Photoredox-catalyzed sulfonylation of alkenylcyclobutanols with the insertion of sulfur dioxide through semipinacol

rearrangement

Fu-Sheng He, Youqian Wu, Xiaofang Li, Hongguang Xia,* and Jie Wu*

Supporting Information

- 1. General experimental methods (S2).
- 2. General experimental procedure and characterization data (S2-S10).
- 3. ¹H and ¹³C NMR spectra of compounds **3** (S11-S50).
- 4. Crystal structure determination of compound **3a** (S51-S52)

General experimental methods:

Unless otherwise stated, all commercial reagents were used as received. All solvents were dried and distilled according to standard procedures. Flash column chromatography was performed using silica gel (60-Å pore size, 32-63 μ m, standard grade). Analytical thin-layer chromatography was performed using glass plates precoated with 0.25 mm 230-400 mesh silica gel impregnated with a fluorescent indicator (254 nm). Thin layer chromatography plates were visualized by exposure to ultraviolet light. Organic solutions were concentrated on rotary evaporators at ~20 Torr at 25-35 °C. Nuclear magnetic resonance (NMR) spectra are recorded in parts per million from internal tetramethylsilane on the δ scale. ¹H and ¹³C NMR spectra were recorded in CDCl₃ on a Bruker DRX-400 spectrometer operating at 400 MHz and 100 MHz, respectively. All chemical shift values are quoted in ppm and coupling constants quoted in Hz. High resolution mass spectrometry (HRMS) spectra were obtained on a micrOTOF II Instrument.

General experimental procedure for the photoredox-catalyzed sulfonylation of alkenylcyclobutanols with the insertion of sulfur dioxide

$$R \xrightarrow{O}_{n} + Ar - N_2 BF_4 2 \xrightarrow{fac-Ir(ppy)_3 (4 \text{ mol }\%)} (M_1 + (DABCO) \cdot (SO_2)_2 \xrightarrow{fac-Ir(ppy)_3 (4 \text{ mol }\%)} (M_1 + (M_2 + N_2)_3 \xrightarrow{O}_{n} SO_2 Ar \xrightarrow{$$

Cyclobutanol **1** (0.2 mmol) was added to a mixture of $Ir(ppy)_3$ (4 mol %), aryldiazonium tetrafluoroborate **2** (0.3 mmol) and DABCO·(SO₂)₂ (0.3 mmol) in DCE (2.0 mL) under N₂ atmosphere. The mixture was stirred under blue LED irradiation (8 W) for 24 hours. After completion of reaction as indicated by TLC, the solvent was evaporated and the residue was purified directly by flash column chromatography (*n*-hexane/ethyl acetate = 8:1) to give the corresponding product **3**.

2-Phenyl-2-(tosylmethyl)cyclopentan-1-one (3a)

Yellow solid, 55.9 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.58 (d, *J* = 7.8 Hz, 2H), 7.30 (d, *J* = 7.6 Hz, 2H), 7.26 – 7.16 (m, 5H), 3.72 (d, *J* = 14.6 Hz, 1H), 3.62 (d, *J* = 14.6 Hz, 1H), 3.04 (dd, *J* = 13.8, 6.0 Hz, 1H), 2.73 – 2.61 (m, 1H), 2.45 – 2.25 (m, 5H), 2.14 – 2.02 (m, 1H), 1.85 – 1.66 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.8, 144.2, 137.8, 135.5, 129.6, 128.8, 127.6, 127.5, 126.9, 63.9, 54.6, 35.8, 32.4, 21.5, 18.5; HRMS (ESI) calcd for C₁₉H₂₁O₃S [M+H]⁺: 329.1206, found: 329.1214.

2-(((4-Methoxyphenyl)sulfonyl)methyl)-2-phenylcyclopentan-1-one (3b)

Yellow solid, 62.5 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.65 – 7.57 (m, 2H), 7.33 – 7.27 (m, 2H), 7.27 – 7.17 (m, 3H), 6.89 – 6.82 (m, 2H), 3.83 (s, 3H), 3.72 (d, *J* = 14.6 Hz, 1H), 3.61 (d, *J* = 14.6 Hz, 1H), 3.04 (dd, *J* = 13.9, 6.3 Hz, 1H), 2.67 (ddd, *J* = 13.8, 12.5, 6.9 Hz, 1H), 2.43 – 2.25 (m, 2H), 2.12 – 2.02 (m, 1H), 1.85 – 1.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.9, 163.5, 135.7, 132.6, 129.8, 128.9, 127.7, 127.1, 114.3, 64.2, 55.7, 54.7, 35.9, 32.5, 18.6; HRMS (ESI) calcd for C₁₉H₂₀O₄SNa [M+Na]⁺: 367.0975, found: 367.0965.

