Rotaxane-Branched Dendrimers with Aggregation-Induced Emission Behavior

Xu-Qing Wang¹, Wei Wang¹, Wei-Jian Li¹, Yi Qin¹, Guang-Qiang Yin^{1,2}, Wei-Ling Jiang¹, Xiaopeng Li², Shuai Wu^{3,*}, Hai-Bo Yang^{1,*}

¹ Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, P. R. China.

² Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States.

³ Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai 200032, P. R. China.

To whom correspondence should be addressed; e-mail: Wushuai917777@hotmail.com; hbyang@chem.ecnu.edu.cn

Table of Contents (23 Pages)

Section A. Materials and general methods	S 3
Section B. Synthesis and characterization of the rotaxane-branched dendrimers	S4
Section C. Supplementary data	S17
Section D. References	S23

Section A. Materials and General Methods

All reagents were commercially available and used as supplied without further purification, compounds **S1** and **1** were prepared according to the published procedures.^{S1-S2} Deuterated solvents were purchased from Cambridge Isotope Laboratory (Andover, MA).

All solvents were dried according to standard procedures and all of them were degassed under N₂ for 30 minutes before use. All air-sensitive reactions were carried out under inert N₂ atmosphere. ¹H NMR, ¹³C NMR and ³¹P NMR spectra were recorded on Bruker 300 MHz Spectrometer (¹H: 300 MHz; ³¹P: 122 MHz), Bruker 400 MHz Spectrometer (¹H: 400 MHz; ¹³C: 101 MHz, ³¹P: 162 MHz) and Bruker 500 MHz Spectrometer (¹H: 500 MHz; ¹³C: 126 MHz, ³¹P: 202 MHz) at 298 K. The ¹H and ¹³C NMR chemical shifts are reported relative to residual solvent signals, and ³¹P {¹H} NMR chemical shifts are referenced to an external unlocked sample of 85% H₃PO₄ (δ 0.0). 2D NMR spectra (¹H-¹H COSY and DOSY) were recorded on Bruker 500 MHz Spectrometer (¹H: 500 MHz) at 298 K. The MALDI MS experiments were carried out on a Bruker UltrafleXtreme MALDI TOF/TOF Mass Spectrometer (Bruker Daltonics, Billerica, MA), equipped with smartbeam-II laser. All spectra were measured in positive reflectron or linear mode. UV-vis spectra were recorded in a quartz cell (light path 10 mm) on a Cary 50Bio UV-visible spectrophotometer. Fluorescence spectra were recorded in a conventional quartz cell (light path 2 mm) on a Cary Eclipse fluorescence spectra

Section B. Synthesis and characterization of the rotaxane-branched dendrimers.

1. Synthesis of the core component 2.

Synthesis of the core component 2: Mixing compound S1 (263 mg, 0.92 mmol) and commercially available 9, 10-Bis(diethylphosphonomethyl)anthracene S2 (200 mg, 0.42 mmol) in THF, then *t*-BuOK (374 mg, 3.34 mmol) was added into the reaction flask, the reaction was stirred at room temperature. After 5h, adding MeOH into the reaction flask, then the reaction mixture was filtered and the filtrate was concentrated in vacuum, the residue was subsequently purified by column chromatography, a solution of Bu₄NF (1.0 M, 89 mg) in THF was added dropwise into the reaction flask. The reaction mixture was stirred at room temperature for 4h. The obtained residue was washed by water, then dried with Na₂SO₄ and concentrated. The residue was further purified by column chromatography to afford an orange solid **2** (50 mg, 30%). ¹H NMR (400 MHz, CDCl₃): δ 8.36-8.38 (m, 4H), 7.95-7.99 (d, *J* = 16.0 Hz, 2H), 7.58-7.66 (m, 8H), 7.48-7.51 (m, 4H), 6.91-6.95 (d, *J* = 16.0 Hz, 2H), 3.19 (s, 2H). ¹³C NMR (126 MHz, CDCl₃): δ 137.63, 136.71, 132.60, 132.47, 129.49, 126.45, 126.40, 126.33, 125.42, 121.53, 83.66, 78.09, 29.69. HRMS (EI-MS): Calculated for Calculated for [**2**]⁺: 430.1722; Found: 430.1727.

2. Synthesis of the first-generation rotaxane-branched dendrimer G1.

Scheme S1: Synthesis route of the first-generation rotaxane-branched dendrimer G1.

