Bifunctional Brønsted Base Catalyzed Inverse-Electron-Demand Aza-Diels–Alder Reactions of Saccharin-Derived 1-Azadienes with Azlactones

Xiao-Rui Ren^a, Jun-Bing Lin^b, Xiu-Qin Hu^a and Peng-Fei Xu^{*, a}

 ^a State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
 ^b Shaanxi Key Laboratory of Chemical Reaction Engineering, College of Chemistry

and Chemical Engineering, Yan'an University, Yan'an 716000, China

Contents

1. General Information	S2
2. Preliminary Optimization of the IEDDA Reaction	S3
3. General Procedure and Spectra Data of Products	S6
3.1 General Procedure for the Synthesis of Compounds 3	S6
3.2 General Procedure for the Synthesis of Racemic Products 3	S7
3.3 General Procedure for the Synthesis of Compounds 4	
3.4. Analytical Data of Compounds 3 and 4	
4. X-ray Crystallographic Data of Compound 3ma	
5. NOESY Experiments for the Determination of the Newly Formed Stereocenter	S24
6. Copies of NMR Spectra.	S25
7. HPLC Data	S55

1. General Information

Chemicals and solvents were either purchased from commercial suppliers or purified by standard techniques. Analytical thin-layer chromatography (TLC) was performed on silicycle silica gel plates with F-254 indicator and compounds were visualized by irradiation with UV light. Flash chromatography was carried out utilizing silica gel 200-300 mesh. ¹H NMR, ¹³C NMR spectra were recorded on a Bruker AM-400 spectrometer (400 MHz¹H, 100 MHz¹³C). The spectra were recorded in CDCl₃ as the solvent at room temperature, ¹H and ¹³CNMR chemical shifts are reported in ppm relative to either the residual solvent peak (¹³C) ($\delta = 77.00$ ppm) or TMS (¹H) ($\delta = 0$ ppm) as an internal standard. Data for ¹H NMR are reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = double doublet, br = broad), integration, coupling constant (Hz) and assignment. Data for ¹³C NMR are reported as chemical shift. HRMS were performed on Bruker Apex II mass instrument (ESI). Enantiomeric excess values were determined by HPLC with a Daicel Chirapak ID-3 /IA column on Agilent 1260 series with i-PrOH and n-hexane. Optical rotation was measured on the Perkin Elmer 341 polarimeter with $[\alpha]_D$ values reported in degrees. Concentration (c) is in g/100 mL. Saccharin-derived 1-azadienes 1 were prepared according to the literature procedures.¹ Azlactones 2 were also prepared according to the literature procedures.²

(1) Qian-Ru Zhang, Ji-Rong Huang, Wei Zhang, and Lin Dong. Org. Lett., 2014, 16, 1684–1687.

(2)Eider Badiola, B da Fiser, Enrique G ómez-Bengoa, Antonia Mielgo, Iurre Olaizola, Iñaki Urruzuno, Jes ús M. Garc á, Jos é M. Odriozola, Jes ús Razkin, Mikel Oiarbide, and Claudio Palomo. *J. Am. Chem. Soc.*, **2014**, *136*, 17869–17881

O N P	+ Bn - N=	CO CO CO CO DCE, 25°C Ph		O N Bn Ph Ph
 entrv ^a	catalyst	Yield (%) ^b	dr ^c	3aa ee (%) ^d
 1	1	89	>20:1	60
2	2	96	>20:1	67
3	3	79	>20:1	77
4	4	88	>20:1	67
5	5	90	>20:1	60
6	6	Trace	-	-
7	7	98	>20:1	84
8	8	Trace	-	-
9	9	96	>20:1	15
10	10	90	>20:1	46
11	11	Trace	-	-
12	12	88	>20:1	11
13	13	95	>20:1	40
14	14	Trace	-	-
15	15	89	>20:1	27
16	16	92	>20:1	7
17	17	93	>20:1	86

2. Preliminary Optimization of the IEDDA Reaction Table S1 Catalyst Evaluation

^aConditions: Reactions performed with 1a (0.1 mmol), 2a (0.1 mmol), cat. (20 mol%) in DCE (1 mL) at 25 °C. ^bIsolated yield. ^cDetermined by ¹H NMR analysis of the crude products. ^dDetermined by chiral-phase HPLC analysis.

Table S2 Effect of Temperature

entry ^a	Temperature	Yield (%) ^b	dr ^c	ee (%) ^d
1	0 °C	71	> 20:1	90
2	-10 °C	55	> 20:1	91
3	-20 °C	76	> 20:1	92
4	-30 °C	68	> 20:1	92

^aConditions: Reactions performed with 1a (0.1 mmol), 2a (0.1 mmol), cat. (20 mol%) in DCE (1 mL). ^bIsolated yield. ^cDetermined by ¹H NMR analysis of the crude products. ^dDetermined by chiral-phase HPLC analysis.

Table S3 Effect of Solvent

O S N Ph 1a	+ Bn N=	0 cat 17 . (20 mc solvent, -20°0 Ph		O S N B N B N P h S aaa
entry ^a	solvent	Yield (%) ^b	dr ^c	<i>ee</i> (%) ^d
1	DCE	76	>20:1	92
2	DCM	75	>20:1	91
3	THF	81	>20:1	86
4	EA	60	>20:1	81
5	Toluene	19	>20:1	81
6	Acetone	65	>20:1	86
7	CHCl ₃	74	>20:1	92

^aConditions: Reactions performed with 1a (0.1 mmol), 2a (0.1 mmol), cat. (20 mol%) in solvent (1 mL). ^bIsolated yield. ^cDetermined by ¹H NMR analysis of the crude products. ^dDetermined by chiral-phase HPLC analysis.

Table S4 Additional Optimization of Reaction

	Ph 1a	Bn ON	cat 〔 `Ph	17 . (20 mol%) DCE, -20°C		O N D Bn H Ph 3aa	[∼] Ph
entry ^a	1a (mmol)	2a (mmol)	DCE	cat.17	Yield (%) ^b	dr ^c	ee (%) ^d
1	1.2	1	1 mL	20 mol%	83	>20:1	92
2	1.5	1	1 mL	20 mol%	89	>20:1	92
3	2	1	1 mL	20 mol%	84	>20:1	92
4	1	1.5	1 mL	20 mol%	65	>20:1	92

5	1	2	1 mL	20 mol%	69	>20:1	92	
6	1.5	1	1 mL	10 mol%	88	>20:1	92	
7	1.5	1	1 mL	5 mol%	89	>20:1	92	
8	1.5	1	2 mL	5 mol%	85	>20:1	91	
9	1.5	1	0.5 mL	5 mol%	95	>20:1	92	
10 ^e	1.5	1	0.5 mL	5 mol%	94	>20:1	90	
^a Conditions: Reactions performed with 1a, 2a, cat.17. in DCE at - 20 °C. ^b Isolated yield. ^c Determined by ¹ H NMR analysis of the crude products. ^d Determined by chiral-phase HPLC analysis. ^e 50 mg 4 Å MS was added.								

3. General Procedure and Analytical Data of Products

3.1 General Procedure for the Synthesis of Compounds 3

To a flame dried vessel were successively added 1-azadienes **1a** (40.3 mg, 0.15 mmol), azlactones **2a** (25.1 mg, 0.1 mmol), catalyst (2.6 mg, 0.005 mmol) and dried DCE (0.5 mL) at -20 °C. When the reaction was completed, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash column chromatography (petroleumether/EtOAc = 3:1) to give the corresponding compound **3aa** (49.4 mg, 95% yield) as white solid. The procedures of the asymmetric synthesis of compounds **3ba-3aj** and the gram-scale synthesis of **3aa** (0.98 g, 95% yield) were the same.

