^{31}P$ NMR of Compound 7 in CDCl\_3



MS of Compound 7



UV-Vis spectra for compound 2, 3, 4, 5



### H/D Exchange of Compound $H_2O@2$



### H/D Exchange of Compound $H_2O@5$



### Coordination with Ti(O<sup>i</sup>Pr)<sub>4</sub>

The coordination properties of the open-cage compounds were studied by ESI-MS method. Titanium isopropoxide reacted readily with all the open-cage compounds yielding very polar products as indicated by TLC. So far it was not possible to either isolate a pure product by column chromatography or obtain single crystals from the reactions. The following mass spectra were obtained from a sample containing the open-cage compound and excess  $Ti(O^iPr)_4$  in toluene.



### MS of **2&Ti** Complexes



MS of **3&Ti** Complexes



MS of 4&Ti Complexes using tow different ESI conditions



MS of **5&Ti** Complexes







Proposed structures of Ti complexes with molecular weights corresponding to the above mass spectra



The isotope pattern of the signals indicates that a mixture of a few different structures with similar molecular weights was overlapped. This can be explained by the stepwise oxidation of the hydroxyl groups resulting loss of two hydrogen atoms. Theoretical calculation of a mixture containing the following five closely related species with different number of hydroxyl groups in 1:2:4:2:1 ratio showed very close pattern to that observed for the signal at 1739.2 m/z as shown in the following figure (calculation details on pages SI35-38).

Calculation of m/z 1739



m/z: 1739 was calculated by the MS of compounds A-E in the ratio 0.5:1:2:1:0.5 respectively.



| D = m/z: 1741.0318                        | E = m/z: 1743.0474                                                              |  |  |
|-------------------------------------------|---------------------------------------------------------------------------------|--|--|
| $C_{124}H_{16}N_2O_{10}Ti(III)^+$         | $C_{124}H_{18}N_2O_{10}Ti(III)^+$                                               |  |  |
| $M-(C_6H_4^{t}Bu+H)-(^{t}Bu+H)-4H-2(^{i}$ | $M-(C_6H_4^{t}Bu+H)-(^{t}Bu+H)-2H-2($                                           |  |  |
| Pr+H)                                     | <sup>i</sup> Pr+H)                                                              |  |  |
|                                           | HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>HO<br>H |  |  |

| m/z 1735 |                                                |             |  |
|----------|------------------------------------------------|-------------|--|
| ms       | Percentage of Mass distribution                | Calcd x 0.5 |  |
|          | calculated for $C_{124}H_{10}N_2O_{10}Ti(III)$ |             |  |
| 1747     | 0.000                                          | 0.000       |  |
| 1746     | 0.000                                          | 0.000       |  |
| 1745     | 0.000                                          | 0.000       |  |
| 1744     | 0.000                                          | 0.000       |  |
| 1743     | 0.000                                          | 0.000       |  |
| 1742     | 0.000                                          | 0.000       |  |
| 1741     | 0.000                                          | 0.000       |  |

| 1740       | 0.000                                                                                  | 0.000     |  |  |  |
|------------|----------------------------------------------------------------------------------------|-----------|--|--|--|
| 1739       | 0.024                                                                                  | 0.012     |  |  |  |
| 1738       | 0.158                                                                                  | 0.079     |  |  |  |
| 1737       | 0.432                                                                                  | 0.216     |  |  |  |
| 1736       | 0.820                                                                                  | 0.410     |  |  |  |
| 1735       | 1.138                                                                                  | 0.569     |  |  |  |
| 1734       | 0.922                                                                                  | 0.461     |  |  |  |
| 1733       | 0.188                                                                                  | 0.094     |  |  |  |
| 1732       | 0.084                                                                                  | 0.042     |  |  |  |
|            |                                                                                        | m/z 1737  |  |  |  |
| ma         | Percentage of Mass distribution                                                        | Colod x 1 |  |  |  |
| ms         | calculated for $C_{124}H_{12}N_2O_{10}Ti(III)$                                         |           |  |  |  |
| 1747       | 0.000                                                                                  | 0.000     |  |  |  |
| 1746       | 0.000                                                                                  | 0.000     |  |  |  |
| 1745       | 0.000                                                                                  | 0.000     |  |  |  |
| 1744       | 0.000                                                                                  | 0.000     |  |  |  |
| 1743       | 0.000                                                                                  | 0.000     |  |  |  |
| 1742       | 0.000                                                                                  | 0.000     |  |  |  |
| 1741       | 0.034 0.034                                                                            |           |  |  |  |
| 1740       | 0.143 0.143                                                                            |           |  |  |  |
| 1739       | 0.431 0.431                                                                            |           |  |  |  |
| 1738       | 0.819                                                                                  | 0.819     |  |  |  |
| 1737       | 1.147                                                                                  | 1.147     |  |  |  |
| 1736       | 0.922                                                                                  | 0.922     |  |  |  |
| 1735       | 0.187 0.187                                                                            |           |  |  |  |
| 1734       | 0.083                                                                                  | 0.083     |  |  |  |
| 1733       | 0.000                                                                                  | 0.000     |  |  |  |
| 1732 0.000 |                                                                                        | 0.000     |  |  |  |
|            |                                                                                        | m/z 1739  |  |  |  |
| me         | Percentage of Mass distribution                                                        | Calcd x 2 |  |  |  |
|            | calculated for C <sub>124</sub> H <sub>14</sub> N <sub>2</sub> O <sub>10</sub> Ti(III) |           |  |  |  |
| 1747       | 0.000                                                                                  | 0.000     |  |  |  |
| 1746       | 0.000                                                                                  | 0.000     |  |  |  |
| 1745       | 0.000                                                                                  | 0.000     |  |  |  |
| 1744       | 0.000                                                                                  | 0.000     |  |  |  |
| 1743       | 0.027                                                                                  | 0.054     |  |  |  |
| 1742       | 0.114                                                                                  | 0.227     |  |  |  |
| 1741       | 0.324                                                                                  | 0.647     |  |  |  |
| 1740       | 0.615                                                                                  | 1.229     |  |  |  |
| 1739       | 0.854                                                                                  | 1.707     |  |  |  |
| 1738       | 0.692                                                                                  | 1.383     |  |  |  |
| 1737       | 0.141                                                                                  | 0.281     |  |  |  |
| 1736       | 0.023                                                                                  | 0.125     |  |  |  |

