Supporting Information

Phloroglucinol heterodimers and bis-indolyl alkaloids from the Sponge-Derived Fungus *Aspergillus* sp. SCSIO 41018

Cui Guo,^{a,b} Pei Wang,^c Xiuping Lin,^a Limbadri Salendra,^{a,b} Fandong Kong,^c Shengrong Liao,^a Bin Yang,^a Xuefeng Zhou,^a Junfeng Wang^{*,a} and Yonghong Liu^{*,a,b,d}

Table of Contents				
Contents	page			
Experimental Details	5			
Table S1. Stable conformers of 3a–3g	10			
The strain's (Aspergillus sp. SCSIO41018) ITS sequence of the rDNA.	11			
Table S2 . ¹ H and ¹³ C NMR data in CDCl ₃ for 4–6 (700, 175 MHz, TMS, δ ppm)	12			
Table S3 . ¹ H and ¹³ C NMR data in CDCl ₃ for 7–9 (700, 175 MHz, TMS, δ ppm)	13			
Figure S1. The ORTEP drawing of compound 12	15			
Figure S2. The ¹ H NMR spectrum of gilluone A (1) inCD ₃ OD(700 MHZ)	16			
Figure S3. The ¹³ C NMR spectrum of gilluone A (1) in CD ₃ OD(175 MHz)	16			
Figure S4. The DEPT spectrum of gilluone A (1) in CD ₃ OD(175 MHz)	17			
Figure S5. The HSQC spectrum of gilluone A (1) in CD ₃ OD	17			
Figure S6. The ¹ H- ¹ H COSY spectrum of gilluone A (1) in CD ₃ OD	18			
Figure S7. The HMBC spectrum of gilluone A (1) in CD ₃ OD	18			
Figure S8. The HRESIMS spectrum of gilluone A (1)	19			
Figure S9. The UV spectrum of gilluone A (1)	20			
Figure S10 . The ¹ H NMR spectrum of gilluone B(2) inDMSO- $d_6(700 \text{ MHZ})$	21			
Figure S11. The ¹³ C NMR spectrum of gilluone B (2) in DMSO- $d_6(175 \text{ MHz})$	21			
Figure S12. The DEPT spectrum of gilluone B (2) in DMSO- $d_6(175 \text{ MHz})$	22			
Figure S13 . The HSQC spectrum of gilluone $B(2)$ in DMSO- d_6	22			
Figure S14 . The ¹ H- ¹ H COSY spectrum of gilluone B(2) in DMSO- d_6	23			
Figure S15 . The HMBC spectrum of gilluone B (2) in DMSO- d_6	23			
Figure S16. The HRESIMS spectrum of gilluone B (2)	24			
Figure S17. The UV spectrum of gilluone B (2)	25			
Figure S18. The ¹ H NMR spectrum of gilluone C (3) in CDCl ₃ (700 MHz)	26			
Figure S19. The ¹³ C NMR spectrum of gilluone C (3) in CDCl ₃ (175 MHz)	26			
Figure S20. The DEPT spectrum of gilluone C (3) in CDCl ₃ (175 MHz)	27			
Figure S21. The HSQC spectrum of gilluone C (3) in CDCl ₃	27			
Figure S22. The ¹ H- ¹ H COSY spectrum of gilluone C (3) in CDCl ₃	28			
Figure S23 . The HMBC spectrum of gilluone C (3) in CDCl ₂	28			

Figure S24. The NOESY spectrum of gilluone C (3) in $CDCl_3$	29
Figure S25 . The NOE difference experiments of gilluone C (3) in $CDCl_3$	30
Figure S26. The HRESIMS spectrum of gilluone C (3)	31
Figure S27. The UV spectrum of gilluone C (3)	32
Figure S28. The ¹ H NMR spectrum of asterriquinone I (4) in CDCl ₃ (700 MHz)	32
Figure S29. The ¹³ C NMR spectrum of asterriquinone I (4) in CDCl ₃ (175 MHz)	33
Figure S30. The DEPT spectrum of asterriquinone I (4) in CDCl ₃ (175 MHz)	33
Figure S31. The HSQC spectrum of asterriquinone I (4) in $CDCl_3$	34
Figure S32. The ¹ H- ¹ H COSY spectrum of asterriquinone I (4) in CDCl ₃	34
Figure S33. The HMBC spectrum of asterriquinone I (4) in CDCl ₃	35
Figure S34. The HRESIMS spectrum of asterriquinone I (4)	36
Figure S35. The UV spectrum of asterriquinone I (4)	37
Figure S36. The ¹ H NMR spectrum of asterriquinone J (5) in CDCl ₃ (700 MHz)	37
Figure S37. The ¹³ C NMR spectrum of asterriquinone J (5) in CDCl ₃ (175 MHz)	38
Figure S38. The DEPT spectrum of asterriquinone J (5) in CDCl ₃ (175 MHz)	38
Figure S39. The HSQC spectrum of asterriquinone J (5) in $CDCl_3$	39
Figure S40. The ¹ H- ¹ H COSY spectrum of asterriquinone J (5) in CDCl ₃	39
Figure S41. The HMBC spectrum of asterriquinone $J(5)$ in $CDCl_3$	40
Figure S42. The HRESIMS spectrum of asterriquinone J (5)	41
Figure S43. The UV spectrum of asterriquinone J (5)	42
Figure S44. The ¹ H NMR spectrum of asterriquinone K (6)in CDCl ₃ (700 MHz)	42
Figure S45. The ¹³ C NMR spectrum of asterriquinone K (6) in CDCl ₃ (175 MHz)	43
Figure S46. The DEPT spectrum of asterriquinone K (6) in CDCl ₃ (175 MHz)	43
Figure S47. The HSQC spectrum of asterriquinone K (6) in CDCl ₃	44
Figure S48. The ¹ H- ¹ H COSY spectrum of asterriquinone K (6) in CDCl ₃	44
Figure S49. The HMBC spectrum of asterriquinone K (6) in CDCl ₃	45
Figure S50. The HRESIMS spectrum of asterriquinone K (6)	46
Figure S51. The UV spectrum of asterriquinone K (6)	47
Figure S52. The ¹ H NMR spectrum of asterriquinol G (7) in CDCl ₃ (700 MHz)	47