Synthesis of the first-generation rotaxane-branched dendrimer G1: A mixture of and [2]rotaxane 1 (200 mg, 0.091 mmol) and compound 2 (17.8 mg, 0.041 mmol) were added in a Schlenk flask, the Schlenk flask was then evacuated and back-filled with N2 three times. Next, degassed diethylamine (10 mL) and a catalytic amount of CuI was added under an inert atmosphere. The reaction was stirred overnight at room temperature. The solvent was evaporated and the residue was purified by column chromatography (SiO₂; PE/DCM) and preparative gel permeation chromatography (GPC) to yield an orange solid **G1** (130 mg, 69%). ¹H NMR (300 MHz, THF- d_8): δ 8.40-8.43 (m, 4H), 7.94-7.99 (d, J = 15.0 Hz, 2H), 7.71 (m, 2H), 7.65 (d, 4H), 7.56-7.59 (d, J = 9.0 Hz, 4H), 7.44-7.47 (m, 4H), 7.29-7.31 (d, J = 6.0 Hz, 4H), 7.19-7.22 (d, J = 9.0 Hz, 4H), 7.10 (t, 2H), 6.86-6.94 (m, 22H), 6.73-6.76 (d, J = 9.0 Hz, 4H), 4.91-4.95 (t, J = 6.0 Hz, 2H), 3.73-4.09 (m, 60H), 2.94-3.01 (m, 4H), 2.52-2.57 (m, 4H), 2.20-2.29 (m, 24H), 1.38-1.50 (m, 60H), 1.24-1.35 (m, 36H), 1.16 (s, 84H), 0.68-0.83 (m, 16H), 0.12 (m, 2H), -0.01 (m, 2H), -0.78 (m, 2H), -1.26 (m, 2H). ³¹P NMR (202 MHz, THF- d_8): δ 12.50. ¹³C NMR (126 MHz, THF- d_8): δ 158.01, 154.95, 150.44, 150.35, 142.10, 138.32, 134.54, 133.52, 132.12, 131.59, 130.38, 130.12, 128.86, 128.85, 128.21, 127.09, 126.84, 125.68, 124.41, 122.17, 121.94, 114.62, 114.31, 107.62, 90.37, 69.10, 64.03, 64.01, 40.31, 32.67, 31.70, 31.53, 31.44, 31.27, 30.99, 30.79, 30.55, 30.43, 30.10, 29.82, 29.67, 29.42, 27.95, 26.18, 25.61, 24.19, 23.36, 18.89, 18.76, 17.32, 17.18, 17.04, 15.69, 15.66, 14.25, 12.27, 12.05, 11.82, 8.57, 1.17. ESI-MS: Calculated for $[G1 + 2H]^{2+}$ (*m*/*z* = 2287.7271) and $[G1 + 3H]^{3+}$ (*m*/*z* = 1526.1592); Found: m/z = 2287.6082 and m/z = 1526.2189.

3. Synthesis of the second-generation rotaxane-branched dendrimer G2.

Scheme S2: Synthesis route of the second-generation rotaxane-branched dendrimer G2.

Synthesis of the second-generation rotaxane-branched dendrimer G2: A reaction flask was charged with a THF solution of G1 (70 mg, 0.015 mmol) and then a solution of Bu₄NF·3H₂O (39 mg, 0.122 mmol) in THF was added dropwise into the reaction flask. The reaction mixture was stirred at room temperature for 2h, the obtained residue was washed by water, then dried with Na₂SO₄ and concentrated. The residue was further purified by column chromatography (SiO₂; DCM) and preparative gel permeation chromatography (GPC) to afford an orange solid G1-YNE. Then the obtained G1-YNE (40 mg, 0.010 mmol) and [2]rotaxane 1 (98 mg, 0.044 mmol) were added in a