3.2 General Procedure for the Synthesis of Racemic Products 3

To a flame dried vessel were successively added 1-azadienes **1a** (26.9 mg, 0.1 mmol), azlactones **2a** (25.1 mg, 0.1 mmol), catalyst (7.9 mg, 0.02 mmol) and dried DCM (1 mL) at RT. When the reaction was completed, the solvent was evaporated under reduced pressure and the residue was purified by silica gel flash column chromatography (petroleumether/EtOAc = 3:1) to give the racemic compounds **3aa**. The procedures of racemic products **3ba-3aj** were the same.

3.3 General Procedure for the Synthesis of Compounds 4

To a stirred solution of **3aa** (52.0 mg, 0.1 mmol) in 1 mL of MeOH was added Pd/C in one portion at room temperature. The mixture was degassed before stirring under a hydrogen atmosphere at room temperature. After the substrate conversion completely, Pd/C was filtered and organic lower was concentrated under reduced pressure and purification by flash column chromatography to get the product **4aa** as a white solid.

3.4 Analytical Data of Compounds 3 and 4

N-((*8R*,*9S*)-8-benzyl-5,5-dioxido-7-oxo-9-phenyl-8,9-dihydro-7H-benzo[4,5]isothi azolo[2,3-a]pyridin-8-yl)benzamide (3aa)

4.21 (d, j = 15.8 Hz, HI), 5.42(d, j = 15.8 Hz, HI). C HWR (100 MHz, CDCI3), 0 = 167.9, 166.4, 136.6, 135.0, 134.4, 134.1, 132.6, 131.,4, 131.2, 130.3, 128.9, 128.4, 128.2, 128.1, 128.0, 127.95, 127.3, 126.4, 126.3, 121.9, 121.6, 107.1, 66.1, 48.5, 40.1. The enantiomeric excess was determined by HPLC with an ID-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 21.54$ min, major enantiomer $t_R = 32.45$ min. HRMS (ESI): [M+H]⁺ calcd for [C₃₁H₂₅N₂O₄S]: 521.1530, found: 521.1539.

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-(o-tolyl)-8,9-dihydro-7H-benzo[4,5]isoth iazolo[2,3-a]pyridin-8-yl)benzamide(3ba)

Yellow solid. 80% yield (42.7 mg). m. p.: 239-241 °C. $[\alpha]_D^{20} =$ 272 (*c* 1.0, CH₂Cl₂, 86% ee). ¹H NMR (400 MHz, CDCl₃): δ =7.90 (d, *J* = 7.7Hz, 1H), 7.65-7.71 (m, 3H), 7.38 (t, *J* = 6.6Hz, 1H), 7.28-7.30 (m, 3H), 7.25-7.26 (m, 1H), 7.19-7.21 (m, 5H),

7.04-7.10 (m, 3H), 6.99 (d, J = 6.8Hz, 1H), 6.91 (S, 1H), 6.28 (d, J = 6.4Hz, 1H), 5.40 (d, J = 6.4Hz, 1H), 4.20 (d, J = 13.7Hz, 1H), 3.44 (d, J = 13.7Hz, 1H), 2.59 (S, 3H) ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.5$, 167.1, 136.5, 136.1, 134.9, 134.3, 133.9, 132.3, 131.3, 131.2, 131.0, 130.5, 128.4, 128.2, 127.5, 127.4, 126.9, 126.7, 126.5, 126.4, 121.8, 121.6, 106.7, 64.7, 45.2, 40.9, 19.6. The enantiomeric excess was determined by HPLC with an IA column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer t_R = 7.23 min, major enantiomer t_R = 5.95 min. HRMS (ESI): [M+H]⁺ calcd for [C₃₂H₂₇N₂O₄S]:535.1686, found: 535.1691

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-(m-tolyl)-8,9-dihydro-7H-benzo[4,5]isot hiazolo[2,3-a]pyridin-8-yl)benzamide(3ca)

Yellow solid. 86% yield (45.9 mg). m. p.: 119-121 °C. $[\alpha]_D^{20} =$ 253 (c 1.0, CH₂Cl₂, 92% ee). ¹H NMR (400 MHz, CDCl₃): $\delta =$ 7.94 (d, J = 7.8Hz, 1H), 7.76-7.81 (m, 2H), 7.68-7.72 (m, 1H), 7.38-7.42 (m, 1H), 7.27-7.33 (m, 4H), 7.16-7.21 (m, 5H), 7.05-7.11 (m, 2H), 6.97-7.02 (m, 2H), 6.74 (S, 1H), 6.36 (d, J = 6.6Hz, 1H), 5.09 (d, J = 6.6Hz, 1H), 4.21 (d, J = 13.8Hz, 1H), 3.42 (d, J = 13.8Hz, 1H), 2.18 (S, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.0$, 166.4, 138.6, 136.4, 135.1, 134.4, 134.2, 132.8, 131.4, 131.2, 130.4, 129.0, 128.9, 128.5, 128.2, 128.1, 127.4, 126.5, 124.9, 121.9, 121.7, 107.2, 66.2, 48.4, 40.0, 21.3. The enantiomeric excess was determined by HPLC with an ID-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer t_R = 23.45 min, major enantiomer t_R = 40.23 min. HRMS (ESI): [M+H]⁺ calcd for [C₃₂H₂₇N₂O₄S]:535.1686, found: 535.1685

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-(p-tolyl)-8,9-dihydro-7H-benzo[4,5]isoth iazolo[2,3-a]pyridin-8-yl)benzamide(3da)

Yellow solid. 93% yield (49.7 mg). m. p.: 236-238 °C. $[\alpha]_D^{20} = 352$ (*c* 1.0, CH₂Cl₂, 93% ee). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.93$ (d, J = 7.8Hz, 1H), 7.74-7.80 (m, 2H), 7.67-7.71 (m, 1H), 7.38-7.42 (m, 1H), 7.27-7.34 (m, 4H), 7.15-7.24 (m, 5H), 7.12 (d, J = 8.1Hz,

2H), 7.00 (d, J = 8.0Hz, 2H), 6.78 (S, 1H), 6.36 (d, J = 6.6Hz, 1H), 5.11 (d, J = 6.6Hz, 1H), 4.19 (d, J = 13.8Hz, 1H), 3.41 (d, J = 13.8Hz, 1H), 2.21 (S, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.8$, 166.5, 137.9, 135.1, 134.4, 134.2, 133.4, 132.6, 131.4, 131.2, 130.4, 129.6, 128.4, 128.2, 127.9, 127.9, 127.3, 126.5, 126.4, 121.9, 121.6, 107.4, 66.2, 48.1, 40.1, 21.0. The enantiomeric excess was determined by HPLC with an ID-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 26.29$ min, major enantiomer $t_R = 41.15$ min. HRMS (ESI): [M+H]⁺ calcd for [C₃₂H₂₇N₂O₄S]:535.1686, found: 535.1688

N-((8R,9S)-8-benzyl-9-(2-chlorophenyl)-5,5-dioxido-7-oxo-8,9-dihydro-7H-benzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3ea)

White solid. 83% yield (46.0 mg). m. p.: 217-219 °C. $[\alpha]_D^{20} = 292$ (*c* 1.0, CH₂Cl₂, 90% ee). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.90$ (d, *c* J = 7.8Hz, 1H), 7.72-7.50 (m, 2H), 7.64-7.68 (m, 1H), 7.38-7.41 (m, 3H), 7.25-7.33 (m, 3H), 7.09-7.21 (m, 8H), 7.03 (S, 1H), 6.33 (br, 1H), 5.81 (br, 1H), 4.15 (d, J = 13.0Hz, 1H), 3.43 (d, J = 13.7Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.9$, 135.2, 134.6, 134.3, 133.8, 133.7, 132.3, 131.5, 131.2, 130.6, 130.2, 128.8, 128.5, 128.3, 127.5, 126.6, 126.4, 121.9, 121.6, 63.7, 41.2. The enantiomeric excess was determined by HPLC with an IA column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer t_R = 12.38 min, major enantiomer t_R = 7.06min. HRMS (ESI): [M+H]⁺ calcd for [C₃₁H₂₄ClN₂O₄S]:555.1140, 557.1111, found: 555.1140, 557.1110