Figure S53. The ¹³ C NMR spectrum of asterriquinol G (7) in CDCl ₃ (175 MHz)	48
Figure S54. The DEPT spectrum of asterriquinol G (7) in CDCl ₃ (175 MHz)	48
Figure S55. The HSQC spectrum of asterriquinol G (7) in CDCl ₃	49
Figure S56. The ¹ H- ¹ H COSY spectrum of asterriquinol G (7) in CDCl ₃	49
Figure S57. The HMBC spectrum of asterriquinol G (7) in CDCl ₃	50
Figure S58. The HRESIMS spectrum of asterriquinol G (7)	51
Figure S59. The UV spectrum of asterriquinol G (7)	52
Figure S60. The ¹ H NMR spectrum of asterriquinol H (8) in CDCl ₃ (700 MHz)	52
Figure S61. The ¹³ C NMR spectrum of asterriquinol H (8) in CDCl ₃ (175 MHz)	53
Figure S62. The DEPT spectrum of asterriquinol H (8) in CDCl ₃ (175 MHz)	53
Figure S63. The HSQC spectrum of asterriquinol H (8) in CDCl ₃	54
Figure S64. The ¹ H- ¹ H COSY spectrum of asterriquinol H (8) in CDCl ₃	54
Figure S65. The HMBC spectrum of asterriquinol H (8) in CDCl ₃	55
Figure S66. The HRESIMS spectrum of asterriquinol H (8)	56
Figure S67. The UV spectrum of asterriquinol H (8)	57
Figure S68. The ¹ H NMR spectrum of asterriquinol I (9) in CDCl ₃ (500 MHz)	57
Figure S69. The ¹³ C NMR spectrum of asterriquinol I (9) in CDCl ₃ (125 MHz)	58
Figure S70. The DEPT spectrum of asterriquinol I (9) in CDCl ₃ (125 MHz)	58
Figure S71. The HSQC spectrum of asterriquinol I (9) in CDCl ₃	59
Figure S72. The ¹ H- ¹ H COSY spectrum of asterriquinol I (9) in CDCl ₃	59
Figure S73. The HMBC spectrum of asterriquinol I (9) in $CDCl_3$	60
Figure S74. The HRESIMS spectrum of asterriquinol I (9)	61
Figure S75. The UV spectrum of asterriquinol I (9)	62

Experimental Details

General Experimental Procedures. NMR spectra were obtained on a Bruker Avance spectrometer (Bruker) operating at 500 and 700 MHz for ¹HNMR 125 and 175 MHz for ¹³CNMR with TMS as the internal reference. HRESIMS spectra data were measured with a Brukerma Xisquadrupole-time-of-flight mass spectrometer (Bruker). Optical rotations were recorded on a PerkinElmer MPC 500 (Waltham) polarimeter. UV spectra were acquired using a Shimadzu UV-2600 PC spectrometer (Shimadzu). ECD spectra were measured with a Chirascan circular dichroism spectrometer (Applied Photophysics). X-ray diffraction intensity data were collected on a CrysAlis PRO CCD area detector diffractometer with graphite-monochromated Cu K α radiation $(\lambda = 1.54184)$. TLC and column chromatography (CC) were performed on plates precoated with silica gel GF254 (10-40 μ m) and over silia gel (200-300 mesh) (Qingdao Marine Chemical Factory) and Sephadex LH-20 (Amersham Biosciences), respectively. Spots were detected on TLC (Qingdao Marine Chemical Factory) under 254 nm UV light. All solvents employed were of analytical grade (Tianjin Fuyu Chemical and Industry Factory). Semi-preparative HPLC was carried out using an ODS column (YMC-pack ODS-A, YMC Co. Ltd., 10\250 mm, 5 \u03c0mm, 2 mL/min). The (R)/(S)-(-)- α -methoxy- α -(trifluoromethyl)phenylacetyl chloride (Beijing J&K Scientific) were used as chiral reagent in the Mosher's method. The artificial sea salt was a commercial product (Guangzhou Haili Aquarium Technology Company).

Fungal Material. The strain was isolated from sponge (Xuwen Guangdong Provience). This strain was stored on MB ager slants at 4°C and then deposited at the Marine Microbial collection center of CAS Key Laboratory of Tropical Marine Bio-resources and Ecology. It was identified as a member of the genus *Aspergillus* sp. SCSIO41018on the basis of its ITS phylogenetic analyses of the rDNA as described in the Supporting Information. (NCBI Gen Bank accession number MH109740.1).

Fermentation. The strain *Aspergillus* sp. SCSIO41018 stored on MB ager slants at 4 °C was cultured on MB ager plants and incubated at 25°C for 7 days. Seed medium (malt extract 15 g, sea salt 10 g, distilled water 1.0 L) inoculated with *Aspergillus* sp. SCSIO41018 and incubated at 25 °C for 2 days on a rotating shaker (180 rpm, 25 °C). Then, large-scale fermentation in a solid rice medium of 1000 mL flasks (rice 200 g, sea salt 2.5 g, distilled water 200 mL) (n=48) was

inoculated with 10 mL of seed solution. Flasks were incubated at 25 °C under static condition and fermented for 60 days.