Schlenk flask, the Schlenk flask was then evacuated and back-filled with N₂ three times. Next, degassed diethylamine (10 mL) and a catalytic amount of CuI were added under an inert atmosphere. The reaction was stirred overnight at room temperature. The solvent was evaporated and the residue was purified by column chromatography (SiO₂; DCM/EA) and preparative gel permeation chromatography (GPC) to yield an orange solid G2 (100 mg, 54%). ¹H NMR (500 MHz, THF- d_8): δ 8.40-8.42 (m, 4H), 7.94-7.98 (m, 2H), 7.46-7.65 (m, 20H), 7.29-7.31 (m, 4H), 7.10-7.20 (m, 24H), 6.87-6.95 (m, 62H), 6.73-6.77 (m, 12H), 4.70 (m, 6H), 3.73-4.09 (m, 180H), 3.01-3.06 (m, 12H), 2.40 (m, 12H), 2.22-2.26 (m, 72H), 1.16 (s, 168H), 1.25-1.52 (m, 288H), 0.55-0.78 (m, 60H), 0.19 (m, 12H), -0.65-(-0.74) (m, 12H), -1.09-(-1.19) (m, 12H). ³¹P NMR (202 MHz, THF-*d*₈): δ 12.50. ¹³C NMR (126 MHz, THF-*d*₈): δ 157.93, 155.30, 154.86, 150.45, 150.39, 150.35, 142.07, 140.76, 138.34, 133.54, 132.11, 131.59, 130.39, 129.77, 128.88, 128.85, 128.22, 126.84, 125.67, 124.42, 122.32, 121.98, 118.37, 114.65, 114.62, 114.29, 110.02, 109.30, 107.61, 90.39, 69.07, 68.03, 67.74, 64.07, 64.00, 40.30, 31.53, 31.46, 31.30, 30.82, 30.69, 30.44, 29.85, 29.67, 29.45, 27.91, 26.19, 25.62, 25.45, 25.29, 25.13, 24.97, 24.81, 24.28, 18.89, 18.76, 17.32, 17.18, 17.04, 15.76, 15.68, 15.65, 12.28, 12.06, 11.83, 8.61, 8.57, 1.17. ESI-MS: Calculated for $[G2 + 4H]^{4+}$ (*m*/*z* = 3057.0938) and [G2 $+5H^{5+}$ (*m*/*z* = 2447.8875); Found: *m*/*z* = 3057.2095 and *m*/*z* = 2447.9238.

4. Synthesis of the third-generation rotaxane-branched dendrimer G3.

Scheme S3: Synthesis route of the third-generation rotaxane-branched dendrimer G3.

Synthesis of the third-generation rotaxane-branched dendrimer G3: A reaction flask was charged with a THF solution of G2 (60 mg, 0.005 mmol) and then a THF solution of Bu₄NF·3H₂O (25 mg, 0.078 mmol) was added dropwise into the reaction flask, the reaction mixture was stirred at room temperature for 2h. The obtained residue was washed by water, then dried with Na₂SO₄ and concentrated. The residue was further purified by column chromatography (SiO₂; DCM) and preparative gel permeation chromatography (GPC) to afford an orange solid G2-YNE. Then the obtained G2-YNE (45 mg, 0.0041 mmol) and [2]rotaxane 1 (80 mg, 0.036 mmol) were added in a Schlenk flask, the Schlenk flask was then evacuated and back-filled with N₂ three times. Next, the mixture solvent of degassed Et₂NH and CH₂Cl₂ (v/v, 5/5 mL) was added via syringe. Subsequently, a catalytic amount of CuI was added under an inert atmosphere. The reaction was stirred overnight at room temperature. The solvent was evaporated and the residue was purified by column chromatography (SiO₂; DCM/EA) and preparative gel permeation chromatography (SO MHz, THF-*d*₈): δ 8.29-8.31 (m, 4H), 7.83-7.87 (m,

2H), 7.35-7.54 (m, 36H), 7.18-7.20 (m, 4H), 6.99-7.09 (m, 56H), 6.80-6.84 (m, 142H), 6.62-6.66 (m, 28H), 4.61 (m, 14H), 3.62-3.98 (m, 420H), 2.89-2.94 (m, 28H), 2.11-2.31 (m, 196H), 1.14-1.41 (m, 672H), 1.05 (s, 336H), 0.45-0.68 (m, 112H), 0.07 (m, 56H), -0.87-(-0.77) (m, 28H), -1.31-(-1.21) (m, 28H). ³¹P NMR (202 MHz, THF- d_8): δ 12.49. ¹³C NMR (126 MHz, THF- d_8): δ 157.93, 155.31, 154.88, 150.45, 150.38, 150.35, 142.08, 140.77, 138.33, 132.11, 131.59, 130.38, 129.77, 128.88, 128.85, 128.22, 127.65, 126.85, 125.68, 124.42, 122.32, 121.97, 118.37, 114.64, 114.62, 114.29, 110.02, 109.28, 107.61, 90.39, 69.07, 67.74, 64.06, 64.00, 40.31, 34.08, 31.53, 31.46, 31.29, 30.71, 30.44, 29.85, 29.67, 29.45, 27.92, 25.62, 24.26, 18.89, 17.32, 17.18, 17.04, 15.75, 15.68, 15.65, 12.06, 8.61, 8.57, 1.17. MALDI-TOF-MS: m/z = 28001.6 and m/z = 13924.5 were observed in the spectrum, which might be attributed to the **G3** molecule with encapsulated matrix molecules.

Fig. S1 Partial ¹H NMR (THF-*d*₈, 298 K, 500 MHz) spectra of rotaxane-branched dendrimer **G3** (*top*); rotaxane-branched dendrimer **G2** (*middle*); rotaxane-branched dendrimer **G1** (*bottom*);

Fig. S2 Calculated (*top*) and experimental (*bottom*) ESI-TOF-MS spectra of rotaxane-branched dendrimer **G1**: (a) $[\mathbf{G1} + 2\mathbf{H}]^{2+}$, (b) $[\mathbf{G1} + 3\mathbf{H}]^{3+}$.