N-((8R,9S)-8-benzyl-9-(3-chlorophenyl)-5,5-dioxido-7-oxo-8,9-dihydro-7H-benzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3fa)

White solid. 74% yield (41.0 mg). m. p.: 216–218 °C. $[\alpha]_D^{20} = 363$ (*c* 1.0, CH₂Cl₂, 92% ee).¹H NMR (400 MHz, CDCl₃): $\delta = 7.96$ (d, *J* = 7.8Hz, 1H), 7.78-7.83 (m, 2H), 7.71-7.75 (m, 1H), 7.41-7.45 (m, 1H), 7.36-7.38 (m, 2H), 7.29-7.34 (m, 3H), 7.20-7.22 (m, 3H),

7.11-7.16 (m, 4H), 7.07-7.09 (m, 1H), 6.79 (S, 1H), 6.34 (d, J = 6.6Hz, 1H), 5.13 (d, J = 6.6Hz, 1H), 4.18 (d, J = 13.8Hz, 1H), 3.41 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.1$, 166.1, 138.6, 134.8, 134.6, 134.5, 133.9, 132.8, 131.6, 131.5, 130.4, 130.2, 128.7, 128.6, 128.5, 128.4, 128.3, 127.5, 126.5, 126.2, 125.8, 122.0, 121.8, 106.2, 66.0, 48.0, 40.1. The enantiomeric excess was determined by HPLC with an IA column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 11.22$ min, major enantiomer $t_R = 15.34$ min. HRMS (ESI): [M+H]⁺ calcd for [C₃₁H₂₄ClN₂O₄S]:555.1140, 557.1111, found: 555.1141, 557.1110

N-((8R,9S)-8-benzyl-9-(4-chlorophenyl)-5,5-dioxido-7-oxo-8,9-dihydro-7H-benzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3ga)

Yellow solid. 98% yield (54.3 mg). m. p.: 134–136 °C. $[\alpha]_D^{20} =$ 251 (c 1.0, CH₂Cl₂, 90% ee).¹H NMR (400 MHz, CDCl₃): δ =7.96 (d, J = 7.8Hz, 1H), 7.78-7.82 (m, 2H), 7.70-7.74 (m, 1H), 7.42-7.45 (m, 1H), 7.30-7.36 (m, 4H), 7.19-7.20 (m, 3H), 7.17 (S, 3qa 4H), 7.13-7.15 (m, 2H), 6.81 (S, 1H), 6.35 (d, J = 6.6Hz, 1H), 5.15 (d, J = 6.6Hz, 1H), 4.16 (d, J = 13.8Hz, 1H), 3.41 (d, J = 6.6Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta =$ 167.9, 166.2, 135.2, 134.7, 134.5, 134.0, 133.9, 132.7, 131.7, 131.4, 130.3, 129.5, 129.1, 128.6, 128.3, 127.5, 126.5, 126.2, 122.0, 121.8, 106.5, 66.0, 47.8, 40.1. The enantiomeric excess was determined by HPLC with an ID-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 23.97$ min, major enantiomer t_R = 27.24 min. HRMS (ESI): $[M+H]^+$ calcd for [C₃₁H₂₄ClN₂O₄S]:555.1140, 557.1111, found: 555.1141, 557.1110

N-((8R,9S)-8-benzyl-9-(3-bromophenyl)-5,5-dioxido-7-oxo-8,9-dihydro-7H-benzo [4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3ha)

White solid. 98% yield. (58.6 mg). m. p.: 132–134 °C. $[\alpha]_D^{20} = 202$ (*c* 1.0, CH₂Cl₂, 91% ee). ¹H NMR (400 MHz, CDCl₃):7.95(d, J = 7.8Hz, 1H), 7.77-7.83 (m, 2H), 7.70-7.74 (m, 1H), 7.41-7.46 (m, 2H), 7.36-7.38 (m, 2H), 7.29-7.34 (m, 3H), 7.20-7.22 (m, 3H),

7.11-7.16 (m, 3H),7.07-7.08 (m, 1H), 6.79 (S, 1H), 6.34 (d, J = 6.8Hz, 1H), 5.12(d, J = 6.6Hz, 1H), 4.17(d, J = 13.8Hz, 1H), 3.41 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.1$, 166.0, 138.8, 134.8, 134.5, 133.9, 132.7, 131.6, 131.5, 131.5, 131.3, 130.5, 130.3, 128.6, 128.3, 127.5, 126.5, 126.1, 126.1, 122.7, 122.0, 121.7, 106.1, 66.0, 47.9., 40.0. The enantiomeric excess was determined by HPLC with an IA column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 16.01$ min, major enantiomer $t_R = 12.10$ min. HRMS (ESI): [M+H]⁺ calcd for [C₃₁H₂₄BrN₂O₄S]:599.0635, 601.0615, found: 599.0649, 601.0614

N-((8R,9S)-8-benzyl-9-(4-bromophenyl)-5,5-dioxido-7-oxo-8,9-dihydro-7H-benzo [4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3ia)

Yellow solid. 97% yield (58.0 mg). m. p.: 124–126 °C. $[\alpha]_D^{20} =$ 263 (c 1.0, CH₂Cl₂, 90% ee). ¹H NMR (400 MHz, CDCl₃): $\delta =$ Bn 7.94 (d, J = 7.8Hz, 1H), 7.76-7.82 (m, 2H), 7.69-7.73 (m, 1H), 7.41-7.45 (m, 1H), 7.30-7.37 (m, 6H), 7.18-7.20 (m, 3H), 3ia 7.10-7.15 (m, 4H), 6.82 (S, 1H), 6.35 (d, J = 6.6Hz, 1H), 5.13 (d, J = 6.6Hz, 1H), 4.16 (d, J = 13.8Hz, 1H), 3.41 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.9$, 161.2, 135.7, 134.7, 134.5, 133.9, 132.7, 132.0, 131.6, 131.4, 130.3, 129.8, 128.6, 128.3, 127.4, 126.5, 126.2, 122.1, 122.0, 121.7, 106.4, 65.9, 47.9, 40.1. The determined by HPLC with an ID-3 column enantiomeric excess was (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 28.66$ min, major enantiomer t_R 30.49 min. HRMS (ESI): $[M+H]^+$ calcd for = [C₃₁H₂₄BrN₂O₄S]:599.0635, 601.0615, found: 599.0649, 601.0614

N-((8R,9S)-8-benzyl-9-(4-fluorophenyl)-5,5-dioxido-7-oxo-8,9-dihydro-7H-benzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3ja)

Yellow solid. 92% yield (49.5 mg). m. p.: 130–132 °C. $[\alpha]_D^{20} = 252 \ (c \ 1.0, \ CH_2Cl_2, \ 88\% \ ee).$ ¹H NMR (400 MHz, CDCl₃): $\delta = 7.96 \ (d, \ J = 7.8$ Hz, 1H), 7.78-7.83 (m, 2H), 7.70-7.74 (m, 1H), 7.43 (t, \ J = 6.8Hz, 1H), 7.29-7.36 (m, 4H), 7.19-7.23 (m, 5H),