Extraction and Isolation. Strain cultures were harvested after 60 days. Then fungal mycelium was cut into small pieces and immersed into acetone for 2 days, sonicated for 10min and filtered using gauze, yielding the rice solid medium and water phases, which were extracted with EtOAC (6*1L and 6*10L, respectively). Both organic extracts were combined to gain 220 g of crude extract. The all of crude EtOAC extract was subjected to silica gel column chromatography and eluted with petroleum ether/ CH_2Cl_2 in gradient eluent (100:0–0:100), and followed by $CH_2Cl_2/MeOH$ in gradient eluent (99:1–0:100) to yield eight fractions (fractions 1–8). Fraction 3 (38.0 g) was applied to C-18 reversed-phase column (H₂O/MeCN, 95:5-0:100), gaining seventeen subfractions (Fr.3-1-Fr.3-17). Fr.3-12 was further purified by semi-preparative reversedphase HPLC (40% MeCN/H₂O, 2 mL/min) to yield 7 (3.2 mg, t_R 22 min). Fr.₃₋₁₄ was separated by semi-preparative reversed-phase HPLC (80% MeOH/H₂O, 2 mL/min) to yield 8 (8.3 mg, t_R 20 min), and 10 (59.3 mg, t_R25 min). Fr.₃₋₁₅ was separated by semi-preparative reversed-phase HPLC (75% MeOH/H₂O, 2 mL/min) to yield **3** (3.6 mg, $t_{\rm R}$ 11 min). Fraction 4 (15.4 g) was applied to C-18 reversed-phase column (H₂O/MeOH, 95:5–0:100), gaining eighteen subfractions (Fr.₄₋₁–Fr.₄₋₁₈). F₄₋₄ was further purified by semi-preparative reversed-phase HPLC (45% MeCN/H₂O, 2 mL/min) to yield 2 (20 mg, t_R 24 min). Fr._{4.9} was further purified by semi-preparative reversed-phase HPLC (60% MeOH/H₂O, 2 mL/min) to yield 1 (2.8 mg, t_R18 min). Fr.₄₋₁₃ was further purified by semipreparative reversed-phase HPLC (56% MeOH/H₂O, 2 mL/min) to yield 14 (1.5 mg, t_R 23 min). Fr.₄₋₁₄ was purified by HPLC (72% MeOH/H₂O, 2 mL/min) to yield 12 (38.9 mg, t_R 40 min). Fr.₄₋ $_{15}$ was directly separated by HPLC (70% MeOH/H₂O, 2 mL/min) to yield **13** (3.3 mg, $t_{\rm R}$ 34 min), **4** (3 mg, t_R 42 min) and 6 (8.7 mg, t_R 45 min). Fr.₄₋₁₆ was purified by HPLC (68% MeCN/H₂O, 2 mL/min) to yield 9 (35.8 mg, t_R 21 min). Fr.₄₋₁₈ was further separated by HPLC (78% MeOH/H₂O, 2 mL/min) to yield 5 (8.0 mg, t_R 17 min) and 11 (2 mg, t_R 19 min).

Gilluone A (1): yellow orthorhombic (MeOH); mp 184-185 °C; $[\alpha]^{25}_{D}$ +14.5 (*c* 0.1 MeOH); UV (MeOH) λ_{max} (log ε) 253 (3.95), 204 (3.96); ECD (0.4 mg/mL, MeOH) λ_{max} ($\Delta \varepsilon$): 307 (-2.57), 262 (3.75), 226 (0.82), 205 (4.26) nm; ¹H NMR (CD₃OD, 700MHZ) and ¹³C NMR (CD₃OD, 175MHZ) data, Table 1; HRESIMS at *m/z* 435.2011 [M+H]⁺ (calcd for C₂₃H₃₁O₈, 435.2013). X-ray Crystallographic Data of **1**. Gilluone A (**1**) was crystallized from methanol to give yellow crystal. Crystal data: orthorhombic, space group P2₁2₁2₁ with a = 8.0029 (10) Å, b = 15.3468 (3) Å, c = 17.8042 (3) Å, V = 2186.69 (6) Å³, Z = 4, $P_{calc} = 1.320$ g/cm³, R = 0.0361, $wR_2 = 0.0907$. The absolute configuration was determined on the basis of a Flack parameter of 0.01 (7). Crystallographic data (excluding structure factors) for structure **1** in this paper have been deposited with Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1885045. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK [fax: +44 (0)-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk].

Gilluone B (2): yellow crystal; mp177-178 °C; $[\alpha]^{25}_{D}$ +34.2 (*c* 0.1 MeOH); UV (MeOH) λ_{max} (log ε): 394 (3.57), 314 (3.78), 246 (4.12), 203 (4.09) nm; ECD (0.4 mg/mL, MeOH) λ_{max} ($\Delta \varepsilon$) 390 (+6.27), 310 (-12.18), 279 (-4.50), 249 (-6.32), 206 (+10.55) nm; ¹H and ¹³C NMR data, Table 1; HRESIMS at *m/z* 519.2585 [M+H]⁺ (calcd for C₂₈H₃₉O₉, 519.2589).

X-ray Crystallographic Data of **2**. Gilluone B (**2**) was crystallized from methanol to give yellow crystal. Crystal data: orthorhombic, space group P2₁2₁2₁ with a = 8.0907 (8) Å, b = 25.4976 (3) Å, c = 41.3088 (4) Å, V = 8521.69 (15) Å³, Z = 4, $P_{calc} = 1.271$ g/cm³, R = 0.0370, $wR_2 = 0.0941$. The absolute configuration was determined on the basis of a Flack parameter of 0.03 (5). Crystallographic data (excluding structure factors) for structure **2** in this paper have been deposited with Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1900153. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK [fax: +44 (0)-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk].