Fig. S3 Calculated (*top*) and experimental (*bottom*) ESI-TOF-MS spectra of rotaxane-branched dendrimer **G2**: (a) $[\mathbf{G2} + 4\mathrm{H}]^{4+}$, (b) $[\mathbf{G2} + 5\mathrm{H}]^{5+}$.

Fig. S4 MALDI-TOF-MS spectrum of rotaxane-branched dendrimer G3.

Fig. S5 GPC spectrum of the rotaxane-branched dendrimer G1.

Fig. S6 GPC spectrum of the rotaxane-branched dendrimer G2.

Fig. S7 GPC spectrum of the rotaxane-branched dendrimer G3.

Fig. S8 Absorption spectra (c = 10^{-5} M) of G1 in CH₂Cl₂/n-hexane with various n-hexane fractions.

Fig. S9 Absorption spectra (c = 10^{-5} M) of G2 in CH₂Cl₂/n-hexane with various n-hexane fractions.

Fig. S10 Absorption spectra ($c = 10^{-5}$ M) of G3 in CH₂Cl₂/n-hexane with various n-hexane fractions.

Table S1: Fluorescence quantum yields (Φ_F) of **G1** in CH₂Cl₂/n-hexane with various n-hexane fractions (f_h).

f _b (%)	0	10	20	30	40	50	60	70	80	90	95
<i>Φ</i> _F (%)	2.9	2.8	3.1	3.5	4.0	4.6	5.5	6.5	9.0	10.9	11.4

Table S2: Fluorescence quantum yields (Φ_F) of **G2** in CH₂Cl₂/n-hexane with various n-hexane fractions (f_h).

f _h (%)	0	10	20	30	40	50	60	70	80	90	95
$\phi_{\rm F}(\%)$	2.5	2.8	2.9	3.3	3.9	4.2	4.9	6.2	7.8	10.5	16.2

Table S3: Fluorescence quantum yields (Φ_F) of G3 in CH₂Cl₂/n-hexane with various n-hexane fractions (f_h).

f _h (%)	0	10	20	30	40	50	60	70	80	90	95
<i>Φ</i> _F (%)	2.6	2.8	2.9	3.3	3.8	4.2	4.9	6.2	7.5	11.8	17.9

Fig. S11 TEM images of the rotaxane-branched dendrimer G1 in CH_2Cl_2/n -hexane with 90% n-hexane fractions.

Fig. S12 TEM images of the rotaxane-branched dendrimer G2 in CH_2Cl_2/n -hexane with 90% n-hexane fractions.

Fig. S13 TEM images of the rotaxane-branched dendrimer G3 in CH_2Cl_2/n -hexane with 90% n-hexane fractions.

Section C. Supplementary data

Fig. S12 1 H NMR spectrum (CDCl₃, 298 K, 400 MHz) of compound 2.

17 / 23

Fig. S14 HRMS (EI-TOF) spectrum of compound 2.

Fig. S15 ¹H NMR spectrum (THF-*d*₈, 298 K, 300 MHz) of rotaxane-branched dendrimer G1.

Fig. S16³¹P NMR spectrum (THF-*d*₈, 298 K, 202 MHz) of rotaxane-branched dendrimer G1.

Fig. S17 ¹³C NMR spectrum (THF-*d*₈, 298 K, 126 MHz) of rotaxane-branched dendrimer G1.

Fig. S18 ¹H NMR spectrum (THF-d₈, 298 K, 500 MHz) of rotaxane-branched dendrimer G2.

Fig. S19 ³¹P NMR spectrum (THF-*d*₈, 298 K, 202 MHz) of rotaxane-branched dendrimer G2.

Fig. S20¹³C NMR spectrum (THF-*d*₈, 298 K, 126 MHz) of rotaxane-branched dendrimer G2.

Fig. S21 ¹H NMR spectrum (THF- d_8 , 298 K, 500 MHz) of rotaxane-branched dendrimer G3. 21/23

Fig. S22 ³¹P NMR spectrum (THF-*d*₈, 298 K, 202 MHz) of rotaxane-branched dendrimer G3.

Fig. S23 ¹³C NMR spectrum (THF-*d*₈, 298 K, 126 MHz) of rotaxane-branched dendrimer G3.

Section D. References

- 1. H.-B. Yang et al. Nat. Commun., 2018, 9, 3190.
- 2. F. Diederich et al. Chem. Eur. J., 2017, 23, 14153.