7.14-7.16 (m, 2H), 6.89 (t, J = 8.6Hz, 1H), 6.80 (S, 1H), 6.37 (d, J = 6.6Hz, 1H), 5.15 (d, J = 6.6Hz, 1H), 4.17 (d, J = 13.8Hz, 1H), 3.41 (d, J = 13.8Hz, 1H).¹³C NMR (100) MHz, CDCl₃): $\delta = 167.9$, 166.3, 162.3 ($J_{C-F} = 245.9$ Hz), 134.8, 134.5, 134.0, 132.7, 132.4 (*J*_{C-F} =3.0 Hz), 131.6, 131.4, 130.3, 129.8 (*J*_{C-F} = 8.2 Hz), 128.6, 128.3, 128.1, 127.4, 126.5, 126.3, 121.9 ($J_{C-F} = 24.4 \text{ Hz}$), 115.3 ($J_{C-F} = 21.3 \text{ Hz}$) 106.8, 66.1, 47.7, 40.0. The enantiomeric excess was determined by HPLC with an ID-3 column (*n*-hexane: *i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 17.47$ min, major $[M+H]^+$ enantiomer 22.50 min. HRMS (ESI): calcd for t_R = [C₃₁H₂₄FN₂O₄S]:539.1435, found: 539.1440

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-(4-(trifluoromethyl)phenyl)-8,9-dihydro -7H-benzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3ka)

Yellow solid. 79% yield (46.5 mg). m. p.: 124–126 °C. $[\alpha]_D^{20} =$ 280 (c 1.0, CH₂Cl₂, 84% ee).¹H NMR (400 MHz, CDCl₃): δ =7.97 (d, J =7.8Hz, 1H), 7.78-7.83 (m, 2H), 7.72-7.76 (m, 1H), 7.47(d, J = 8.3Hz, 2H), 7.41-7.45 (m, 1H), 7.37 (d, J = 8.2Hz)3ka 2H), 7.30-7.32 (m, 4H), 7.20-7.21 (m, 3H), 7.13-7.16 (m, 2H), 6.82 (S, 1H), 6.36 (d, J =6.6Hz, 1H), 5.25 (d, J =6.6Hz, 1H), 4.18 (d, J =13.8Hz, 1H), 3.44(d, J =13.8Hz, 1H). 13 C NMR (100 MHz, CDCl₃): δ =168.0, 166.1, 140.9, 134.6, 134.5, 133.8, 132.8, 131.7, 131.6, 130.4, 130.3 (*J*_{C-F} = 32.4 Hz), 128.6, 128.5, 128.4, 127.6, 126.5, 126.1, 125.8 ($J_{C-F} = 3.6 \text{ Hz}$), 123.7 ($J_{C-F} = 270.6 \text{ Hz}$), 122.0, 121.8, 106.0, 65.9, 48.2, 40.2. The enantiomeric excess was determined by HPLC with an IA column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 22.98$ min, major (ESI): $[M+H]^+$ enantiomer 12.69 min. HRMS calcd for t_R = [C₃₂H₂₄F₃N₂O₄S]:589.1403, found: 589.1408

N-((8R,9S)-8-benzyl-9-(4-cyanophenyl)-5,5-dioxido-7-oxo-8,9-dihydro-7H-benzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3la)

Yellow solid. 84% yield (45.8 mg). m. p.: 252-254 °C. $[\alpha]_D^{20} =$ 211 (*c* 1.0, CH₂Cl₂, 76% ee). ¹H NMR (400 MHz, CDCl₃): δ =7.97 (d, *J* =7.8Hz, 1H), 7.78-7.84 (m, 2H), 7.72-7.77 (m, 1H), 7.49(d, *J* = 8.4Hz, 2H), 7.43-7.46 (m, 1H), 7.32-7.37 (m, 6H),

7.19-7.20 (m, 3H), 7.12-7.14 (m, 2H), 6.83 (S, 1H), 6.33 (d, J = 6.6Hz, 1H), 5.24 (d, J = 6.6Hz, 1H), 4.15 (d, J = 13.8Hz, 1H), 3.43 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.8$, 165.9, 142.3, 134.6, 134.3, 133.6, 132.7, 132.6, 131.9, 131.7, 130.3, 128.9, 128.8, 128.7, 128.3, 127.6, 126.4, 126.0, 122.1, 121.8, 118.2, 112.0, 105.4, 65.7, 48.4, 40.1. The enantiomeric excess was determined by HPLC with an IA-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 10.40$ min, major enantiomer $t_R = 35.96$ min. HRMS (ESI): [M+H]⁺ calcd for [C₃₂H₂₄N₃O₄S]:546.1482, found: 546.1481

N-((8R,9S)-8-benzyl-9-(2-methoxyphenyl)-5,5-dioxido-7-oxo-8,9-dihydro-7H-ben zo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide (3ma)

N-((8R,9S)-8-benzyl-9-(4-methoxyphenyl)-5,5-dioxido-7-oxo-8,9-dihydro-7H-ben zo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3na)

Yellow solid. 94% yield (51.7 mg). m. p.: 118–120 °C. $[\alpha]_D^{20} =$ Yellow solid. 94% yield (51.7 mg). m. p.: 118–120 °C. $[\alpha]_D^{20} =$ 203 (c 1.0, CH₂Cl₂, 86% ee). ¹H NMR (400 MHz, CDCl₃): δ =7.95 (d, J = 7.8Hz, 1H), 7.77-7.82 (m, 2H), 7.69-7.73 (m, 1H), 7.42 (t, J = 7.1Hz, 1H), 7.28-7.36 (m, 4H), 7.19-7.20 (m, 3H), 7.14-7.16 (m, 4H), 6.79 (S, 1H), 6.73 (d, J = 8.7Hz, 1H), 6.37 (d, J = 6.6Hz, 1H), 5.10 (d, J = 6.6Hz, 1H), 4.18 (d, J = 13.8Hz, 1H). 3.68 (s, 3H), 3.41 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.9$, 166.5, 159.3, 135.0, 134.4, 134.2, 132.7, 131.4, 131.2, 130.3, 129.2, 128.5, 128.3, 128.3, 127.8, 127.4, 126.6, 126.5, 121.9, 121.7, 114.3, 107.5, 66.4, 55.1, 47.7, 40.0. The enantiomeric excess was determined by HPLC with an ID-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer t_R = 42.82 min, major enantiomer t_R = 32.01 min. HRMS (ESI): [M+H]⁺ calcd for [C₃₂H₂₇N₂O₅S]:551.1635, found: 551.1636

N-((8R,9R)-8-benzyl-5,5-dioxido-7-oxo-9-(thiophen-2-yl)-8,9-dihydro-7H-benzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3oa)

N-((8R,9S)-8-benzyl-9-(3,5-dimethoxyphenyl)-5,5-dioxido-7-oxo-8,9-dihydro-7Hbenzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3pa)

Yellow solid. 87% yield (50.5 mg). m. p.: $137-139 \degree C. [\alpha]_D^{20} = 241 \ (c \ 1.0, \ CH_2Cl_2, \ 86\% \ ee). \ ^1H \ NMR \ (400 \ MHz, \ CDCl_3): \delta$ =7.96 \ (d, J = 7.8Hz, 1H), 7.78-7.84 \ (m, 2H), 7.70-7.74 \ (m, 1H), 7.41-7.45 \ (m, 1H), 7.37-7.39 \ (m, 2H), 7.29-7.33 \ (m, 2H)

7.18-7.23 (m, 3H), 7.13-7.15 (m, 2H), 6.76-6.81 (m, 3H), 6.68 (d, J = 8.9Hz, 1H), 6.41 (d, J = 6.7Hz, 1H), 5.09 (d, J = 6.6Hz, 1H), 4.18 (d, J = 13.8Hz, 1H), 3.75 (s, 3H), 3.68 (s, 3H), 3.42 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.8$, 166.5, 148.9, 148.6, 134.8, 134.4, 134.2, 132.8, 131.6, 131.2, 130.3, 128.5, 128.3, 128.1, 127.4, 126.6, 126.4, 122.0, 121.7, 120.2, 111.2, 107.5, 66.5, 55.7, 47.8, 39.8. The enantiomeric excess was determined by HPLC with an ID-3 column (*n*-hexane: *i*-PrOH= 50:50), 1 mL/min. minor enantiomer t_R = 29.18 min, major enantiomer t_R = 34.64 min. HRMS (ESI): [M+H]⁺ calcd for [C₃₃H₂₉N₂O₆S]:581.1741, found: 581.1752