Gilluone C (3): yellow powder; $[\alpha]^{25}_{D}$ -23.1 (*c* 0.1 MeOH); UV (MeOH) λ_{max} (log ε): 274 (3.24), 218 (3.73), 203 (3.91) nm; ECD (0.3 mg/mL, MeOH) λ_{max} ($\Delta \varepsilon$) 371 (+0.15), 336 (+0.03), 311 (+0.20), 260 (-0.46), 243 (+0.10), 201 (-2.52) nm; ¹H and ¹³C NMR data, Table1; HRESIMS at *m/z* 534.2685 [M+H]⁺ (calcd for C₂₈H₄₀NO₉, 534.2698).

Asterriquinone I (4): dark purple powder; $[\alpha]^{25}_{D}$ +20.0, (*c* 0.04 MeOH); UV (MeOH) λ_{max} (log ε): 218 (3.84), 221 (4.26), 203 (4.25); ¹H and ¹³C NMR data, TableS2; (+)-HRESIMS at *m/z* 573.2359 [M+Na]⁺ (calcd for C₃₄H₃₄N₂NaO₅, 573.2360).

Asterriquinone J (5): dark purple powder; $[\alpha]^{25}_{D}$ -96.0, (*c* 0.03 MeOH); UV (MeOH) λ_{max} (log ε): 290 (4.10), 282 (4.13), 221 (4.51); ¹H and ¹³C NMR data, TableS2; HRESIMS at *m/z* 585.2170 [M-H]⁻ (calcd for C₃₄H₃₄ClN₂O₅, 585.2162).

Asterriquinone K (6): dark purple powder; $[\alpha]^{25}_{D}$ +4.6 (*c* 0.03 MeOH); UV (MeOH) λ_{max} (log ε): 290 (3.96), 282 (3.98), 221 (4.38), 205 (4.30); ¹H and ¹³C NMR data, TableS2; HRESIMS at *m/z* 583.2829 [M+H]⁺ (calcd for C₃₅H₃₉N₂O₆, 583.2803).

Asterriquinol G (7): dark purple powder; $[\alpha]^{25}_{D}$ -18.73 (*c* 0.1 MeOH); UV (MeOH) λ_{max} (log ε): UV (MeOH) λ_{max} (log ε): 283 (4.40), 223 (4.83), 206 (4.75);¹H and ¹³C NMR data, TableS3; HRESIMS at *m/z* 599.3119 [M+H]⁺ (calcd for C₃₆H₄₃N₂O₆, 599.3116).

Asterriquinol H (8): yellow powder; UV (MeOH) λ_{max} (log ε): 281 (4.37), 222 (4.84); ¹H and ¹³C NMR data, TableS3; HRESIMS at *m/z* 551.2903 [M+H]⁺(calcd for C₃₅H₃₉N₂O₄, 551.2904).

Asterriquinol H (9): yellow powder; UV (MeOH) λ_{max} (log ε): 291 (4.19), 283 (4.21), 224 (4.71); ¹H and ¹³C NMR data, TableS3; HRESIMS at *m/z* 505.2099 [M+Na]⁺ (calcd for $C_{30}H_{30}N_2NaO_4$, 505.2098).

X-ray Crystallographic Data of **12**. Asterriquinone-C-1(**12**) was crystallized from methanol to give yellow crystal. Crystal data: monoclinic, space group Cc with a = 14.3037 (10) Å, b = 14.0845 (10) Å, c = 23.7866 (2) Å, V = 4789.36 (6) Å³, Z = 4, $P_{calc} = 1.319$ g/cm³, R = 0.0412, $wR_2 = 0.1109$. Crystallographic data (excluding structure factors) for structure **12**in this paper have been deposited with Cambridge Crystallographic Data Centre as supplementary publication number CCDC 1900155. Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB21EZ, UK [fax: +44 (0)-1223-336033 or e-mail: deposit@ccdc.cam.ac.uk].

Preparation of MTPA Ester of 4 by Modified Mosher's Method.

Asterriquinone I (4): (0.6 mg for each) was reacted with either R/S-(+)-MTPA chloride (2.0 μ L) in 200 μ L of anhydrous pyridine for 12h at room temperature. The reaction mixture was separated by semi-preparative HPLC on ODS (82% MeCN/H₂O, V/V) to afford the *S*-MTPA ester **4a** (1.6 mg, t_R 23 min) and *R*-MTPA ester **4b** (1.3 mg, t_R 23 min), respectively.

Compound 4a: ¹H NMR (CDCl₃, 700 MHz) $\delta_{\rm H}$ 9.66 (d, J =12.0, 1H, H-1'), 8.14 (s, 1H, H-1"), 7.52 (d, J =7.6, 1H, H-2'), 7.47 (d, J =8.0, 1H, H-4'), 7.34 (d, J =8.19, 1H, H-7"), 7.30 (d, J =7.7, 1H, H-4"), 7.18 (t, J =7.6, 1H, H-6"), 7.11 (t, J =7.5, 1H, H-5'), 7.10 (t, J =7.5, 1H, H-5"),

6.93 (d, *J* =7.1, 1H,H-6'), 6.14, (dd, *J* =17.4, 10.5, 2H, H₂-11"), 5.66 (t, *J* =4.8, 1H,H-11'), 5.22 (d, *J* =17.5, 1H, H_a-12"), 5.16 (d, *J* =10.6, 1H, H_b-12"), 4.95 (s, 1H, H_a-13'), 4.82 (s, 1H, H_b-13'), 3.80 (d, *J* =5.3, 3H, H₃-7), 3.70 (s, 3H, H₃-8), 3.42 (dt, *J* =14.3, 2.8, 1H, H_a-10'), 3.16 (dd, *J* =14.1, 8.5, 1H, H_b-10'), 1.83 (s, 3H, H₃-14'), 1.51 (s, 3H, H₃-13"), 1.51 (s, 3H, H₃-14"). ESIMS at *m*/*z* 767.2 [M+H]⁺.