2-(((4-(*tert*-Butyl)phenyl)sulfonyl)methyl)-2-phenylcyclopentan-1-one (3c)

Yellow solid, 63.1 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.59 (d, *J* = 7.9 Hz, 2H), 7.40 (d, *J* = 7.8 Hz, 2H), 7.29 (d, *J* = 7.8 Hz, 2H), 7.24 – 7.13 (m, 3H), 3.77 (d, *J* = 14.6 Hz, 1H), 3.60 (d, *J* = 14.6 Hz, 1H), 3.09 (dd, *J* = 13.9, 6.0 Hz, 1H), 2.66 (td, *J* = 13.1, 6.9 Hz, 1H), 2.45 – 2.26 (m, 2H), 2.14 – 2.02 (m, 1H), 1.86 – 1.71 (m, 1H), 1.31 (s, 9H); ¹³C NMR (100 MHz, CDCl₃) δ 215.8, 157.0, 137.6, 135.2, 128.8, 127.6, 127.3, 127.0, 125.9, 63.8,

54.5, 35.7, 35.0, 32.4, 30.9, 18.5; HRMS (ESI) calcd for C₂₂H₂₇O₄S [M+H]⁺: 371.1675, found: 371.1663.

2-Phenyl-2-((m-tolylsulfonyl)methyl)cyclopentan-1-one (3d)

Yellow solid, 37.0 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.51 (d, *J* = 6.8 Hz, 1H), 7.43 (s, 1H), 7.36 – 7.27 (m, 4H), 7.26 – 7.14 (m, 3H), 3.77 (d, *J* = 14.6 Hz, 1H), 3.60 (d, *J* = 14.6 Hz, 1H), 3.09 (dd, *J* = 13.8, 6.0 Hz, 1H), 2.65 (td, *J* = 13.1, 6.8 Hz, 1H), 2.45 – 2.25 (m, 5H), 2.15 – 2.02 (m, 1H), 1.88 – 1.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.8, 140.7, 139.3, 135.4, 134.1, 128.9, 128.8, 127.9, 127.8, 127.1, 124.6, 64.0, 54.7, 35.9, 32.6, 21.2, 18.6; HRMS (ESI) calcd for C₁₉H₂₁O₃S [M+H]⁺: 329.1206, found: 329.1204.

2-(((4-Chlorophenyl)sulfonyl)methyl)-2-phenylcyclopentan-1-one (3e)

Yellow solid, 56.4 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, *J* = 7.9 Hz, 2H), 7.35 (d, *J* = 7.9 Hz, 2H), 7.30 – 7.16 (m, 5H), 3.82 (d, *J* = 14.7 Hz, 1H), 3.58 (d, *J* = 14.7 Hz, 1H), 3.10 (dd, *J* = 13.9, 6.0 Hz, 1H), 2.58 (td, *J* = 13.1, 6.9 Hz, 1H), 2.44 – 2.25 (m, 2H), 2.15 – 2.01 (m, 1H), 1.87 – 1.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.6, 139.9, 139.0, 134.7, 129.2, 128.9, 128.9, 127.8, 127.0, 64.0, 54.5, 35.6, 32.5, 18.5; HRMS (ESI) calcd for C₁₈H₁₇ClO₃SNa [M+Na]⁺: 371.0479, found: 371.0461.

2-(((4-Bromophenyl)sulfonyl)methyl)-2-phenylcyclopentan-1-one (3f)

Yellow solid, 65.7 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.45 (m, 4H), 7.31 – 7.17 (m, 5H), 3.82 (d, *J* = 14.7 Hz, 1H), 3.57 (d, *J* = 14.8 Hz, 1H), 3.10 (dd, *J* = 13.9, 6.0 Hz, 1H), 2.57 (td, *J* = 13.1, 6.9 Hz, 1H), 2.43 – 2.25 (m, 2H), 2.14 – 2.03 (m, 1H), 1.87 – 1.70 (m,

1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.5, 139.5, 134.6, 132.2, 129.0, 128.9, 128.5, 127.8, 127.0, 64.0, 54.5, 35.6, 32.5, 18.5; HRMS (ESI) calcd for C₁₈H₁₈BrO₃S [M+H]⁺: 393.0155, found: 393.0131.