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-(3,4,5-trimethoxyphenyl)-8,9-dihydro-7 H-benzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3qa)

Yellow solid. 92% yield (56.1 mg). m. p.: 128–130 °C. $[\alpha]_{D}^{20} =$ 0 0 Bn∛ Ph 327 (c 1.0, CH₂Cl₂, 91% ee).¹H NMR (400 MHz, CDCl₃): δ (NH =7.95 (d, J = 7.8Hz, 1H), 7.80-7.87 (m, 2H), 7.71-7.75 (m, 1H), MeÓ ÒMe 7.43-7.47 (m, 1H), 7.38-7.40 (m, 2H), 7.31-7.35 (m, 2H), 3qa 7.20-7.21 (m, 3H), 7.13-7.15 (m, 2H), 6.81 (S, 1H), 6.47 (S, 1H), 6.44 (d, J = 6.7Hz, 1H), 5.08 (d, J = 6.7Hz, 1H), 4.19 (d, J = 13.8Hz, 1H), 3.73 (S, 3H), 3.64 (S, 6H), 3.41 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.8$, 166.4, 153.2, 137.4, 134.7, 134.5, 134.2, 132.9, 131.7, 131.7, 131.3, 130.2, 128.6, 128.5, 128.3, 127.4, 126.6, 126.3, 122.1, 121.7, 107.3, 104.6, 66.5, 60.6, 55.9, 48.1, 39.7. The enantiomeric excess was determined by HPLC with an IA column (n-hexane:i-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 10.04$ min, major enantiomer $t_R = 11.34$ min. HRMS (ESI): $[M+H]^+$ calcd for $[C_{34}H_{31}N_2O_7S]$:611.1846, found: 611.1843

N-((8R,9S)-8-benzyl-9-(naphthalen-1-yl)-5,5-dioxido-7-oxo-8,9-dihydro-7H-benz o[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3ra)

Yellow solid. 91% yield (51.9 mg). m. p.: 157-159 °C. $[\alpha]_D^{20}$ = 280 (c 1.0, CH₂Cl₂, 86% ee). ¹H NMR (400 MHz, CDCl3): $\delta = 8.47$ (d, J = 8.6Hz, 1H),7.90 (d, J = 7.3Hz, 1H), 7.76 (d, J = 8.0Hz, 1H), 7.59-7.68 (m, 5H), 7.46 (t, J = 7.6Hz, 1H)

7.24-7.35 (m, 2H), 7.19-7.24 (m, 6H), 7.17 (d, J = 4.4Hz, 4H), 6.93 (s, 1H), 6.42 (d, J = 6.6Hz, 1H), 6.12 (d, J = 6.5Hz, 1H), 4.37 (d, J = 13.7Hz, 1H), 3.57 (d, J = 13.7Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.4$, 167.1, 134.6, 134.3, 134.0, 133.9, 133.7, 132.3, 131.3, 131.1, 131.0, 130.5, 128.8, 128.3, 128.3, 127.5, 127.0, 126.5, 126.5, 126.4, 125.8, 125.6, 124.5, 123.3, 121.8, 121.6, 107.3, 64.9, 43.7, 40.7. The enantiomeric excess was determined by HPLC with an ID-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 63.26$ min, major enantiomer $t_R = 34.97$ min. HRMS (ESI): [M+H]⁺ calcd for [C₃₅H₂₇N₂O₄S]:571.1686, found: 571.1700

N-((8R,9S)-8-benzyl-9-(naphthalen-2-yl)-5,5-dioxido-7-oxo-8,9-dihydro-7H-benz o[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3sa)

Yellow solid. 95% yield (54.2 mg). m. p.: 144–146 °C. $[\alpha]_D^{20} =$ 254 (c 1.0, CH₂Cl₂, 92% ee). ¹H NMR (400 MHz, CDCl₃): δ =7.95 (d, J = 7.8Hz, 1H), 7.74-7.80 (m, 2H), 7.66-.71 (m, 4H), 7.36-7.38 (m, 2H), 7.30-7.33 (m, 2H), 7.24-7.28 (m, 2H), 7.17-7.21 (m, 7H), 6.79 (s, 1H), 6.40 (d, J = 6.6Hz, 1H), 5.32 (d, J = 6.6Hz, 1H), 4.25 (d, J = 13.8Hz, 1H), 3.47 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.0$, 166.4, 134.9, 134.4, 134.1, 133.9, 133.3, 132.9, 132.8, 131.4, 131.3, 130.4, 128.8, 128.4, 128.3, 128.2, 128.0, 127.5, 127.4, 127.4, 126.5, 126.2, 125.4,122.0, 121.7, 107.1, 66.2, 48.6, 40.1. The enantiomeric excess was determined by HPLC with an ID-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer t_R = 46.19 min, major enantiomer t_R = 51.80 min. HRMS (ESI): [M+H]⁺ calcd for [C₃₅H₂₇N₂O₄S]:571.1686, found: 571.1705

N-((8R,9S)-9-(benzo[d][1,3]dioxol-5-yl)-8-benzyl-5,5-dioxido-7-oxo-8,9-dihydro-7 H-benzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3ta)

Yellow solid. 88% yield (49.6 mg). m. p.: 246–248 °C. $[\alpha]_D^{20} =$ 270 (c 1.0, CH₂Cl₂, 90% ee). ¹H NMR (400 MHz, CDCl₃): δ =7.95 (d, J =7.8Hz, 1H), 7.76-7.82 (m, 2H), 7.69-7.73 (m, 1H), 7.38-7.45 (m, 3H), 7.30-7.34 (m, 2H), 7.19-7.21 (m, 3H),

7.14-7.16 (m, 2H), 6.82 (s, 1H), 6.70-6.74 (m, 2H), 6.61 (d, J = 8.0Hz, 1H), 6.35 (d, J = 6.6Hz, 1H), 5.82(dd, J = 1.2Hz, 12.8Hz, 2H), 5.06 (d, J = 6.6Hz, 1H), 4.17 (d, J = 13.8Hz, 1H), 3.39 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.9$, 166.4, 147.9, 147.3, 135.1, 134.4, 134.2, 132.7, 131.5, 131.3, 130.4, 130.0, 128.5, 128.3, 128.0, 127.4, 126.6, 126.4, 121.9, 121.8, 121.7, 108.5, 108.3, 107.1, 101.1, 66.3, 48.2, 40.1. The enantiomeric excess was determined by HPLC with an IA-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer t_R = 24.88 min, major enantiomer t_R = 28.79 min. HRMS (ESI): [M+H]+ calcd for [C₃₂H₂₅N₂O₆S]:565.1428, found: 565.1437

N-((8R,9S)-8-benzyl-3-bromo-5,5-dioxido-7-oxo-9-phenyl-8,9-dihydro-7H-benzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide(3ua)

White solid. 60% yield (35.8 mg). m. p.: 138–140 °C. $[\alpha]_D^{20}$ = 169 (*c* 1.0, CH₂Cl₂, 83% ee). ¹H NMR (400 MHz, CDCl3): δ =8.08 (d, *J* = 1.6 Hz, 1H), 7.88 (dd, *J* = 1.7 Hz, *J* = 1.7 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.38-7.43 (m, 1H), 7.28-7.29

(m, 4H), 7.19-7.20 (m, 8H), 7.13-7.16 (m, 2H), 6.74 (s, 1H), 6.37 (d, J = 6.6Hz, 1H), 5.13 (d, J = 6.6Hz, 1H), 4.20 (d, J = 13.8Hz, 1H), 3.39 (d, J = 13.8Hz, 1H). ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3)$: $\delta = 168.0, 166.4, 137.7, 136.4, 135.0, 134.0, 131.5, 130.3, 129.0,$ 128.5, 128.3, 128.1, 127.5, 127.4, 126.5, 125.2, 125.1, 124.8, 123.3, 107.8, 66.1, 48.6, 40.2. The enantiomeric excess was determined by HPLC with an IA-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 10.42$ min, major enantiomer t_R = 12.74 min. HRMS (ESI): $[M+H]^+$ calcd for [C₃₁H₂₄BrN₂O₄S]:599.0635, 601.0615, found: 599.0635, 601.0614.