Compound 4b: ¹H NMR (CDCl₃, 700 MHz) $\delta_{\rm H}$ 9.38 (d, J =11.7, 1H, H-1'), 8.14 (s, 1H, H-1"), 7.48 (d, J =7.8, 1H, H-2'), 7.48 (d, J =7.8, 1H, H-4'), 7.34 (d, J =8.1, 1H, H-7"), 7.30 (d, J =7.7, 1H, H-4"), 7.18 (t, J =8.1, 1H, H-6"), 7.11 (t, J =8.8, 1H, H-5'), 7.09 (t, J =2.2, 1H, H-5"), 7.00 (d, J =7.1, 1H, H-6'), 6.14, (dd, J =17.4, 10.5, 2H, H₂-11"), 5.61 (t, J =8.7, 1H, H-11'), 5.22 (d, J =18.1, 1H, H_a-12"), 5.17 (d, J =10.6, 1H, H_b-12"), 4.95 (s, 1H, H_a-13'), 4.82 (s, 1H, H_b-13'), 3.80 (d, J =5.3, 3H, H₃-7), 3.70 (s, 3H, H₃-8), 3.38 (dt, 1H, H_a-10'), 3.19 (dd, J =14.3, 6.9, 1H, H_b-10'), 1.83 (s, 3H, H₃-14'), 1.51 (s, 3H, H₃-13"), 1.51 (s, 3H, H₃-14"). ESIMS at *m/z* 767.2 [M+H]⁺. **Biological Assay**

Antibacterial assays. The antibacterial activities against three gram-positive bacteria, *Methicillin-resistant Staphyloccocusaureus, Staphyloccocusaureus, Enterococcus faecalis* and three gram-negative bacteria, *Acinetobacter baumannii, Escherichia coli, Klebsiellapneumonia* were evaluated by an agar dilution method.^{S1} The tested strains were cultivated in LB agar plates for bacteria and in YPD agar plates for C. albicans at 37 °C. Compounds **1–3** and positive control (ciprofloxacin lactate) were dissolved in MeOH at the concentration of 100 μg/mL. A 10μL quantity of test solution was absorbed by a paper disk (5 mm diameter) and placed on the assayplates. After 24 h incubation, zones of inhibition (mm in diameter) were recorded. If the inhibitionzone was observed, the compounds diluted to different concentrations by the continuous 2-folddilution methods. The minimum inhibitory concentrations (MICs) were defined as the lowestconcentration at which no microbial growth could be observed.

Cytotoxic assays. Cytotoxic activities (five human cancer cell Lines, K562, BEL-7042, SGC-7901, A549 and Hela cells) were evaluated using the CCK-8 method as described previously.^{S2} In the CCK-8 assay, cancer cell Lines were grown in RPMI-1640 supplemented with 10% FBS under a humidified atmosphere of 5% CO₂ and 95% air at 37 °C. Cell suspension, 100 μ L, at a density of 5 × 10⁵ cell mL-1 was plated in 96-well microtiter plates and then exposed to varying concentrations (10⁻⁵–10⁻¹² M) of compounds after cultivation for 24 h. Three days later,

10 μ L of CCK-8 solution was added 4 h before detection. Then the absorbency (A450 value) was measured, and the growth rates of cells were computed.

Conformer	Conformation	E (Hartree)	Energy (kcal/mol)	Percent (%)
3a	X + +	-1648.9240293	-1034715.32827	5.73
3b	A A A A	-1648.9266285	-1034716.95929	90.13
3с	X HAY	-1648.9214478	-1034713.70836	0.37
3d	XIII S	-1648.9234386	-1034714.95761	3.06
3e	X	-1648.9200699	-1034712.84731	0.09
3f	AFTAN	-1648.9198166	-1034712.68476	0.07
3g	X	-1648.9218252	-1034713.94518	0.55

Table S1. Stable conformers of 3a–3g

Theory and Calculation Details. The calculations were performed by using the density functional theory (DFT) as carried out in the Gaussian 09.^{S3} The preliminary conformational distributions search were performed by HyperChem 7.5 software. All ground-state geometries were optimized at theB3LYP/6-31G(d) level. Conformers within a 2 kcal/mol energy threshold from the global minimum were selected to calculate the electronic transitions.^{S4} The overall theoretical ECD spectra were obtained according to the Boltzmann weighting of each conformers.

The percentage of each conformer for 3a-3g was calculated from the energy combined with the ratio between them. Solvent effects of methanol solution were evaluated at the same DFT level by using the SCRF/PCM method.^{S5}

References

- S1. Wang, J. F., Wei, X. Y., Qin, X. C., Lin, X. P., Zhou, X. F., Liao, S. R., Yang, B., Liu, J., Tu, Z. C., Liu, Y. H. Org. Lett. 2015, 17: 656–659.
- S2. Wang, J. F., He, W. J., Huang, X. L., Tian, X. P., Liao, S. R., Yang, B., Wang, F. Z., Zhou, X. J., Liu, Y. H. J. Agric. Food Chem. 2016, 64: 2910–2916.
- S3. Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A.Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G.Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y.Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J.J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
- S4. (a) Casida, M. E. In Recent Advances in Density Functional Methods, part I; Chong, D. P., Eds.; World Scientific: Singapore, 1995; pp 155–192. (b) Gross, E. K. U.; Dobson, J. F.; Petersilka, M. Top. *Curr. Chem.* 1996, *181*, 81–172. (c) Gross, E. K. U.; Kohn, W. *Adv.Quantum Chem.* 1990, *21*, 255–291. (d) Runge, E.; Gross, E. K. U. *Phys. Rev. Lett.* 1984, *52*, 997–1000.
- S5. (a) Miertus, S.; Tomasi, J. Chem. Phys. 1982, 65, 239–245. (b) Tomasi, J.; Persico, M. Chem. Rev. 1994, 94, 2027–2094. (c) Cammi, R.; Tomasi, J. J. Comp. Chem. 1995, 16, 1449–1458.