2-Phenyl-2-(((4-(trifluoromethyl)phenyl)sulfonyl)methyl)cyclopentan-1-one (3g)

Yellow solid, 56.5 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, *J* = 8.0 Hz, 2H), 7.61 (d, *J* = 8.0 Hz, 2H), 7.28 – 7.21 (m, 2H), 7.20 – 7.11 (m, 3H), 3.92 (d, *J* = 14.9 Hz, 1H), 3.57 (d, *J* = 14.9 Hz, 1H), 3.16 (dd, *J* = 13.9, 6.0 Hz, 1H), 2.53 (td, *J* = 13.1, 7.0 Hz, 1H), 2.39 – 2.25 (m, 2H), 2.16 – 2.02 (m, 1H), 1.91 – 1.73 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.4, 144.0, 134.7 (q, *J* = 33.1 Hz), 134.2, 128.9, 128.1, 128.0, 127.1, 126.0 (q, *J* = 3.7 Hz), 121.7 (q, *J* = 273.0 Hz), 64.1, 54.4, 35.6, 32.6, 18.5; HRMS (ESI) calcd for C₁₉H₁₇F₃O₃SNa [M+Na]⁺: 405.0726, found: 405.0743.

2-(((3-Chlorophenyl)sulfonyl)methyl)-2-phenylcyclopentan-1-one (3h)

Yellow solid, 44.5 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.50 (m, 2H), 7.49 – 7.43 (m, 1H), 7.37 – 7.31 (m, 1H), 7.30 – 7.25 (m, 2H), 7.25 – 7.15 (m, 3H), 3.87 (d, *J* = 14.8 Hz, 1H), 3.56 (d, *J* = 14.8 Hz, 1H), 3.14 (dd, *J* = 13.9, 6.2 Hz, 1H), 2.61 – 2.47 (m, 1H), 2.38 – 2.28 (m, 2H), 2.14 – 2.02 (m, 1H), 1.88 – 1.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.5, 142.4, 135.2, 134.5, 133.4, 130.3, 128.9, 128.1, 127.8, 127.1, 125.6, 64.2, 54.6, 35.7, 32.7, 18.5; HRMS (ESI) calcd for C₁₈H₁₇ClO₃SNa [M+Na]⁺: 371.0479, found: 371.0460.

2-(((2-Chlorophenyl)sulfonyl)methyl)-2-phenylcyclopentan-1-one (3i)

Yellow solid, 45.3 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.70 (dd, *J* = 7.9, 1.5 Hz, 1H), 7.43 – 7.33 (m, 2H), 7.33 – 7.27 (m, 2H), 7.25 – 7.19 (m, 1H), 7.18 – 7.06 (m, 3H), 4.37 (d, *J* = 15.0 Hz, 1H), 3.62 (d, *J* = 15.0 Hz, 1H), 3.15 (dd, *J* = 14.0, 6.2 Hz, 1H), 2.54 – 2.42 (m, 1H), 2.36 – 2.23 (m, 2H), 2.12 – 2.00 (m, 1H), 1.88 – 1.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.3, 138.1, 134.2, 134.1, 132.3, 131.5, 131.1, 128.8, 127.9, 127.1, 62.0, 54.3, 35.6, 32.9, 18.5; HRMS (ESI) calcd for C₁₈H₁₇ClO₃SNa [M+Na]⁺: 371.0479, found: 371.0473.

2-((Naphthalen-1-ylsulfonyl)methyl)-2-phenylcyclopentan-1-one (3j)

Yellow oil, 64.1 mg; ¹H NMR (400 MHz, CDCl₃) δ 8.65 (d, J = 8.7 Hz, 1H), 8.06 – 7.94 (m, 2H), 7.89 (d, J = 8.2 Hz, 1H), 7.75 – 7.67 (m, 1H), 7.63 – 7.54 (m, 1H), 7.45 – 7.38 (m, 1H), 7.25 – 7.18 (m, 2H), 7.15 – 7.04 (m, 3H), 3.93 (d, J = 14.6 Hz, 1H), 3.81 (d, J = 14.6 Hz, 1H), 3.12 (dd, J = 13.9, 6.2 Hz, 1H), 2.80 – 2.67 (m, 1H), 2.48 – 2.25 (m, 2H), 2.15 – 2.05 (m, 1H), 1.87 – 1.71 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.8, 135.5, 135.2, 135.0, 134.0, 130.2, 129.1, 128.8, 128.7, 128.5, 127.7, 126.9, 124.3, 124.1, 63.1, 54.6, 36.0, 32.6, 18.7; HRMS (ESI) calcd for C₂₂H₂₀O₃SNa [M+Na]⁺: 387.1025, found: 387.1012.