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-phenyl-8,9-dihydro-7H-benzo[4,5]isothi azolo[2,3-a]pyridin-8-yl)-4-methylbenzamide(3ab)

O
S
N
PhWhite solid. 97% yield (51.8 mg). m. p.: 136–138 °C.Image: C
S
N
Ph[α]_D20
Ph240 (c 1.0, CH2Cl2, 90% ee). ¹H NMR (400 MHz,
CDCl3): δ =7.95 (d, J = 7.8Hz, 1H), 7.76-7.81 (m, 2H),
7.68-7.72 (m, 1H), 7.21-7.25 (m, 5H), 7.14-7.20 (m, 7H),

7.08 (d, J = 8.0Hz, 1H), 6.75 (s, 1H), 6.37 (d, J = 6.6Hz, 1H), 5.13 (d, J = 6.6Hz, 1H), 4.21 (d, J = 13.8Hz, 1H), 3.41 (d, J = 13.8Hz, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.8$, 166.5, 141.9, 136.7, 134.4, 134.2, 132.7, 132.2, 131.2, 130.4, 129.1, 128.9, 128.2, 128.1, 128.0, 127.3, 126.54, 126.45, 121.9, 121.7, 107.2, 66.1, 48.6, 40.2, 21.3. The enantiomeric excess was determined by HPLC with an IA-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 27.74$ min, major enantiomer $t_R = 45.31$ min. HRMS (ESI): [M+H]⁺ calcd for [C₃₂H₂₇N₂O₄S]:535.1686, found: 535.1683

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-phenyl-8,9-dihydro-7H-benzo[4,5]isothi azolo[2,3-a]pyridin-8-yl)-4-chlorobenzamide(3ac)

White solid. 98% yield (54.3 mg). m. p.: 127–129 °C. $[\alpha]_D^{20} = 255$ (*c* 1.0, CH₂Cl₂, 88% ee). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.96$ (d, J = 7.8Hz, 1H), 7.77-7.81 (m, 2H), 7.69-7.73 (m, 1H), 7.24-7.27 (m, 4H), 7.18-7.22 (m,

8H), 7.13-7.15 (m, 2H), 6.73 (s, 1H), 6.37 (d, J = 6.6Hz, 1H), 5.10 (d, J = 6.6Hz, 1H), 4.16 (d, J = 13.9Hz, 1H), 3.43 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ =166.8, 166.4, 137.7, 136.6, 134.4, 134.1, 133.3, 132.7, 131.3, 130.3, 129.0, 128.8, 128.3, 128.2, 128.05, 127.95, 127.5, 126.4, 122.0, 121.8, 107.0, 66.2, 48.6, 40.2. The enantiomeric excess was determined by HPLC with an IA-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 22.46$ min, major enantiomer t_R 36.91 min. HRMS (ESI): $[M+H]^+$ calcd for = [C₃₁H₂₄ClN₂O₄S]:555.1140, 557.1111, found: 555.1151, 557.1110

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-phenyl-8,9-dihydro-7H-benzo[4,5]isothi azolo[2,3-a]pyridin-8-yl)-4-fluorobenzamide(3ad)

Yellow solid. 98% yield (52.7 mg). m. p.: 125–127 °C. $[\alpha]_D^{20} = 221$ (*c* 1.0, CH₂Cl₂, 90% ee). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.96$ (d, J = 7.8Hz, 1H), 7.77-7.81 (m, 2H), 7.69-7.73 (m, 1H), 7.31 (dd, J = 5.3Hz, 8.8Hz, 2H),

7.17-7.23 (m, 8H), 7.14-7.16 (m, 2H), 6.95 (t, J = 8.6Hz, 2H), 6.71 (s, 1H), 6.37 (d, J = 6.6Hz, 1H), 5.11 (d, J = 6.6Hz, 1H), 4.18 (d, J = 13.8Hz, 1H), 3.43 (d, J = 13.9Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.8$, 166.4, 164.6 ($J_{C-F} = 250$ Hz), 136.7, 134.4, 134.1, 132.8, 131.3, 131.17 ($J_{C-F} = 3.1$ Hz), 130.3, 129.0, 128.8 ($J_{C-F} = 8.9$ Hz), 128.3, 128.2, 128.1, 127.4, 126.4, 121.8 ($J_{C-F} = 19.8$ Hz), 115.5 ($J_{C-F} = 21.8$ Hz), 107.0, 66.2, 48.6, 40.2. The enantiomeric excess was determined by HPLC with an IA-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer t_R = 19.52 min, major enantiomer t_R = 27.93 min. HRMS (ESI): [M+H]⁺ calcd for [C₃₁H₂₄FN₂O₄S]:539.1435, found: 539.1437

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-phenyl-8,9-dihydro-7H-benzo[4,5]isothi azolo[2,3-a]pyridin-8-yl)-4-(tert-butyl)benzamide(3ae)

Yellow solid. 96% yield (55.3 mg). m. p.: 137–139 °C. $[\alpha]_D^{20} = 244$ (*c* 1.0, CH₂Cl₂, 86% ee). ¹H NMR (400 MHz, CDCl₃): δ = 7.94 (d, *J* = 7.8Hz, 1H), 7.75-7.81 (m, 2H), 7.67-7.72 (m, 1H), 7.26-7.33 (m, 4H), 7.22-7.24 (m,

3H), 7.15-7.20 (m, 7H), 6.76 (s, 1H), 6.37 (d, J = 6.6Hz, 1H), 5.14 (d, J = 6.6Hz, 1H), 4.21 (d, J = 13.8Hz, 1H), 3.41 (d, J = 13.8Hz, 1H), 1.27 (s, 9H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 167.9$, 166.5, 154.8, 136.7, 134.4, 134.2, 132.7, 132.3, 131.2, 130.4, 129.2, 129.0, 128.9, 128.2, 128.1, 128.0, 127.3, 126.42, 126.35, 125.4, 121.9, 121.7, 107.2, 66.1, 48.6, 40.1, 34.8, 31.0. The enantiomeric excess was determined by HPLC with an IA-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer t_R = 20.45 min, major enantiomer t_R = 30.58 min. HRMS (ESI): [M+H]⁺ calcd for [C₃₅H₃₂N₂O₄S]:577.2156, found: 577.2165

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-phenyl-8,9-dihydro-7H-benzo[4,5]isothi azolo[2,3-a]pyridin-8-yl)-4-(trifluoromethyl)benzamide(3af)

Yellow solid. 96% yield (56.4 mg). m. p.: 120–122 °C. N Bn CF₃ $[\alpha]_D^{20} = 196$ (c 1.0, CH₂Cl₂, 74% ee). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.96$ (d, J = 7.8Hz, 1H), 7.80-7.81 (m, 2H), 7.70-7.74 (m, 1H), 7.55 (d, J = 8.3Hz, 2H), 7.38 (d,