The strain's (Aspergillus sp. SCSIO 41018) ITS sequence of the rDNA.

CATATCAATA

no.		4		5	_	6
	$\delta_{ m C}$	$\delta_{ m H}\left(J,{ m Hz} ight)$	$\delta_{ m C}$	$\delta_{ m H}\left(J,{ m Hz} ight)$	$\delta_{ m C}$	$\delta_{ m H}\left(J,{ m Hz} ight)$
1	183.9		184.2		184.2	
2	154.4		154.5		154.3	
3	120.7		122.6		120.7	
4	183.8		183.7		183.8	
5	156.4		156.3		156.4	
6	122.3		122.1		122.4	
7	60.9	3.80, s	60.9	3.81, d (2.7)	60.8	3.79, d (3.3)
8	60.2	3.70, s	60.2	3.69, s	60.2	3.69, s
1'		9.82, brs		9.75, brs		10.31, brs
2'	128.2	7.62, d (1.89)	128.2	7.61, s	128.3	7.62, q (1.4)
3'	105.5		105.6		105.3	
4'	120.2	7.47, d (8.05)	120.4	7.48, d (7.8)	120.1	7.47, d (8.1)
5'	120.4	7.11, t (7.21)	120.4	7.11, m	120.3	7.10, t (7.2)
6'	123.6	7.02, d (7.0)	123.3	7.02, d (6.9)	123.1	6.99, d (7.0)
7'	122.7		122.6		123.4	
8'	136.0		135.8		135.8	
9'	127.0		127.1		127.1	
10'	39.5	3.18, dd (14.7, 8.5)	35.7	3.17, d (14.6)	36.1	2.99, m
		3.09, dt (17.7, 2.9)		3.04, dd (9.0, 9.2)		
11'	77.5	4.46, t (6.8)	80.7	3.93, m	78.2	3.83, qd (5.6,1.6)
12'	147.6		75.5		77.7	
13'	111.0	5.04, s	28.6	1.68, s	18.9	1.25, s
		4.89, s				

Table S2. ¹H and ¹³C NMR data in CDCl₃ for **4–6** (700, 175 MHz, TMS, δ ppm)

14'	18.5	1.87, s	26.9	1.75, s	20.4	1.29, s
15'					49.4	3.28, s
1''		8.13, brs		8.16, brs		8.14, brs
2''	142.2		142.3		142.2	
3''	101.9		101.8		101.9	
4''	118.9	7.29, d (7.8)	118.8	7.29, d (7.9)	118.9	7.30, d (7.9)
5''	120.5	7.09, t (7.7)	120.5	7.11, m	120.4	7.10, t (7.2)
6''	122.2	7.16, t (7.1)	122.2	7.16, t (7.9)	122.2	7.17, m
7''	110.8	7.32, d (8.0)	110.8	7.32, m	110.8	7.33, d (8.1)
8''	134.6		134.6		134.6	
9''	130.0		130.0		130.0	
10''	39.5		39.4		39.5	
11''	145.6	6.13, dd (17.4, 10.6)	145.6	6.13, dd (17.4,10.5)	145.6	6.13, dd (17.4,10.5)
12''	112.5	5.21, d (17.4)	112.4	5.21, d (17.4)	112.4	5.21, d (0.6)
		5.16, d (11.3)		5.15, d (10.6)		5.15, d (0.7)
13''	27.0	1.50, d (2.6)	27.2	1.50, s	26.9	1.50, s
14''	27.2	1.50, d (2.6)	27.2	1.50, d (2.6)	27.2	1.50, s

Table S3. ¹H and ¹³C NMR data in CDCl₃ for **7–9** (TMS, δ ppm)

no	7 ^a			<u>8</u> a		9 ^b	
	$\delta_{ m C}$	$\delta_{ m H}\left(J,{ m Hz} ight)$	$\delta_{ m C}$	$\delta_{\mathrm{H}}(J,\mathrm{Hz})$	$\delta_{ m C}$	$\delta_{\mathrm{H}}(J,\mathrm{Hz})$	
1	145.70		148.1		145.7	8.45, brs	
2	142.13		145.7		148.1		