| 1735 | 0.000                                                                                  | 0.000       |  |  |
|------|----------------------------------------------------------------------------------------|-------------|--|--|
| 1734 | 0.000                                                                                  | 0.000       |  |  |
| 1733 | 0.000 0.000                                                                            |             |  |  |
| 1732 | 0.000                                                                                  | 0.000       |  |  |
|      |                                                                                        | m/z 1741    |  |  |
| me   | Percentage of Mass distribution                                                        | Caled x 1   |  |  |
| 1115 | calculated for C <sub>124</sub> H <sub>16</sub> N <sub>2</sub> O <sub>10</sub> Ti(III) |             |  |  |
| 1747 | 0.000                                                                                  | 0.000       |  |  |
| 1746 | 0.000                                                                                  | 0.000       |  |  |
| 1745 | 0.020                                                                                  | 0.020       |  |  |
| 1744 | 0.148                                                                                  | 0.148       |  |  |
| 1743 | 0.431                                                                                  | 0.431       |  |  |
| 1742 | 0.473                                                                                  | 0.473       |  |  |
| 1741 | 1.122                                                                                  | 1.122       |  |  |
| 1740 | 0.921                                                                                  | 0.921       |  |  |
| 1739 | 0.533                                                                                  | 0.533       |  |  |
| 1738 | 0.083                                                                                  | 0.083       |  |  |
| 1737 | 0.000                                                                                  | 0.000       |  |  |
| 1736 | 0.000 0.000                                                                            |             |  |  |
| 1735 | 0.000 0.000                                                                            |             |  |  |
| 1734 | 0.000 0.000                                                                            |             |  |  |
| 1733 | 0.000                                                                                  | 0.000       |  |  |
| 1732 | 0.000                                                                                  | 0.000       |  |  |
|      | -                                                                                      | m/z 1743    |  |  |
| ms   | Percentage of Mass distribution                                                        | Calcd x 0.5 |  |  |
| 1113 | calculated for C <sub>124</sub> H <sub>18</sub> N <sub>2</sub> O <sub>10</sub> Ti(III) |             |  |  |
| 1747 | 0.020                                                                                  | 0.010       |  |  |
| 1746 | 0.144                                                                                  | 0.072       |  |  |
| 1745 | 0.452                                                                                  | 0.216       |  |  |
| 1744 | 0.820                                                                                  | 0.410       |  |  |
| 1743 | 1.138                                                                                  | 0.569       |  |  |
| 1742 | 0.922                                                                                  | 0.461       |  |  |
| 1741 | 0.188                                                                                  | 0.094       |  |  |
| 1740 | 0.084                                                                                  | 0.042       |  |  |
| 1739 | 0.000 0.000                                                                            |             |  |  |
| 1738 | 0.000                                                                                  | 0.000       |  |  |
| 1737 | 0.000                                                                                  | 0.000       |  |  |
| 1736 | 0.000                                                                                  | 0.000       |  |  |
| 1735 | 0.000                                                                                  | 0.000       |  |  |
| 1734 | 0.000                                                                                  | 0.000       |  |  |
| 1733 | 0.000                                                                                  | 0.000       |  |  |
| 1732 | 0.000                                                                                  | 0.000       |  |  |

| m/z  | 1735x0.5 | 1737x1 | 1739x2 | 1741x1 | 1743x0.5 | Sum   |
|------|----------|--------|--------|--------|----------|-------|
| 1747 | 0.000    | 0.000  | 0.000  | 0.000  | 0.010    | 0.010 |
| 1746 | 0.000    | 0.000  | 0.000  | 0.000  | 0.072    | 0.072 |
| 1745 | 0.000    | 0.000  | 0.000  | 0.020  | 0.216    | 0.236 |
| 1744 | 0.000    | 0.000  | 0.000  | 0.148  | 0.410    | 0.558 |
| 1743 | 0.000    | 0.000  | 0.054  | 0.431  | 0.569    | 1.054 |
| 1742 | 0.000    | 0.000  | 0.227  | 0.473  | 0.461    | 1.161 |
| 1741 | 0.000    | 0.034  | 0.647  | 1.122  | 0.094    | 1.896 |
| 1740 | 0.000    | 0.143  | 1.229  | 0.921  | 0.042    | 2.334 |
| 1739 | 0.012    | 0.431  | 1.707  | 0.533  | 0.000    | 2.683 |
| 1738 | 0.079    | 0.819  | 1.383  | 0.083  | 0.000    | 2.364 |
| 1737 | 0.216    | 1.147  | 0.281  | 0.000  | 0.000    | 1.644 |
| 1736 | 0.410    | 0.922  | 0.125  | 0.000  | 0.000    | 1.456 |
| 1735 | 0.569    | 0.187  | 0.000  | 0.000  | 0.000    | 0.756 |
| 1734 | 0.461    | 0.083  | 0.000  | 0.000  | 0.000    | 0.544 |
| 1733 | 0.094    | 0.000  | 0.000  | 0.000  | 0.000    | 0.094 |
| 1732 | 0.042    | 0.000  | 0.000  | 0.000  | 0.000    | 0.042 |