J = 8.2Hz, 2H), 7.20-7.25 (m, 8H), 7.14-7.17 (m, 2H), 6.79 (s, 1H), 6.38 (d, J = 6.6Hz, 1H), 5.11 (d, J = 6.6Hz, 1H), 4.17 (d, J = 13.8Hz, 1H), 3.45 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): δ =166.6, 166.3, 138.2, 136.6, 134.5, 134.0, 133.2 (J_{C-F} = 32.34Hz), 132.7, 131.4, 130.3, 129.0, 128.4, 128.3, 128.1, 128.0, 127.5, 127.0, 126.4, 125.6 ($J_{C-F} = 3.7Hz$), 123.5 ($J_{C-F} = 270.8Hz$), 122.0, 121.8, 106.9, 66.2, 48.6, 40.3. The enantiomeric excess was determined by HPLC with an IA-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 13.03$ min, major enantiomer 18.10 min. HRMS (ESI): $[M+H]^+$ calcd for t_R = [C₃₂H₂₄F₃N₂O₄S]:589.1403, found: 589.1414

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-phenyl-8,9-dihydro-7H-benzo[4,5]isothi azolo[2,3-a]pyridin-8-yl)-3,5-dimethylbenzamide(3ag)

1H), 6.37 (d, J = 6.6Hz, 1H), 5.12 (d, J = 6.6Hz, 1H), 4.21 (d, J = 13.8Hz, 1H), 3.42 (d, J = 13.8Hz, 1H), 2.22 (s, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.3$, 166.6, 138.2, 136.7, 135.0, 134.4, 134.2, 133.1, 132.7, 131.2, 130.4, 129.2, 129.0, 128.2, 128.13, 128.06, 128.0, 127.4, 126.4, 124.3, 121.9, 121.7, 107.2, 66.1, 48.6, 40.2, 21.1. The enantiomeric excess was determined by HPLC with an IA-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer t_R = 15.76 min, major enantiomer t_R = 23.32 min. HRMS (ESI): [M+H]⁺ calcd for [C₃₃H₂₉N₂O₄S]:549.1843, found: 549.1852

N-((8R,9S)-8-benzyl-5,5-dioxido-7-oxo-9-phenyl-8,9-dihydro-7H-benzo[4,5]isothi azolo[2,3-a]pyridin-8-yl)-3,4-dichlorobenzamide(3ah)

White solid. 97% yield (57.0 mg). m. p.: 130–132 °C. $[\alpha]_D^{20} = 185 \ (c \ 1.0, \ CH_2Cl_2, \ 77\% \ ee).$ ¹H NMR (400 MHz, CDCl₃): $\delta = 7.95 \ (d, \ J = 7.8$ Hz, 1H), 7.79-7.80 (m, 2H), 7.68-7.75 (m, 1H), 7.42 (d, J = 2.0Hz, 1H), 7.33 (d, J =

8.3Hz, 1H), 7.20-7.25 (m, 8H), 7.12-7.14 (m, 2H), 7.03(dd, J = 2.0Hz, 8.3Hz, 1H), 6.73 (s, 1H), 6.37 (d, J = 6.6Hz, 1H), 5.07 (d, J = 6.6Hz, 1H), 4.13 (d, J = 13.9Hz, 1H), 3.43 (d, J = 13.8Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 166.3$, 165.5, 136.5, 136.0, 134.6, 134.5, 133.9, 133.0, 132.7, 131.3, 130.5, 130.2, 129.0, 128.9, 128.33, 128.29, 128.0, 127.5, 126.3, 125.4, 122.0, 121.7, 106.9, 66.2, 48.6, 40.2. The enantiomeric excess was determined by HPLC with an IA-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 16.36$ min, major enantiomer t_R = 31.48 min. HRMS (ESI): $[M+H]^+$ calcd for [C₃₁H₂₃Cl₂N₂O₄S]:589.1750, 591.0722, 593.0690, found: 589.0759, 591.0721, 593.0691

N-((8R,9S)-8-ethyl-5,5-dioxido-7-oxo-9-phenyl-8,9-dihydro-7H-benzo[4,5]isothiaz olo[2,3-a]pyridin-8-yl)benzamide(3ai)

N-((8R,9S)-8-isobutyl-5,5-dioxido-7-oxo-9-phenyl-8,9-dihydro-7H-benzo[4,5]isot hiazolo[2,3-a]pyridin-8-yl)benzamide(3aj)

Yellow solid. 86% yield (41.8 mg). m. p.: 231-233 °C. $[\alpha]_D^{20} = 254$ (c 1.0, CH₂Cl₂, 74% ee). ¹H NMR (400 MHz, CDCl₃): $\delta = 7.91$ (d, J = 7.8Hz, 1H), 7.76-7.77 (m, 2H), 7.66-7.70 (m, 1H), 7.39-7.44 (m, 3H), 7.30-7.34 (m, 2H), 7.18 (s, 5H), 7.08

(s, 1H), 6.28 (d, J = 6.6Hz, 1H), 4.90 (d, J = 6.6Hz, 1H), 2.96 (dd, J = 6.5Hz, 14.6Hz, 1H), 2.03 (dd, J = 5.6Hz, 14.6Hz, 1H), 1.78-1.88 (m, 1H), 0.92(dd, J = 6.7Hz, 11Hz, 6H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.1$, 167.2, 136.7, 135.0, 134.3, 132.7, 131.4, 131.1, 128.9, 128.5, 128.1, 128.0, 126.5, 121.9, 121.7, 107.4, 64.9, 49.3, 42.2, 24.5, 23.9, 23.8. The enantiomeric excess was determined by HPLC with an ID-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer $t_R = 16.85$ min, major enantiomer $t_R = 28.15$ min. HRMS (ESI): [M+H]⁺ calcd for [C₂₈H₂₇N₂O₄S]:487.1686, found: 487.1694

N-((8R,9S,10aR)-8-benzyl-5,5-dioxido-7-oxo-9-phenyl-8,9,10,10a-tetrahydro-7Hbenzo[4,5]isothiazolo[2,3-a]pyridin-8-yl)benzamide (4aa)

White solid. 95% yield (49.6 mg). m. p.: 152–154 °C. $[\alpha]_D^{20} = -68 \ (c \ 1.0, \ CH_2Cl_2, \ 92\% \ ee)$. ¹H NMR (400 MHz, CDCl_3): δ =7.91 (d, J = 7.8Hz, 1H), 7.71 (t, J = 7.48Hz, 1H), 7.63(t, J = 7.56Hz, 1H), 7.41(d, J = 7.92Hz,1H), 7.36-7.40(m, 1H), 7.31-7.32(m, 4H), 7.26-7.28(m, 5H),

7.13-7.22(m, 5H), 6.55(s, 1H), 5.14(d, J = 8.0Hz, 1H), 4.27(t, J = 8.0Hz, 1H), 4.17(d, J = 13.5Hz, 1H), 3.29(d, J = 13.5Hz, 1H), 2.94-2.97(m, 1H), 2.68(dd, J = 11.8Hz,12.9Hz, 1H). ¹³C NMR (100 MHz, CDCl₃): $\delta = 168.7$, 167.4, 140.9, 134.5, 134.41, 134.36, 134.1, 133.5, 131.4, 130.4, 130.2, 128.8, 128.6, 128.4, 128.3, 127.8, 127.3, 126.6, 123.6, 122.0, 65.2, 56.1, 46.6, 41.3, 35.4. The enantiomeric excess was determined by HPLC with an ID-3 column (*n*-hexane:*i*-PrOH= 50:50), 1 mL/min. minor enantiomer t_R = 57.84 min, major enantiomer t_R = 28.15 min. HRMS (ESI): [M+H]⁺ calcd for [C₃₁H₂₈N₂O₄S]:523.1686, found: 523.1685

4. X-ray Crystallographic Data of Compound 3ma

5. NOESY Spectra for the Determination of the Newly Formed Stereocenter.

6. Copies of NMR Spectra

S27

S33

S44

S56

7.HPLC Data

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	22.304	1.05707e4	162.32407	49.9543
2	DAD 280,4nm	33.908	1.05900e4	87.61367	50.0457