Methyl 3-(((2-oxo-1-phenylcyclopentyl)methyl)sulfonyl)thiophene-2-carboxylate (3k)

Yellow solid, 60.5 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 3H), 7.23 – 7.11 (m, 4H), 4.72 (d, *J* = 15.0 Hz, 1H), 3.91 (s, 3H), 3.71 (d, *J* = 15.0 Hz, 1H), 3.14 (dd, *J* = 14.1, 6.1 Hz, 1H), 2.55 – 2.44 (m, 1H), 2.33 – 2.24 (m, 2H), 2.11 – 2.01 (m, 1H), 1.88 – 1.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.4, 159.9, 144.7, 134.4, 133.8, 131.0, 129.4,

128.7, 127.8, 127.2, 62.8, 54.3, 53.1, 35.7, 32.8, 18.6; HRMS (ESI) calcd for $C_{18}H_{18}O_5S_2Na \left[M+Na\right]^+: 401.0488$, found: 401.0471.

2-(((4-Methoxyphenyl)sulfonyl)methyl)-2-(p-tolyl)cyclopentan-1-one (3l)

Yellow solid, 55.9 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.62 – 7.55 (m, 2H), 7.20 – 7.14 (m, 2H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.88 – 6.82 (m, 2H), 3.84 (s, 3H), 3.73 (d, *J* = 14.6 Hz, 1H), 3.57 (d, *J* = 14.6 Hz, 1H), 3.04 (dd, *J* = 13.8, 6.2 Hz, 1H), 2.66 – 2.55 (m, 1H), 2.36 – 2.29 (m, 2H), 2.27 (s, 3H), 2.12 – 2.00 (m, 1H), 1.84 – 1.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 216.0, 163.3, 137.5, 132.5, 132.2, 129.7, 129.6, 127.0, 114.1, 64.2, 55.6, 54.3, 35.8, 32.5, 20.9, 18.6; HRMS (ESI) calcd for C₂₀H₂₂O₄SNa [M+Na]⁺: 382.1131, found: 382.1127.

2-(Naphthalen-2-yl)-2-(tosylmethyl)cyclopentan-1-one (3m)

Yellow solid, 46.0 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.77 – 7.57 (m, 4H), 7.49 – 7.33 (m, 5H), 6.94 (d, *J* = 8.2 Hz, 2H), 3.93 (d, *J* = 14.8 Hz, 1H), 3.62 (d, *J* = 14.8 Hz, 1H), 3.23 (dd, *J* = 14.0, 6.2 Hz, 1H), 2.72 – 2.59 (m, 1H), 2.45 – 2.27 (m, 2H), 2.19 (s, 3H), 2.16 – 2.06 (m, 1H), 1.91 – 1.76 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.7, 144.1, 137.5, 133.0, 132.5, 131.9, 129.3, 128.8, 128.0, 127.4, 127.3, 126.7, 126.5, 126.4, 124.4, 63.8, 54.7, 35.8, 32.6, 21.4, 18.6; HRMS (ESI) calcd for C₂₃H₂₂O₃SNa [M+Na]⁺: 401.1182, found: 401.1173.

2-(p-Tolyl)-2-(tosylmethyl)cyclopentan-1-one (3n)

Yellow solid, 55.4 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.23 – 7.13 (m, 4H), 7.02 (d, *J* = 8.3 Hz, 2H), 3.73 (d, *J* = 14.6 Hz, 1H), 3.57 (d, *J* = 14.6 Hz, 1H), 3.04 (dd, *J* = 13.8, 6.2 Hz, 1H), 2.67 – 2.56 (m, 1H), 2.39 (s, 3H), 2.33 (dd, *J* = 10.5, 7.7 Hz, 2H), 2.27 (s, 3H), 2.12 – 2.01 (m, 1H), 1.84 – 1.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.9, 144.2, 137.9, 137.6, 132.2, 129.5, 127.6, 126.9, 64.0, 54.3, 35.8, 32.5, 21.6, 20.9, 18.6; HRMS (ESI) calcd for C₂₀H₂₂O₃SNa [M+Na]⁺: 365.1182 , found: 365.1170.