115.66		115.4		115.2	
143.34		142.1		143.3	
148.10		143.3		142.1	
122.76		120.7		122.8	
61.15	3.49, s	61.1	3.56, s	60.2	3.51, s
60.78	3.42, s	61.0	3.50, s	60.8	3.55, s
60.95	3.50, s	60.8	3.41, s	60.9	3.42, s
	10.08, brs		8.43, brs		8.45, brs
125.10	7.50, d (2.31)	124.5	7.46, d (2.2)	124.9	7.48, s
107.55		108.3		108.0	
119.73	7.53, dd (7.77, 3.15)	119.1	7.50, d (7.8)	121.2	7.67, d (7.9)
119.62	7.09, m	120.2	7.12, t (7.1)	120.0	7.19, q (7.8)
122.89	7.00, d (6.93)	121.6	7.08, m	122.3	7.26, m
123,63		124.1		111.3	7.46, d (8.1)
136.27		135.5		136.2	
127.22		127.0		127.1	
36.14	3.03, m	31.0	3.65, d (7.1)		
78.19	3.90, dd (8.33, 1.40)	122.5	5.51, t (7.1)		
77.78		133.50			
19.05	1.27, s	25.9	1.83, s		
20.42	1.30, s	18.2	1.87, s		
49.39	3.30, s				
	8.04, s		8.06, brs		8.04, brs
140.70		140.7		140.7	
104.53		104.4		104.4	
119.62	7.33, d (8.33)	119.4	7.34, t (7.1)	110.3	7.35, d (8.5)
119.61	7.09, m	119.6	7.08, m	121.7	7.19, q (7.8)
121.60	7.17, td	122.0	7.17, m	119.65	7.08, t (7.6)
110.22	7.34, d (8.33)	110.3	7.34, t (7.1)	119.58	7.33, d (8.5)
	115.66 143.34 148.10 122.76 61.15 60.78 60.95 125.10 107.55 119.73 119.62 122.89 $123,63$ 136.27 127.22 36.14 78.19 77.78 19.05 20.42 49.39 140.70 104.53 119.61 121.60 110.22	115.66 143.34 148.10 122.76 61.15 3.49, s 60.78 3.42, s 60.95 3.50, s 10.08, brs 125.10 7.50, d (2.31) 107.55 119.73 7.53, dd (7.77, 3.15) 119.62 7.09, m 122.89 7.00, d (6.93) 123,63 136.27 127.22 36.14 3.03, m 77.78 19.05 1.27, s 20.42 1.30, s 49.39 3.30, s 8.04, s 140.70 104.53 119.62 119.61 7.09, m 121.60 7.17, td 110.22 7.34, d (8.33)	115.66115.4 143.34 142.1 148.10 143.3 122.76 120.7 61.15 3.49 , s 61.1 60.78 3.42 , s 61.0 60.95 3.50 , s 60.8 10.08 , brs125.10 7.50 , d (2.31) 124.5 107.55 108.3 119.73 7.53 , dd (7.77, 3.15) 119.1 119.62 7.09 , m 120.2 122.89 7.00 , d (6.93) 121.6 $123,63$ 124.1 136.27 135.5 127.22 127.0 36.14 3.03 , m 31.0 78.19 3.90 , dd (8.33, 1.40) 122.5 77.78 133.50 19.05 1.27 , s 25.9 20.42 1.30 , s 18.2 49.39 3.30 , s 8.04 , s 140.70 140.7 104.4 119.61 7.09 , m 119.6 121.60 7.17 , td 122.0 110.22 7.34 , d (8.33) 110.3	115.66115.4 143.34 142.1 148.10 143.3 122.76 120.7 61.15 $3.49, s$ 61.1 50.78 $3.42, s$ 61.0 50.78 $3.42, s$ 61.0 50.95 $3.50, s$ 60.8 50.95 $3.50, s$ 60.8 $10.08, brs$ $8.43, brs$ 125.10 $7.50, d (2.31)$ 124.5 $7.46, d (2.2)$ 107.55 107.55 108.3 119.73 $7.53, dd (7.77, 3.15)$ 119.62 $7.09, m$ 120.2 $7.12, t (7.1)$ 122.89 $7.00, d (6.93)$ 121.6 $7.08, m$ $123,63$ 124.1 136.27 135.5 127.22 127.0 36.14 $3.03, m$ $3.09, dd (8.33, 1.40)$ 122.5 $5.51, t (7.1)$ 77.78 133.50 19.05 $1.27, s$ 25.9 $1.83, s$ 20.42 $1.30, s$ $1.30, s$ 18.2 $1.87, s$ 49.39 $3.30, s$ $8.04, s$ $8.06, brs$ 140.70 140.7 104.53 104.4 119.62 $7.33, d (8.33)$ 119.4 $7.34, t (7.1)$ 119.61 $7.09, m$ 119.6 $7.08, m$ 121.60 $7.17, td$ 122.00 $7.17, m$ 110.22 $7.34, d (8.33)$ 110.3 $7.34, t (7.1)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

8''	134.77		134.8		130.4	
9''	130.47		130.4		134.8	
10''	39.26		39.9		39.9	
11''	146.72	6.17, dd (17.43,	146.7	6.17, dd (17.4, 10.5)	146.6	6.18, dd (17.5, 10.6)
12''	111.67	5.21, d (17.43)	111.7	5.21, dd (17.4, 1.1)	111.7	5.22, dd (17.5, 0.9)
		5.11, d (10.57)		5.11, dd (10.5, 1.1)		5.12, dd (10.6, 1.0)
13''	26.66	1.45, s	26.6	1.45, s	26.66	1.46, s
14''	26.60	1.44, s	26.7	1.44, s	26.58	1.45, s
a700,	175 MHz. ^b 500, 12	25 MHz.				

Figure S1. The ORTEP drawing of compound12

Figure S2. The ¹H NMR spectrum of gilluone A (1) in CD₃OD (700 MHZ)

Figure S3. The ¹³C NMR spectrum of gilluone A (1) in CD₃OD (175 MHz)

Figure S4. The DEPT spectrum of gilluone A (1) in CD₃OD (175 MHz)

Figure S5. The HSQC spectrum of gilluone A (1) in CD₃OD

Figure S6. The ¹H-¹H COSY spectrum of gilluone A (1) in CD₃OD

Figure S7. The HMBC spectrum of gilluone A (1) in CD₃OD

Figure S8. The HRESIMS spectrum of gilluone A (1)

Figure S9. The UV spectrum of gilluone A (1)

Figure S10. The ¹H NMR spectrum of gilluoneB (2) inDMSO- d_6 (700 MHz)

Figure S11. The ¹³C NMR spectrum of gilluone B (2) in DMSO- d_6 (175 MHz)

Figure S12. The DEPT spectrum of gilluone B (2) in DMSO-*d*₆(175 MHz)