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	21.543	590.92389	10.21811	4.1625
2	DAD 280,4nm	32.447	1.36054e4	122.03567	95.8375

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	5.903	3010.49341	260.13449	49.8875
2	DAD 280,4nm	7.176	3024.07422	206.57803	50.1125

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	5.946	5022.41064	425.09317	92.9899
2	DAD 280,4nm	7.231	378.62015	23.71989	7.0101

3ba

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	21.408	1.03472e4	205.18503	50.1854
2	DAD 280,4nm	37.146	1.02708e4	96.75040	49.8146

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	23.452	2044.08459	32.16880	4.1952
2	DAD 280,4nm	40.227	4.66805e4	321.09293	95.8048

I can	TIOCCOSCU	Retention	I can m ca	I canneight	I can mea
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	24.960	1.26692e4	213.64732	50.0174
2	DAD 280,4nm	42.449	1.26603e4	103.05259	49.9826

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	26.285	1040.70435	15.00699	3.5834
2	DAD 280,4nm	41.146	2.80016e4	179.10585	96.4166

3da

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	7.537	4354.92725	252.14871	49.8471
2	DAD 280,4nm	14.780	4381.64160	109.22726	50.1529

Реак	Processea	Retention	Реак Агеа	PeakHeight	Реак Агеа
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	11.528	2912.44482	119.73755	49.3534
2	DAD 280,4nm	16.078	2988.75952	84.16077	50.6466

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	11.219	1.30681e4	573.23590	95.8643
2	DAD 280,4nm	15.340	563.77618	19.09134	4.1357

3fa

Реак	Processed	Retention	Реак Агеа	PeakHeight	Реак Агеа
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	23.775	1.28021e4	232.60614	49.5014
2	DAD 280,4nm	27.784	1.30600e4	160.11501	50.4986

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	23.973	2760.12036	56.88066	4.9006
2	DAD 280,4nm	27.235	5.35622e4	624.01514	95.0994

3ga

3ha

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	12.079	2120.97485	84.16270	49.8336
2	DAD 280,4nm	15.950	2135.13672	63.32970	50.1664

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	12.098	1.99703e4	790.63483	95.3403
2	DAD 280,4nm	16.008	976.03387	32.74494	4.6597

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	25.940	6871.95508	111.22198	49.5086
2	DAD 280,4nm	30.083	7008.37305	76.21506	50.4914

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	28.661	1682.51660	23.55353	4.7419
2	DAD 280,4nm	30.488	3.37998e4	275.67023	95.2581

3ia

3ja

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	18.011	4182.62549	80.41293	49.7133
2	DAD 280,4nm	23.588	4230.87256	41.71724	50.2867

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	17.469	2882.14795	72.44197	6.0948
2	DAD 280,4nm	22.504	4.44066e4	435.05081	93.9052

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	12.521	8939.76367	281.38528	50.5255
2	DAD 280,4nm	22.690	8753.81738	130.97723	49.4745

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	12.695	9786.53418	332.93295	92.1796
2	DAD 280,4nm	22.979	830.27289	14.67468	7.8204

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	10.399	8976.92090	384.55511	50.6420
2	DAD 280,4nm	36.109	8749.30566	87.66122	49.3580

3la

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	37.649	1.07466e4	110.49342	50.4612
2	DAD 280,4nm	53.858	1.05502e4	67.90972	49.5388

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	38.505	568.51874	6.58195	6.0362
2	DAD 280,4nm	53.558	8850.00293	58.00994	93.9638

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	30.639	1.63203e4	199.49008	49.9529
2	DAD 280,4nm	40.759	1.63511e4	137.02501	50.0471

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	32.012	2007.73816	24.38774	7.1669
2	DAD 280,4nm	42.822	2.60065e4	147.34763	92.8331

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	23.117	1922.94446	40.87045	49.7997
2	DAD 280,4nm	27.536	1938.41663	33.05637	50.2003

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	28.524	1.86076e4	256.66373	49.9973
2	DAD 280,4nm	34.635	1.86096e4	199.20345	50.0027

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	29.176	2024.39075	29.47186	7.0567
2	DAD 280,4nm	34.638	2.66633e4	279.92307	92.9433

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	10.023	2074.41650	95.28205	50.6401
2	DAD 280,4nm	11.312	2021.97607	78.78347	49.3599

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	10.043	354.03128	17.12081	4.5265
2	DAD 280,4nm	11.335	7467.35645	290.99557	95.4735

3qa

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	38.694	6239.47705	22.35515	50.1291
2	DAD 280,4nm	63.908	6207.34521	35.36945	49.8709

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	45.939	6765.58105	48.43176	49.5157
2	DAD 280,4nm	53.331	6897.93115	39.27061	50.4843

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	46.192	3257.75781	24.98763	4.1139
2	DAD 280,4nm	51.804	7.59313e4	392.57556	95.8861

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	24.808	1191.43091	19.80829	50.0246
2	DAD 280,4nm	28.720	1190.25854	17.28032	49.9754

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	10.522	3228.31812	147.47612	49.5115
2	DAD 280,4nm	12.856	3292.02100	116.52240	50.4885

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	10.426	3329.45630	152.94992	91.6063
2	DAD 280,4nm	12.735	305.07315	12.48556	8.3937

3ua

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	27.381	1.59060e4	207.56673	49.9435
2	DAD 280,4nm	46.117	1.59420e4	104.35244	50.0565

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	27.774	852.71924	10.39601	5.1094
2	DAD 280,4nm	45.311	1.58364e4	95.31211	94.8906

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area	
	Channel	Time(min)	(mAU*s)	(mAU)	(%)	
1	DAD 280,4nm	22.119	2.01633e4	328.11826	49.9808	
2	DAD 280,4nm	37.556	2.01788e4	157.54744	50.0192	

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	22.462	867.33453	12.90907	6.1427
2	DAD 280,4nm	36.909	1.32525e4	102.22998	93.8573

3ac

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	19.172	6025.26465	130.23244	48.8319
2	DAD 280,4nm	28.450	6313.52637	73.53452	51.1681

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	19.517	759.27161	14.52846	5.3421
2	DAD 280,4nm	27.925	1.34538e4	146.52672	94.6579

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	20.355	5370.02686	82.29691	50.2117
2	DAD 280,4nm	31.505	5324.75049	49.51744	49.7883

2.17404e4

185.58447

93.2766

30.577

2

DAD 280,4nm

3af

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	12.791	1.58305e4	428.54779	49.5611
2	DAD 280,4nm	17.974	1.61109e4	263.23816	50.4389

Peak	Processed Channel	Retention Time(min)	Peak Area	PeakHeight	Peak Area
1	DAD 280,4nm	15.741	3454.99609	92.03073	50.5048
2	DAD 280,4nm	25.300	3385.93506	35.75331	49.4952

4437.95313

36.14269

50.4817

32.212

2

DAD 280,4nm

I cum	liocobbeu	Recention	I cull i li cu	1 cumining int	I cull i li cu	
	Channel	Time(min)	(mAU*s)	(mAU)	(%)	
1	DAD 280,4nm	12.405	5161.64795	156.93698	50.0551	
2	DAD 280,4nm	27.533	5150.28955	77.43819	49.9449	

Peak	Processed	Retention	Peak Area	PeakHeight	Peak Area
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	12.393	2665.35254	82.52624	7.7077
2	DAD 280,4nm	27.045	3.19149e4	439.01831	92.2923

3ai

3aj

I cull	IIOCCODECU	neccontroll	I cull III cu	1 cullingine	I cull III cu
	Channel	Time(min)	(mAU*s)	(mAU)	(%)
1	DAD 280,4nm	15.456	8472.29004	129.00008	49.8400
2	DAD 280,4nm	25.733	8526.69727	116.54206	50.1600

5695.01465

21.48969

55.726

50.1309

2

DAD 230,4nm