2-(4-Methoxyphenyl)-2-(tosylmethyl)cyclopentan-1-one (30)

Light yellow solid, 53.0 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.59 – 7.52 (m, 2H), 7.23 – 7.15 (m, 4H), 6.77 – 6.70 (m, 2H), 3.79 – 3.70 (m, 4H), 3.55 (d, *J* = 14.6 Hz, 1H), 3.04 (dd, *J* = 13.9, 6.2 Hz, 1H), 2.64 – 2.52 (m, 1H), 2.39 (s, 3H), 2.36 – 2.28 (m, 2H), 2.10 – 2.01 (m, 1H), 1.84 – 1.72 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.8, 159.0, 144.1, 137.9, 129.6, 128.3, 127.5, 126.7, 114.2, 64.1, 55.2, 53.9, 35.7, 32.6, 21.5, 18.5; HRMS (ESI) calcd for C₂₀H₂₂O₄SNa [M+Na]⁺: 381.1131, found: 381.1114.

2-(*m*-Tolyl)-2-(tosylmethyl)cyclopentan-1-one (**3p**)

Yellow solid, 45.8 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.56 (d, *J* = 7.6 Hz, 2H), 7.23 – 7.08 (m, 4H), 7.05 – 6.94 (m, 2H), 3.74 (d, *J* = 14.6 Hz, 1H), 3.60 (d, *J* = 14.6 Hz, 1H), 3.04 (dd, *J* = 13.8, 5.8 Hz, 1H), 2.72 – 2.59 (m, 1H), 2.43 – 2.29 (m, 5H), 2.22 (s, 3H), 2.12 – 2.01 (m, 1H), 1.86 – 1.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 216.0, 144.1, 138.5, 137.9, 135.3, 129.5, 128.8, 128.4, 127.8, 127.5, 124.0, 63.9, 54.6, 35.9, 32.5, 21.5, 21.4, 18.6; HRMS (ESI) calcd for C₂₀H₂₂O₃S [M+Na]⁺: 365.1182, found: 365.1173.

2-(4-Fluorophenyl)-2-(tosylmethyl)cyclopentan-1-one (3q)

Yellow solid, 41.5 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.30 – 7.24 (m, 2H), 7.21 (d, *J* = 7.9 Hz, 2H), 6.94 – 6.86 (m, 2H), 3.75 (d, *J* = 14.7 Hz, 1H), 3.52 (d, *J* = 14.6 Hz, 1H), 3.10 – 3.01 (m, 1H), 2.65 – 2.54 (m, 1H), 2.40 (s, 3H), 2.37 – 2.25 (m, 2H), 2.14 – 2.03 (m, 1H), 1.84 – 1.70 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.7, 162.2 (d, *J* = 248.0 Hz), 144.4, 137.8, 130.7 (d, *J* = 3.3 Hz), 129.6, 129.0 (d, *J* = 8.2 Hz), 127.5, 115.7 (d, *J* = 21.4 Hz), 64.0, 54.0, 35.7, 32.7, 21.5, 18.6; HRMS (ESI) calcd for C₁₉H₁₉FO₃SNa [M+Na]⁺: 369.0931, found: 369.0934.

2-(4-Chlorophenyl)-2-(tosylmethyl)cyclopentan-1-one (3r)

Yellow solid, 52.1 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.54 – 7.45 (m, 2H), 7.24 – 7.12 (m, 6H), 3.79 (d, *J* = 14.7 Hz, 1H), 3.49 (d, *J* = 14.7 Hz, 1H), 3.12 – 3.03 (m, 1H), 2.62 – 2.50 (m, 1H), 2.40 (s, 3H), 2.37 – 2.29 (m, 2H), 2.14 – 2.03 (m, 1H), 1.84 – 1.69 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 215.4, 144.4, 137.6, 134.0, 133.3, 129.6, 128.9, 128.6, 127.5, 63.9, 54.0, 35.7, 32.5, 21.6, 18.6; HRMS (ESI) calcd for C₁₉H₁₉ClO₃SNa [M+Na]⁺: 385.0636, found: 385.0625.