Figure S13. The HSQC spectrum of gilluoneB (2) in DMSO- d_6

Figure S14. The ¹H-¹H COSY spectrum of gilluoneB (2) in DMSO- d_6

Figure S15. The HMBC spectrum of gilluoneB (2) in DMSO- d_6

Figure S16. The HRESIMS spectrum of gilluoneB (2)

Figure S17. The UV spectrum of gilluoneB (2)

Figure S18. The ¹H NMR spectrum of gilluone C(3) in CDCl₃ (700 MHz)

Figure S19. The ¹³C NMR spectrum of gilluone C (3) in CDCl₃ (175 MHz)

Figure S20. The DEPT spectrum of gilluone C (3) in CDCl₃ (175 MHz)

Figure S21. The HSQC spectrum of gilluone C (3) in CDCl₃

Figure S22. The $^{1}H^{-1}H$ COSY spectrum of gilluone C(3) in CDCl₃

Figure S23. The HMBC spectrum of gilluone C (3) in CDCl₃

Figure S24. The NOESY spectrum of gilluone C(3)

Figure S25. The NOE difference experiments of gilluone C (3) in CDCl₃

Figure S26. The HRESIMS spectrum of gilluone C (3)

Figure S27. The UV spectrum of gilluone C (3)

Figure S28. The ¹H NMR spectrum of asterriquinone I (4) in CDCl₃ (700 MHz)

Figure S29. The ¹³C NMR spectrum of asterriquinone I (4) in CDCl₃ (175 MHz)

Figure S30. The DEPT spectrum of asterriquinone I (4) in CDCl₃ (175 MHz)

Figure S31. The HSQC spectrum of asterriquinone I (4) in CDCl₃

Figure S32. The ¹H-¹H COSY spectrum of asterriquinone I (4) in CDCl₃

Figure S33. The HMBC spectrum of asterriquinone I (4) in CDCl₃

Figure S34. The HRESIMS spectrum of asterriquinone I (4)

Figure S35. The UV spectrum of asterriquinone I (4)

Figure S36. The ¹H NMR spectrum of asterriquinone J (5)in CDCl₃ (700 MHz)

Figure S37. The ¹³C NMR spectrum of asterriquinone J (5) in CDCl₃ (175 MHz)

Figure S38. The DEPT spectrum of asterriquinone J (5) in CDCl₃ (175 MHz)

Figure S39. The HSQC spectrum of asterriquinone J (5) in CDCl₃

Figure S40. The ¹H-¹H COSY spectrum of asterriquinone J (5) in CDCl₃

Figure S41. The HMBC spectrum of asterriquinone J (5) in CDCl₃

Figure S42. The HRESIMS spectrum of asterriquinone J (5)

Figure S43. The UV spectrum of compound asterriquinone J (5)

184.2142 183.7845

Figure S45. The ¹³C NMR spectrum of asterriquinone K (6) in CDCl₃(175 MHz)

Figure S46. The DEPT spectrum of asterriquinone K (6) in CDCl₃

Figure S47. The HSQC spectrum of asterriquinone K (6) in CDCl₃

Figure S48. The ¹H-¹H COSY spectrum of asterriquinone K (6) in CDCl₃

Figure S49. The HMBC spectrum of asterriquinone K (6) in CDCl₃

Figure S50. The HRESIMS spectrum of asterriquinone K (6)

Figure S51. The UV spectrum of asterriquinone K (6)

Figure S52. The ¹H NMR spectrum of asterriquinol G (7) in CDCl₃

Figure S53. The ¹³C NMR spectrum of asterriquinol G (7) in CDCl₃(175 MHz)

Figure S54. The DEPT spectrum of asterriquinol G (7) in CDCl₃

Figure S55. The HSQC spectrum of asterriquinol G (7) in CDCl₃

Figure S56. The $^{1}H^{-1}H$ COSY spectrum of asterriquinol G (7) in CDCl₃

Figure S57. The HMBC spectrum of asterriquinol G (7) in CDCl₃

Figure S58. The HRESIMS spectrum of asterriquinol G (7)

Figure S59. The UV spectrum of asterriquinol G (7)

Figure S60. The ¹H NMR spectrum of asterriquinol H (8) in CDCl₃ (700 MHz)

Figure S61. The ¹³C NMR spectrum of asterriquinol H (8) in CDCl₃ (175 MHz)

11.0 ΛU 1.10 -0 -10 NH 20 1 റ 00 -m0-30 Ò 00 40 -50 10 · · · · · · 0 -60 I óн HN-70 Ê -80 (mdd) 90 100 7 110 0 0 9 9.00 120 . 130 140 Ø 150 160 170 180 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 f2₍ppm₎ 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

Figure S62. The DEPT spectrum of asterriquinol H (8) in CDCl₃ (175 MHz)

Figure S63. The HSQC spectrum of asterriquinol H (8) in CDCl₃

Figure S64. The $^{1}H^{-1}H$ COSY spectrum of asterriquinol H (8) in CDCl₃

Figure S65. The HMBC spectrum of asterriquinol H (8) in CDCl₃

Figure S66. The HRESIMS spectrum of asterriquinol H (8)

Figure S67. The UV spectrum of compound asterriquinol H (8)

Figure S68. The ¹H NMR spectrum of asterriquinol I (9) in CDCl₃

Figure S69. The ¹³C NMR spectrum of asterriquinol I (9) in CDCl₃ (125 MHz)

Figure S70. The DEPT spectrum of asterriquinol I (9) in CDCl₃

Figure S71. The HSQC spectrum of asterriquinol I (9) in CDCl₃

Figure S72. The ¹H-¹H COSY spectrum of asterriquinol I (9) in CDCl₃

Figure S73. The HMBC spectrum of asterriquinol I (9) in CDCl₃

Figure S74. The HRESIMS spectrum of asterriquinol I (9)

Figure S75. The UV spectrum of asterriquinol I (9)