4-Phenyl-4-(tosylmethyl)dihydrofuran-3(2H)-one (3s)

Yellow solid, 37.0 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.46 (m, 2H), 7.35 – 7.29 (m, 2H), 7.24 – 7.18 (m, 3H), 7.16 (d, *J* = 8.0 Hz, 2H), 5.22 (d, *J* = 10.9 Hz, 1H), 4.63 (d, *J* = 10.9 Hz, 1H), 4.09 (d, *J* = 17.4 Hz, 1H), 4.03 – 3.93 (m, 2H), 3.59 (d, *J* = 14.9 Hz, 1H), 2.38 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 211.2, 144.6, 137.1, 133.1, 129.7, 128.9,

128.0, 127.7, 126.8, 73.9, 69.5, 60.9, 53.2, 21.6; HRMS (ESI) calcd for $C_{18}H_{18}O_4SNa$ [M+Na]⁺: 353.0818, found: 353.0810.

2-Phenyl-2-(tosylmethyl)cyclohexan-1-one (3t)

Yellow solid, 34.9 mg; ¹H NMR (400 MHz, CDCl₃) δ 7.57 – 7.52 (m, 2H), 7.30 – 7.21 (m, 3H), 7.21 – 7.15 (m, 4H), 3.73 (d, *J* = 14.8 Hz, 1H), 3.63 (d, *J* = 14.8 Hz, 1H), 3.43 – 3.35 (m, 1H), 2.38 (s, 3H), 2.37 – 2.21 (m, 3H), 1.99 – 1.90 (m, 1H), 1.87 – 1.74 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 209.5, 143.9, 138.6, 136.8, 129.5, 129.1, 127.6, 127.4, 127.2, 65.0, 56.1, 39.2, 34.0, 27.4, 21.5, 21.3; HRMS (ESI) calcd for C₂₀H₂₂O₃SNa [M+Na]⁺: 365.1182, found: 365.1175.

k	8.037	7
l	8.034	1
1	8.018	3
l	8.01	5
Į,	8.00	5
Į	7 984	1
1	7 80	2
1	7 87	7
1	7 720	2
l	7.730	
ł	7.734	2
ľ	1./18	3
ľ	7.71	0
ľ	7.711	1
ł	7.697	7
ł	7.693	3
ł	7.60	9
I	7.60	3
I	7.589	9
I	7 57	1
I	7 560	2
I	7 12	-
I	7 430	-
I	7.41	
ľ	7.396	2
ł	7.234	1
ł	7.228	3
ł	7.219	9
1	7.213	3
1	7.209	9
	7.128	3
	7.115	5
	7 111	
	7 108	2
	7 10	1
	7.00	7
1	7.09	1
1	1.09	
ľ	3.940	0
ľ	3.910)
ł	3.82	5
ł	3.789	9
ł	2.75	1
	2.73	3
	2.409	9
	2.38	7
	2.38	3
	2.36	1
	2 35	1
],	2 32	1
1	2.00	-

Table 1. Crystal data and structure refinement for **3a**.

Identification code	ga_81211c_a	
Empirical formula	C19 H20 O3 S	
Formula weight	328.41	
Temperature	296(2) K	
Wavelength	1.34138 Å	
Crystal system	Triclinic	
Space group	P-1	
Unit cell dimensions	a = 6.9512(2) Å	a= 102.3370(10)°.
	b = 8.6039(3) Å	b= 92.4660(10)°.
	c = 15.1128(4) Å	g= 108.0020(10)°.
Volume	833.95(4) Å ³	
Z	2	
Density (calculated)	1.308 Mg/m ³	
Absorption coefficient	1.192 mm ⁻¹	
F(000)	348	
Crystal size	0.310 x 0.240 x 0.160 m	nm ³
Theta range for data collection	4.926 to 57.489°.	
Index ranges	-8<=h<=8, -10<=k<=10, -18<=l<=18	
Reflections collected	23271	
S	51	

Independent reflections	3458 [R(int) = 0.0558]
Completeness to theta = 53.594°	99.3 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.864 and 0.692
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3458 / 0 / 210
Goodness-of-fit on F ²	1.048
Final R indices [I>2sigma(I)]	R1 = 0.0415, wR2 = 0.1121
R indices (all data)	R1 = 0.0440, wR2 = 0.1148
Extinction coefficient	0.044(5)
Largest diff. peak and hole 0.495 and -0.	253 e.Å ⁻³